Илон Маск написал у себя в X:
Большинство разногласий вокруг сроков появления AGI сводятся к тому, как именно его определяют.
Например, по последнему мнению Андрея Карпатия, настоящая AGI — это не просто языковая модель, а интеллект с телом: продвинутые роботы, способные выполнять физическую работу и даже решать проблему согласования (alignment).
Если придерживаться такого определения, то даже 10 лет - слишком оптимистичный прогноз.
«У Grok 5 примерно 10 % шансов стать AGI - и он может оказаться очень близок к этому уровню.»
Большинство разногласий вокруг сроков появления AGI сводятся к тому, как именно его определяют.
Например, по последнему мнению Андрея Карпатия, настоящая AGI — это не просто языковая модель, а интеллект с телом: продвинутые роботы, способные выполнять физическую работу и даже решать проблему согласования (alignment).
Если придерживаться такого определения, то даже 10 лет - слишком оптимистичный прогноз.
😁15👍8🤣3❤2🔥2
Uber запускает новый способ заработка для водителей в США 💰
Теперь водители смогут получать деньги, выполняя «цифровые задачи» — короткие задания, которые занимают всего пару минут и доступны даже во время ожидания пассажиров.
Примеры таких задач:
▫️ разметка данных для обучения ИИ
▫️ загрузка меню ресторанов
▫️ запись голосовых сэмплов
▫️ озвучка сценариев на разных языках
Потенциал огромен: компании вроде Scale AI и Surge AI, занимающиеся разметкой данных, уже оцениваются примерно в $30 млрд каждая.
В начале октября Uber также приобрёл бельгийский стартап Segments AI, специализирующийся на разметке данных, чтобы усилить свои позиции в этой сфере.
Теперь водители смогут получать деньги, выполняя «цифровые задачи» — короткие задания, которые занимают всего пару минут и доступны даже во время ожидания пассажиров.
Примеры таких задач:
▫️ разметка данных для обучения ИИ
▫️ загрузка меню ресторанов
▫️ запись голосовых сэмплов
▫️ озвучка сценариев на разных языках
Потенциал огромен: компании вроде Scale AI и Surge AI, занимающиеся разметкой данных, уже оцениваются примерно в $30 млрд каждая.
В начале октября Uber также приобрёл бельгийский стартап Segments AI, специализирующийся на разметке данных, чтобы усилить свои позиции в этой сфере.
👍25😁12❤5🔥3
🖼️✨ Удаление водяных знаков из видео Sora 2 с помощью ИИ
Этот проект позволяет эффективно удалять водяные знаки из видео, созданных с помощью Sora 2, используя технологии искусственного интеллекта. Пользователь загружает видео, система анализирует каждый кадр и удаляет водяной знак с помощью инпейнтинга.
🚀Основные моменты:
- Использует ИИ для точного удаления водяных знаков
- Поддерживает Windows, MacOS и Linux
- Обработка видео с сохранением качества
- Легкий в использовании интерфейс для загрузки видео
📌 GitHub: https://github.com/hate0s/sora2-watermark-remover
Этот проект позволяет эффективно удалять водяные знаки из видео, созданных с помощью Sora 2, используя технологии искусственного интеллекта. Пользователь загружает видео, система анализирует каждый кадр и удаляет водяной знак с помощью инпейнтинга.
🚀Основные моменты:
- Использует ИИ для точного удаления водяных знаков
- Поддерживает Windows, MacOS и Linux
- Обработка видео с сохранением качества
- Легкий в использовании интерфейс для загрузки видео
📌 GitHub: https://github.com/hate0s/sora2-watermark-remover
🤣21🔥5❤3🥴3👍1
🌍 NVIDIA лидирует в опенсорсе в области ИИ, а китайские лаборатории только догоняют.
Всего пару лет назад большинство моделей - особенно крупные языковые - были закрыты
.
Теперь всё иначе: экосистема открытого ИИ растёт взрывными темпами. Только за последние 90 дней на Hugging Face появилось более миллиона новых репозиториев.
NVIDIA вышла в лидеры по количеству открытых проектов в 2025 году: серии Nemotron, BioNeMo, Cosmos, Gr00t и Canary.
Китайские компании (Alibaba Cloud с Qwen, Baidu, Tencent и другие) активно догоняют и уже способны конкурировать с западными лабораториями.
Открытый ИИ стал не только про гигантов - тысячи независимых разработчиков публикуют модели, датасеты и адаптации (например, LoRA). Это превращается в целое движение.
Меняется глобальная карта ИИ: Китай и США усиливают позиции, а Европа и другие страны всё больше уходит в тень.
⚠️ Но есть нюансы:
Открытость ≠ качество: важно следить за достоверностью данных, этикой и устойчивостью моделей.
Рост числа репозиториев требует фильтрации — не всё из нового имеет практическую ценность.
Лицензии и совместимость становятся критически важными: ошибки здесь могут стоить дорого.
📎 Подробнее: https://aiworld.eu/story/nvidia-leads-open-source-ai-momentum-as-chinese-labs-close-in
#OpenSourceAI #NVIDIA #China #Innovation #AI #Ecosystem
Всего пару лет назад большинство моделей - особенно крупные языковые - были закрыты
.
Теперь всё иначе: экосистема открытого ИИ растёт взрывными темпами. Только за последние 90 дней на Hugging Face появилось более миллиона новых репозиториев.
NVIDIA вышла в лидеры по количеству открытых проектов в 2025 году: серии Nemotron, BioNeMo, Cosmos, Gr00t и Canary.
Китайские компании (Alibaba Cloud с Qwen, Baidu, Tencent и другие) активно догоняют и уже способны конкурировать с западными лабораториями.
Открытый ИИ стал не только про гигантов - тысячи независимых разработчиков публикуют модели, датасеты и адаптации (например, LoRA). Это превращается в целое движение.
Меняется глобальная карта ИИ: Китай и США усиливают позиции, а Европа и другие страны всё больше уходит в тень.
⚠️ Но есть нюансы:
Открытость ≠ качество: важно следить за достоверностью данных, этикой и устойчивостью моделей.
Рост числа репозиториев требует фильтрации — не всё из нового имеет практическую ценность.
Лицензии и совместимость становятся критически важными: ошибки здесь могут стоить дорого.
📎 Подробнее: https://aiworld.eu/story/nvidia-leads-open-source-ai-momentum-as-chinese-labs-close-in
#OpenSourceAI #NVIDIA #China #Innovation #AI #Ecosystem
❤11👍6🔥2
🌌 Google Gemini научили распознавать взрывающиеся звёзды по 15 примерам
Google Research показали, что мультимодальная модель Gemini способна находить *вспышки сверхновых и другие астрономические события* — буквально по нескольким обучающим примерам.
🚀 Главное
- Использован few-shot learning — всего ~15 примеров для каждой обсерватории *(Pan-STARRS, MeerLICHT, ATLAS)*
- Модель видит три изображения: новое, эталонное и разницу между ними
- Gemini не просто ставит метку, но объясняет, *почему* считает событие настоящим
- Средняя точность — 93 %, после итераций до 96,7 %
- Умеет оценивать свою неуверенность и просить помощи человека
- Объяснения модели признаны экспертами-астрономами достоверными
🔭 Почему это важно
- Будущие телескопы вроде Vera Rubin Observatory будут генерировать *миллионы сигналов каждую ночь* — без ИИ это невозможно обработать
- Подход few-shot позволяет быстро адаптировать модель к новым данным без переобучения
- Gemini превращается в научного помощника, а не просто классификатор
⚠️ Ограничения
- 93 % ≠ 100 % — человек-в-петле всё ещё необходим
- Модель чувствительна к качеству примеров и может ошибаться на редких артефактах
Вывод: Gemini теперь не просто анализирует изображения, а *учится думать как учёный* — объясняя, сомневаясь и адаптируясь к новым задачам.
📖 Источник: https://research.google/blog/teaching-gemini-to-spot-exploding-stars-with-just-a-few-examples/
Google Research показали, что мультимодальная модель Gemini способна находить *вспышки сверхновых и другие астрономические события* — буквально по нескольким обучающим примерам.
🚀 Главное
- Использован few-shot learning — всего ~15 примеров для каждой обсерватории *(Pan-STARRS, MeerLICHT, ATLAS)*
- Модель видит три изображения: новое, эталонное и разницу между ними
- Gemini не просто ставит метку, но объясняет, *почему* считает событие настоящим
- Средняя точность — 93 %, после итераций до 96,7 %
- Умеет оценивать свою неуверенность и просить помощи человека
- Объяснения модели признаны экспертами-астрономами достоверными
🔭 Почему это важно
- Будущие телескопы вроде Vera Rubin Observatory будут генерировать *миллионы сигналов каждую ночь* — без ИИ это невозможно обработать
- Подход few-shot позволяет быстро адаптировать модель к новым данным без переобучения
- Gemini превращается в научного помощника, а не просто классификатор
⚠️ Ограничения
- 93 % ≠ 100 % — человек-в-петле всё ещё необходим
- Модель чувствительна к качеству примеров и может ошибаться на редких артефактах
Вывод: Gemini теперь не просто анализирует изображения, а *учится думать как учёный* — объясняя, сомневаясь и адаптируясь к новым задачам.
📖 Источник: https://research.google/blog/teaching-gemini-to-spot-exploding-stars-with-just-a-few-examples/
❤11🔥6👍2
🚀 Примеры ChatKit для разработчиков
Репозиторий содержит продвинутые примеры использования ChatKit, включая интеграцию FastAPI и Vite + React. Он демонстрирует, как создать сервер ChatKit с помощью Python SDK и использовать различные инструменты для взаимодействия с клиентом.
🚀 Основные моменты:
- Полный шаблон проекта с фронтендом и бэкендом.
- Интеграция с инструментами для получения погоды и переключения тем.
- Легкая разработка с проксированием запросов через Vite.
📌 GitHub: https://github.com/openai/openai-chatkit-advanced-samples
#python
Репозиторий содержит продвинутые примеры использования ChatKit, включая интеграцию FastAPI и Vite + React. Он демонстрирует, как создать сервер ChatKit с помощью Python SDK и использовать различные инструменты для взаимодействия с клиентом.
🚀 Основные моменты:
- Полный шаблон проекта с фронтендом и бэкендом.
- Интеграция с инструментами для получения погоды и переключения тем.
- Легкая разработка с проксированием запросов через Vite.
📌 GitHub: https://github.com/openai/openai-chatkit-advanced-samples
#python
❤6👍4🔥3
Amazon планирует заменить около 600 000 сотрудников в США роботами.
Это колоссальный сдвиг - не только для компании, но и для всей экономики.
Да, многие рабочие места исчезнут.
Но если смотреть шире, мы стоим у начала новой промышленной революции, где выигрывают те, кто инвестирует в технологии на раннем этапе.
Доходы от акций и дивидендов в будущем смогут превысить сегодняшние зарплаты, благодаря эффекту сложного процента.
Автоматизация будет только расти. Это неизбежно.
И, вероятно, параллельно появятся формы базового дохода (UBI/UHI), чтобы сгладить переход.
2030-е будут эпохой не страха, а огромных возможностей - для тех, кто готов адаптироваться.
#Robotics #Automation #Amazon #FutureOfWork #AIeconomy
Это колоссальный сдвиг - не только для компании, но и для всей экономики.
Да, многие рабочие места исчезнут.
Но если смотреть шире, мы стоим у начала новой промышленной революции, где выигрывают те, кто инвестирует в технологии на раннем этапе.
Доходы от акций и дивидендов в будущем смогут превысить сегодняшние зарплаты, благодаря эффекту сложного процента.
Автоматизация будет только расти. Это неизбежно.
И, вероятно, параллельно появятся формы базового дохода (UBI/UHI), чтобы сгладить переход.
2030-е будут эпохой не страха, а огромных возможностей - для тех, кто готов адаптироваться.
#Robotics #Automation #Amazon #FutureOfWork #AIeconomy
🤣29👍7🔥6❤4🥱3🐳1
Крутая работа от NVIDIA + MIT 👏
QeRL (Quantization-enhanced Reinforcement Learning) - новый способ обучать LLM-модели с подкреплением, используя 4-битные веса и адаптивный шум.
📈 Результат работы метода: до 1.5× быстрее rollout’ы* и полноценное RL-обучение 32B модели на одной H100 (80 GB).
Обычный RL медленный, потому что rollout’ы длинные, а память занята политикой и эталоном.
LoRA уменьшает число обучаемых параметров, но не ускоряет генерацию.
QLoRA использует NF4, но таблицы тормозят вывод.
⚙️ QeRL решает это:
- применяет NVFP4 веса через Marlin,
- сохраняет LoRA только для градиентов,
- использует одну 4-битную политику и для rollout’ов, и для scoring — без дубликатов.
🧠 Добавление адаптивного шума квантизации повышает энтропию токенов — модель исследует пространство решений активнее.
Шум постепенно уменьшается и сливается с RMSNorm-масштабированием — без добавления параметров.
📊 На математических задачах:
- награды растут быстрее,
- точность равна или выше, чем у 16-битных LoRA и QLoRA.
💡 Итого: быстрее, экономнее по памяти, и крупные модели теперь реально можно обучать на одной GPU.
📄 https://arxiv.org/abs/2510.11696
QeRL (Quantization-enhanced Reinforcement Learning) - новый способ обучать LLM-модели с подкреплением, используя 4-битные веса и адаптивный шум.
📈 Результат работы метода: до 1.5× быстрее rollout’ы* и полноценное RL-обучение 32B модели на одной H100 (80 GB).
Rollout - это прохождение эпизода или попытка модели выполнить задачу от начала до конца, чтобы потом оценить её действия и выдать награду.
Обычный RL медленный, потому что rollout’ы длинные, а память занята политикой и эталоном.
LoRA уменьшает число обучаемых параметров, но не ускоряет генерацию.
QLoRA использует NF4, но таблицы тормозят вывод.
⚙️ QeRL решает это:
- применяет NVFP4 веса через Marlin,
- сохраняет LoRA только для градиентов,
- использует одну 4-битную политику и для rollout’ов, и для scoring — без дубликатов.
🧠 Добавление адаптивного шума квантизации повышает энтропию токенов — модель исследует пространство решений активнее.
Шум постепенно уменьшается и сливается с RMSNorm-масштабированием — без добавления параметров.
📊 На математических задачах:
- награды растут быстрее,
- точность равна или выше, чем у 16-битных LoRA и QLoRA.
💡 Итого: быстрее, экономнее по памяти, и крупные модели теперь реально можно обучать на одной GPU.
📄 https://arxiv.org/abs/2510.11696
❤11🔥6👍3
Forwarded from Machinelearning
🔥 GOOGLE AI опубликовали пост о настоящем прорыве в области QUANTUM AI
Сегодня в журнале Nature команда Google впервые показали проверяемое квантовое преимущество с помощью метода, называемого *out-of-time-order correlator (OTOC), или «квантовые эхо».
Эксперимент проведён на квантовом чипе Willow, и он показывает, что квантовые устройства уже способны решать задачи, которые невозможно эффективно симулировать на классических компьютерах.
Квантовый процессор Google выполнил алгоритм под названием Quantum Echoes - в 13 000 раз быстрее, чем лучший классический алгоритм на одном из самых мощных суперкомпьютеров в мире.
🟠 Что это значит простыми словами
Учёные научились буквально «отматывать время» в квантовой системе и смотреть, когда она переходит от упорядоченного поведения к хаосу. Этот переход - ключ к пониманию, где начинается настоящее квантовое преимущество.
Проще говоря:
1) Учёные запускают квантовую систему вперёд во времени, позволяя ей запутаться и “рассеять” информацию.
2) Затем применяют обратные операции, как будто “перематывают” процесс назад.
3) Если всё сделано идеально, система должна вернуться в исходное состояние,но из-за квантового хаоса это происходит лишь частично.
4) Разница между “до” и “после” показывает, насколько глубоко информация ушла в хаос.
Работа показывает, что можно извлекать информацию из хаотичных квантовых состояний, ранее считавшихся полностью случайными.
Такой эффект невозможно воспроизвести на обычных суперкомпьютерах. Это шаг к практическим квантовым вычислениям, которые смогут моделировать материалы, молекулы и сложные физические процессы с точностью, недостижимой ранее.
«Quantum Echoes может стать основой будущих квантовых разработок для реального применения.
*Out-of-time-order correlator (сокращённо OTOC) - это специальная метрика, с помощью которой физики измеряют, как быстро информация "распространяется" и смешивается внутри квантовой системы.
🟢 Статья: https://www.nature.com/articles/s41586-025-09526-6
@ai_machinelearning_big_data
#QuantumComputing #Google #AI #Nature #Physics
Сегодня в журнале Nature команда Google впервые показали проверяемое квантовое преимущество с помощью метода, называемого *out-of-time-order correlator (OTOC), или «квантовые эхо».
Эксперимент проведён на квантовом чипе Willow, и он показывает, что квантовые устройства уже способны решать задачи, которые невозможно эффективно симулировать на классических компьютерах.
Квантовый процессор Google выполнил алгоритм под названием Quantum Echoes - в 13 000 раз быстрее, чем лучший классический алгоритм на одном из самых мощных суперкомпьютеров в мире.
Учёные научились буквально «отматывать время» в квантовой системе и смотреть, когда она переходит от упорядоченного поведения к хаосу. Этот переход - ключ к пониманию, где начинается настоящее квантовое преимущество.
Проще говоря:
1) Учёные запускают квантовую систему вперёд во времени, позволяя ей запутаться и “рассеять” информацию.
2) Затем применяют обратные операции, как будто “перематывают” процесс назад.
3) Если всё сделано идеально, система должна вернуться в исходное состояние,но из-за квантового хаоса это происходит лишь частично.
4) Разница между “до” и “после” показывает, насколько глубоко информация ушла в хаос.
Работа показывает, что можно извлекать информацию из хаотичных квантовых состояний, ранее считавшихся полностью случайными.
Такой эффект невозможно воспроизвести на обычных суперкомпьютерах. Это шаг к практическим квантовым вычислениям, которые смогут моделировать материалы, молекулы и сложные физические процессы с точностью, недостижимой ранее.
«Quantum Echoes может стать основой будущих квантовых разработок для реального применения.
*Out-of-time-order correlator (сокращённо OTOC) - это специальная метрика, с помощью которой физики измеряют, как быстро информация "распространяется" и смешивается внутри квантовой системы.
@ai_machinelearning_big_data
#QuantumComputing #Google #AI #Nature #Physics
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
❤16👍5
🚀 IBM представила Toucan: крупнейший открытый набор данных для обучения ИИ-агентов вызывать и использовать инструменты (tool calling).
Toucan содержит более 1,5 млн реальных сценариев взаимодействия с API и внешними сервисами, охватывая 2000+ инструментов - от планирования задач до анализа данных и отчётности.
💡 Модели, обученные на Toucan, уже обошли GPT-4.5-Preview в ряде бенчмарков по эффективности работы с инструментами.
Toucan обучает модели на реальных последовательностях вызовов инструментов, а не синтетических данных.
Подробнее: https://research.ibm.com/blog/toucan-for-tool-calling
#AI #Agents #ToolCalling #IBM #LLM
Toucan содержит более 1,5 млн реальных сценариев взаимодействия с API и внешними сервисами, охватывая 2000+ инструментов - от планирования задач до анализа данных и отчётности.
💡 Модели, обученные на Toucan, уже обошли GPT-4.5-Preview в ряде бенчмарков по эффективности работы с инструментами.
Toucan обучает модели на реальных последовательностях вызовов инструментов, а не синтетических данных.
Подробнее: https://research.ibm.com/blog/toucan-for-tool-calling
#AI #Agents #ToolCalling #IBM #LLM
🔥10❤9👍4
🍎 Apple выпустила Pico-Banana-400K - это крупнейший открытый датасет для редактирования изображений по тексту.
Что внутри:
• ~400 000 примеров на основе реальных фото из Open Images
• 35 типов правок в 8 категориях: от изменения цвета до замены объектов, стилей, текста, выражений лиц и даже расширения кадра
• Все правки делала модель Nano-Banana, а качество оценивал Gemini-2.5-Pro по 4 критериям:
Интересные детали:
• Легче всего модели даются стилизация (93% успеха) и эффекты вроде зернистости плёнки
• Сложнее всего — точное перемещение объектов и редактирование шрифтов (~57–59% успеха)
• Неудачные попытки сохранены — как негативные примеры для обучения
• Общая стоимость сборки датасета — около $100 000
Датасет открыт для исследований (лицензия CC BY-NC-ND 4.0), идеален для разработки ИИ-редакторов следующего поколения.
🔗 GitHub
Что внутри:
• ~400 000 примеров на основе реальных фото из Open Images
• 35 типов правок в 8 категориях: от изменения цвета до замены объектов, стилей, текста, выражений лиц и даже расширения кадра
• Все правки делала модель Nano-Banana, а качество оценивал Gemini-2.5-Pro по 4 критериям:
Интересные детали:
• Легче всего модели даются стилизация (93% успеха) и эффекты вроде зернистости плёнки
• Сложнее всего — точное перемещение объектов и редактирование шрифтов (~57–59% успеха)
• Неудачные попытки сохранены — как негативные примеры для обучения
• Общая стоимость сборки датасета — около $100 000
Датасет открыт для исследований (лицензия CC BY-NC-ND 4.0), идеален для разработки ИИ-редакторов следующего поколения.
🔗 GitHub
❤13👍5🔥3
🧠 Суперспособности для Claude Code
Репозиторий предоставляет редактируемую сообществом библиотеку навыков для плагина суперспособностей Claude Code. Пользователи могут добавлять новые навыки и улучшать существующие, способствуя развитию проекта.
🚀 Основные моменты:
- Редактируемая библиотека навыков
- Утилиты для управления навыками
- Поддержка сообщества для улучшений
📌 GitHub: https://github.com/obra/superpowers-skills
Репозиторий предоставляет редактируемую сообществом библиотеку навыков для плагина суперспособностей Claude Code. Пользователи могут добавлять новые навыки и улучшать существующие, способствуя развитию проекта.
🚀 Основные моменты:
- Редактируемая библиотека навыков
- Утилиты для управления навыками
- Поддержка сообщества для улучшений
📌 GitHub: https://github.com/obra/superpowers-skills
❤9👍2🔥2
Главная идея - сделать внимание «разреженным» без потери смысла. Вместо того чтобы сравнивать каждый токен со всеми остальными, как в классическом attention, модель Adamas использует только 128 релевантных токенов для каждого запроса. При этом точность остаётся почти такой же, как у полного внимания, а скорость растёт в несколько раз.
Метод основан на простых, но эффективных приёмах. Сначала к векторам запросов и ключей применяется преобразование Адамара, которое сглаживает экстремальные значения и позволяет их сжать. Затем значения разбиваются на четыре уровня и кодируются всего в 2 бита. Эти компактные коды хранятся в кэше и позволяют при инференсе быстро вычислять сходство между токенами с помощью лёгкой метрики (Manhattan distance). Модель выбирает наиболее важные токены и выполняет обычное внимание только над ними.
Такой подход почти не требует дополнительной памяти, лишь небольшой 2-битный код на токен — и может встраиваться в существующие LLM без переобучения. Благодаря этому Adamas обеспечивает до 4.4× ускорения self-attention и около 1.5× ускорения инференса в целом, не теряя качества.
Источник: arxiv.org/abs/2510.18413
Please open Telegram to view this post
VIEW IN TELEGRAM
👍14❤6🔥4
🧠 Anthropic проверила, могут ли LLM понимать скрытые мотивы людей
Исследователи из Anthropic опубликовали новую работу, где проверили, насколько большие языковые модели (LLM) способны замечать намерения и скрытые мотивы за сообщениями — например, когда кто-то говорит что-то не из-за убеждений, а потому что ему заплатили или он хочет повлиять на мнение.
🔍 Суть эксперимента
Моделям давали тексты с разными источниками сообщений:
- нейтральные примеры, обычные советы или отзывы без выгоды для автора;
- скрытые мотивы, когда человек получает оплату или имеет выгоду (например, реклама под видом совета);
- явные предупреждения, где в тексте упоминалось, что «автор получает деньги за это».
Задача моделей - оценить, насколько можно доверять сообщению и заметить, есть ли скрытый интерес.
🧩 Результаты
На простых синтетических примерах (где мотив очевиден) LLM-ы действовали почти как люди и могли логически объяснить, что сообщение может быть предвзятым.
Но в реальных кейсах, например, в рекламных текстах или постах с платной интеграцией — модели часто не видели подвоха. Они воспринимали сообщения как искренние и достоверные.
Если модель напомнить заранее (prompt-hint), что стоит искать скрытые мотивы, результаты улучшались, но не сильно - эффект был частичный.
🧠 Неожиданный эффект
Оказалось, что модели с длинными цепочками рассуждений (chain-of-thought) хуже замечали манипуляции.
Когда модель начинает подробно рассуждать, она легче “запутывается” в деталях и теряет критичность к источнику, особенно если контент длинный и эмоциональный.
Чем длиннее и сложнее сообщение, тем хуже модель оценивает предвзятость. Это контрастирует с человеческим поведением: люди обычно, наоборот, становятся подозрительнее при сложных рекламных текстах.
Современные LLM могут анализировать факты, но слабо понимают мотивы, но им трудно различить, почему кто-то что-то говорит.
Это делает их уязвимыми для скрытого влияния, особенно если текст замаскирован под дружеский совет или экспертное мнение.
При использовании LLM для анализа новостей, рекомендаций или рекламы важно учитывать, что они могут не распознать коммерческую предвзятость.
📄 Исследование: arxiv.org/abs/2510.19687
@data_analysis_ml
Исследователи из Anthropic опубликовали новую работу, где проверили, насколько большие языковые модели (LLM) способны замечать намерения и скрытые мотивы за сообщениями — например, когда кто-то говорит что-то не из-за убеждений, а потому что ему заплатили или он хочет повлиять на мнение.
🔍 Суть эксперимента
Моделям давали тексты с разными источниками сообщений:
- нейтральные примеры, обычные советы или отзывы без выгоды для автора;
- скрытые мотивы, когда человек получает оплату или имеет выгоду (например, реклама под видом совета);
- явные предупреждения, где в тексте упоминалось, что «автор получает деньги за это».
Задача моделей - оценить, насколько можно доверять сообщению и заметить, есть ли скрытый интерес.
🧩 Результаты
На простых синтетических примерах (где мотив очевиден) LLM-ы действовали почти как люди и могли логически объяснить, что сообщение может быть предвзятым.
Но в реальных кейсах, например, в рекламных текстах или постах с платной интеграцией — модели часто не видели подвоха. Они воспринимали сообщения как искренние и достоверные.
Если модель напомнить заранее (prompt-hint), что стоит искать скрытые мотивы, результаты улучшались, но не сильно - эффект был частичный.
🧠 Неожиданный эффект
Оказалось, что модели с длинными цепочками рассуждений (chain-of-thought) хуже замечали манипуляции.
Когда модель начинает подробно рассуждать, она легче “запутывается” в деталях и теряет критичность к источнику, особенно если контент длинный и эмоциональный.
Чем длиннее и сложнее сообщение, тем хуже модель оценивает предвзятость. Это контрастирует с человеческим поведением: люди обычно, наоборот, становятся подозрительнее при сложных рекламных текстах.
Современные LLM могут анализировать факты, но слабо понимают мотивы, но им трудно различить, почему кто-то что-то говорит.
Это делает их уязвимыми для скрытого влияния, особенно если текст замаскирован под дружеский совет или экспертное мнение.
При использовании LLM для анализа новостей, рекомендаций или рекламы важно учитывать, что они могут не распознать коммерческую предвзятость.
📄 Исследование: arxiv.org/abs/2510.19687
@data_analysis_ml
👍12❤9🔥5