Generative AI – Telegram
Generative AI
26.5K subscribers
493 photos
3 videos
82 files
269 links
Welcome to Generative AI
👨‍💻 Join us to understand and use the tech
👩‍💻 Learn how to use Open AI & Chatgpt
🤖 The REAL No.1 AI Community

Admin: @coderfun

Buy ads: https://telega.io/c/generativeai_gpt
Download Telegram
Here are 8 concise tips to help you ace a technical AI engineering interview:

𝟭. 𝗘𝘅𝗽𝗹𝗮𝗶𝗻 𝗟𝗟𝗠 𝗳𝘂𝗻𝗱𝗮𝗺𝗲𝗻𝘁𝗮𝗹𝘀 - Cover the high-level workings of models like GPT-3, including transformers, pre-training, fine-tuning, etc.

𝟮. 𝗗𝗶𝘀𝗰𝘂𝘀𝘀 𝗽𝗿𝗼𝗺𝗽𝘁 𝗲𝗻𝗴𝗶𝗻𝗲𝗲𝗿𝗶𝗻𝗴 - Talk through techniques like demonstrations, examples, and plain language prompts to optimize model performance.

𝟯. 𝗦𝗵𝗮𝗿𝗲 𝗟𝗟𝗠 𝗽𝗿𝗼𝗷𝗲𝗰𝘁 𝗲𝘅𝗮𝗺𝗽𝗹𝗲𝘀 - Walk through hands-on experiences leveraging models like GPT-4, Langchain, or Vector Databases.

𝟰. 𝗦𝘁𝗮𝘆 𝘂𝗽𝗱𝗮𝘁𝗲𝗱 𝗼𝗻 𝗿𝗲𝘀𝗲𝗮𝗿𝗰𝗵 - Mention latest papers and innovations in few-shot learning, prompt tuning, chain of thought prompting, etc.

𝟱. 𝗗𝗶𝘃𝗲 𝗶𝗻𝘁𝗼 𝗺𝗼𝗱𝗲𝗹 𝗮𝗿𝗰𝗵𝗶𝘁𝗲𝗰𝘁𝘂𝗿𝗲𝘀 - Compare transformer networks like GPT-3 vs Codex. Explain self-attention, encodings, model depth, etc.

𝟲. 𝗗𝗶𝘀𝗰𝘂𝘀𝘀 𝗳𝗶𝗻𝗲-𝘁𝘂𝗻𝗶𝗻𝗴 𝘁𝗲𝗰𝗵𝗻𝗶𝗾𝘂𝗲𝘀 - Explain supervised fine-tuning, parameter efficient fine tuning, few-shot learning, and other methods to specialize pre-trained models for specific tasks.

𝟳. 𝗗𝗲𝗺𝗼𝗻𝘀𝘁𝗿𝗮𝘁𝗲 𝗽𝗿𝗼𝗱𝘂𝗰𝘁𝗶𝗼𝗻 𝗲𝗻𝗴𝗶𝗻𝗲𝗲𝗿𝗶𝗻𝗴 𝗲𝘅𝗽𝗲𝗿𝘁𝗶𝘀𝗲 - From tokenization to embeddings to deployment, showcase your ability to operationalize models at scale.

𝟴. 𝗔𝘀𝗸 𝘁𝗵𝗼𝘂𝗴𝗵𝘁𝗳𝘂𝗹 𝗾𝘂𝗲𝘀𝘁𝗶𝗼𝗻𝘀 - Inquire about model safety, bias, transparency, generalization, etc. to show strategic thinking.

Free AI Resources: https://whatsapp.com/channel/0029Va4QUHa6rsQjhITHK82y
👍2
Inside Generative AI, 2024.epub
4.6 MB
Inside Generative AI
Rick Spair, 2024
👍2🔥1
AI.pdf
37.3 MB
👍3🔥1
LLM Cheatsheet

Introduction to LLMs
- LLMs (Large Language Models) are AI systems that generate text by predicting the next word.
- Prompts are the instructions or text you give to an LLM.
- Personas allow LLMs to take on specific roles or tones.
- Learning types:
- Zero-shot (no examples given)
- One-shot (one example)
- Few-shot (a few examples)

Transformers
- The core architecture behind LLMs, using self-attention to process input sequences.
- Encoder: Understands input.
- Decoder: Generates output.
- Embeddings: Converts words into vectors.

Types of LLMs
- Encoder-only: Great for understanding (like BERT).
- Decoder-only: Best for generating text (like GPT).
- Encoder-decoder: Useful for tasks like translation and summarization (like T5).

Configuration Settings
- Decoding strategies:
- Greedy: Always picks the most likely next word.
- Beam search: Considers multiple possible sequences.
- Random sampling: Adds creativity by picking among top choices.
- Temperature: Controls randomness (higher value = more creative output).
- Top-k and Top-p: Restrict choices to the most likely words.

LLM Instruction Fine-Tuning & Evaluation
- Instruction fine-tuning: Trains LLMs to follow specific instructions.
- Task-specific fine-tuning: Focuses on a single task.
- Multi-task fine-tuning: Trains on multiple tasks for broader skills.

Model Evaluation
- Evaluating LLMs is hard-metrics like BLEU and ROUGE are common, but human judgment is often needed.

Join our WhatsApp Channel: https://whatsapp.com/channel/0029VazaRBY2UPBNj1aCrN0U
👍5
How to start learning Generative AI
👍5
Python Libraries for Generative AI
🔥5
Perfect 😂
😁4
Guys, Big Announcement!

We’ve officially crossed 4 Lakh followers on this journey together — and it’s time to step up now! ❤️

I’m launching a Coding Interview Prep Series — designed for everyone from beginners to those polishing their skills for FAANG-level interviews.

This will be a structured, step-by-step journey — with short explanations, real coding examples, and mini-challenges after every topic to build real muscle memory.

Here’s what’s coming in the next few weeks:

Week 1: The Very Basics

- What is an Algorithm?

- What is Data Structure?

- Understanding Time Complexity (Big O Notation - made simple!)

- Basic Math for Coding Interviews

- Problem Solving Approach (How to break down a question)


Week 2: Arrays & Strings — Your Building Blocks

- Introduction to Arrays and Strings

- Common Operations (Insert, Delete, Search)

- Two Pointer Techniques (Easy to Medium problems)

- Sliding Window Problems (Optimization techniques)

- String Manipulation Tricks for Interviews


Week 3: Hashing & Recursion

- HashMaps and HashSets (Power tools for coders!)

- Solving Problems using Hashing

- Introduction to Recursion

- Base Case and Recursive Case (Explained like a 5-year-old)

- Classic Recursion Problems


Week 4: Linked Lists, Stacks & Queues

- Singly vs Doubly Linked List

- Stack Operations and Problems (Valid Parentheses, Min Stack)

- Queue and Deque Concepts (with real examples)

- When to Use Stack vs Queue in Interviews


Week 5: Trees & Graphs Essentials

- Binary Trees and BST Basics

- Tree Traversals (Inorder, Preorder, Postorder)

- Graph Representations (Adjacency List, Matrix)

- Breadth-First Search (BFS) and Depth-First Search (DFS) explained simply


Week 6: Sorting, Searching & Interview Patterns

- Core Sorting Algorithms (Selection, Bubble, Insertion)

- Advanced Sorting (Merge Sort, Quick Sort)

- Binary Search Patterns (Find First, Last Occurrence, etc.)

- Mastering Interview Patterns (Two Sum, Three Sum, Subarray Sum, etc.)


Week 7: Dynamic Programming & Advanced Problem Solving

- What is Dynamic Programming (DP)?

- Top-Down vs Bottom-Up Approach

- Memoization and Tabulation Explained

- Classic DP Problems (Fibonacci, 0/1 Knapsack, Longest Subsequence)


Week 8: Real-World Mock Interviews

- Solving Medium to Hard Problems

- Tackling FAANG-level Interview Questions

- Tips to Handle Pressure in Coding Rounds

- Building the Right Mindset for Success


React with ❤️ if you're ready for this new coding series


You can join our WhatsApp channel to access it for free: https://whatsapp.com/channel/0029VammZijATRSlLxywEC3X
8👍1
You can use ChatGPT to make money online.

Here are 10 prompts by ChatGPT

1. Develop Email Newsletters:

Make interesting email newsletters to keep audience updated and engaged.

Prompt: "I run a local community news website. Can you help me create a weekly email newsletter that highlights key local events, stories, and updates in a compelling way?"

2. Create Online Course Material:

Make detailed and educational online course content.

Prompt: "I'm creating an online course about basic programming for beginners. Can you help me generate a syllabus and detailed lesson plans that cover fundamental concepts in an easy-to-understand manner?"

Read more......
👍1
List of AI Project Ideas 👨🏻‍💻🤖 -

Beginner Projects

🔹 Sentiment Analyzer
🔹 Image Classifier
🔹 Spam Detection System
🔹 Face Detection
🔹 Chatbot (Rule-based)
🔹 Movie Recommendation System
🔹 Handwritten Digit Recognition
🔹 Speech-to-Text Converter
🔹 AI-Powered Calculator
🔹 AI Hangman Game

Intermediate Projects

🔸 AI Virtual Assistant
🔸 Fake News Detector
🔸 Music Genre Classification
🔸 AI Resume Screener
🔸 Style Transfer App
🔸 Real-Time Object Detection
🔸 Chatbot with Memory
🔸 Autocorrect Tool
🔸 Face Recognition Attendance System
🔸 AI Sudoku Solver

Advanced Projects

🔺 AI Stock Predictor
🔺 AI Writer (GPT-based)
🔺 AI-powered Resume Builder
🔺 Deepfake Generator
🔺 AI Lawyer Assistant
🔺 AI-Powered Medical Diagnosis
🔺 AI-based Game Bot
🔺 Custom Voice Cloning
🔺 Multi-modal AI App
🔺 AI Research Paper Summarizer

Join for more: https://news.1rj.ru/str/machinelearning_deeplearning
👍31
How do you start AI and ML ?

Where do you go to learn these skills? What courses are the best?

There’s no best answer🥺. Everyone’s path will be different. Some people learn better with books, others learn better through videos.

What’s more important than how you start is why you start.

Start with why.

Why do you want to learn these skills?
Do you want to make money?
Do you want to build things?
Do you want to make a difference?
Again, no right reason. All are valid in their own way.

Start with why because having a why is more important than how. Having a why means when it gets hard and it will get hard, you’ve got something to turn to. Something to remind you why you started.

Got a why? Good. Time for some hard skills.

I can only recommend what I’ve tried every week new course lauch better than others its difficult to recommend any course

You can completed courses from (in order):

Treehouse / youtube( free) - Introduction to Python

Udacity - Deep Learning & AI Nanodegree

fast.ai - Part 1and Part 2

They’re all world class. I’m a visual learner. I learn better seeing things being done/explained to me on. So all of these courses reflect that.

If you’re an absolute beginner, start with some introductory Python courses and when you’re a bit more confident, move into data science, machine learning and AI.

Join for more: https://news.1rj.ru/str/machinelearning_deeplearning

Like for more ❤️

All the best 👍👍
3👍1
Probability for Data Science
👍2