چطوری QR Code هنری خودمونو با هوش مصنوعی تولید کنیم؟!
https://huggingface.co/spaces/huggingface-projects/QR-code-AI-art-generator
#خبر #هوش_مصنوعی
🔸 مطالب بیشتر 👇👇
✅ @AI_DeepMind
https://huggingface.co/spaces/huggingface-projects/QR-code-AI-art-generator
#خبر #هوش_مصنوعی
🔸 مطالب بیشتر 👇👇
✅ @AI_DeepMind
آموزش Data Science دانشگاه هاروارد
1. Lecture notes
2. R code, Python notebooks
3. Lab material
4. Advanced sections
https://harvard-iacs.github.io/2019-CS109A/pages/materials.html
#منابع_پیشنهادی #منابع #علم_داده #آمار
🔸 مطالب بیشتر 👇👇
✅ @AI_DeepMind
1. Lecture notes
2. R code, Python notebooks
3. Lab material
4. Advanced sections
https://harvard-iacs.github.io/2019-CS109A/pages/materials.html
#منابع_پیشنهادی #منابع #علم_داده #آمار
🔸 مطالب بیشتر 👇👇
✅ @AI_DeepMind
👍2❤1
Machine Learning with Conformal Prediction for Predictive Maintenance tasks in Industry 4.0
https://www.diva-portal.org/smash/get/diva2:1765779/FULLTEXT01.pdf
https://github.com/valeman/awesome-conformal-prediction
#منابع_پیشنهادی #منابع #یادگیری_ماشین #مقاله
🔸 مطالب بیشتر 👇👇
✅ @AI_DeepMind
https://www.diva-portal.org/smash/get/diva2:1765779/FULLTEXT01.pdf
https://github.com/valeman/awesome-conformal-prediction
#منابع_پیشنهادی #منابع #یادگیری_ماشین #مقاله
🔸 مطالب بیشتر 👇👇
✅ @AI_DeepMind
👍2
This media is not supported in your browser
VIEW IN TELEGRAM
چطوری با AI پاورپوینت خودمونو تهیه کنیم؟!
https://twitter.com/itsPaulAi/status/1670061522528137216?t=P04-K8mpYGx0N-kMXYNysg&s=19
#هوش_مصنوعی #خبر
🔸 مطالب بیشتر 👇👇
✅ @AI_DeepMind
https://twitter.com/itsPaulAi/status/1670061522528137216?t=P04-K8mpYGx0N-kMXYNysg&s=19
#هوش_مصنوعی #خبر
🔸 مطالب بیشتر 👇👇
✅ @AI_DeepMind
❤1
در هفته گذشته چه ایده های منتشر شده است:
1) Voicebox - an all-in-one generative speech model; it can synthesize speech across 6 languages; it can perform noise removal, content editing, style conversion, and more; it's 20x faster than current models and outperforms single-purpose models through in-context learning.
2) FinGPT - an open-source LLM for the finance sector; it takes a data-centric approach, providing researchers & practitioners with accessible resources to develop FinLLMs.
3) Crowd Workers Widely Use Large Language Models for Text Production Tasks - estimates that 33-46% of crowd workers on MTurk used LLMs when completing a text production task.
4) Reliability of Watermarks for LLMs - watermarking is useful to detect LLM-generated text and potentially mitigate harms; this work studies the reliability of watermarking for LLMs and finds that watermarks are detectable even when the watermarked text is re-written by humans or paraphrased by another non-watermarked LLM.
5. Applications of Transformers - a new survey paper highlighting major applications of Transformers for deep learning tasks; includes a comprehensive list of Transformer models.
6) Benchmarking NN Training Algorithms - it’s currently challenging to properly assess the best optimizers to train neural networks; this paper presents a new benchmark, AlgoPerf, for benchmarking neural network training algorithms using realistic workloads.
7) Unifying LLMs & Knowledge Graphs - provides a roadmap for the unification of LLMs and KGs; covers how to incorporate KGs in LLM pre-training/inferencing, leverage LLMs for KG tasks such as question answering, and enhance both KGs and LLMs for bidirectional reasoning.
8) Augmenting LLMs with Long-term Memory - proposes a framework to enable LLMs to memorize long history; it’s enhanced with memory-augmented adaptation training to memorize long past context and use long-term memory for language modeling; achieves improvements on memory-augmented in-context learning over LLMs.
9) TAPIR - enables tracking any queried point on any physical surface throughout a video sequence; outperforms all baselines and facilitates fast inference on long and high-resolution videos (track points faster than real-time when using modern GPUs).
10) Mind2Web - a new dataset for evaluating generalist agents for the web; contains 2350 tasks from 137 websites over 31 domains; it enables testing generalization ability across tasks and environments, covering practical use cases on the web.
#مقاله #ایده_جذاب
🔸 مطالب بیشتر 👇👇
✅ @AI_DeepMind
1) Voicebox - an all-in-one generative speech model; it can synthesize speech across 6 languages; it can perform noise removal, content editing, style conversion, and more; it's 20x faster than current models and outperforms single-purpose models through in-context learning.
2) FinGPT - an open-source LLM for the finance sector; it takes a data-centric approach, providing researchers & practitioners with accessible resources to develop FinLLMs.
3) Crowd Workers Widely Use Large Language Models for Text Production Tasks - estimates that 33-46% of crowd workers on MTurk used LLMs when completing a text production task.
4) Reliability of Watermarks for LLMs - watermarking is useful to detect LLM-generated text and potentially mitigate harms; this work studies the reliability of watermarking for LLMs and finds that watermarks are detectable even when the watermarked text is re-written by humans or paraphrased by another non-watermarked LLM.
5. Applications of Transformers - a new survey paper highlighting major applications of Transformers for deep learning tasks; includes a comprehensive list of Transformer models.
6) Benchmarking NN Training Algorithms - it’s currently challenging to properly assess the best optimizers to train neural networks; this paper presents a new benchmark, AlgoPerf, for benchmarking neural network training algorithms using realistic workloads.
7) Unifying LLMs & Knowledge Graphs - provides a roadmap for the unification of LLMs and KGs; covers how to incorporate KGs in LLM pre-training/inferencing, leverage LLMs for KG tasks such as question answering, and enhance both KGs and LLMs for bidirectional reasoning.
8) Augmenting LLMs with Long-term Memory - proposes a framework to enable LLMs to memorize long history; it’s enhanced with memory-augmented adaptation training to memorize long past context and use long-term memory for language modeling; achieves improvements on memory-augmented in-context learning over LLMs.
9) TAPIR - enables tracking any queried point on any physical surface throughout a video sequence; outperforms all baselines and facilitates fast inference on long and high-resolution videos (track points faster than real-time when using modern GPUs).
10) Mind2Web - a new dataset for evaluating generalist agents for the web; contains 2350 tasks from 137 websites over 31 domains; it enables testing generalization ability across tasks and environments, covering practical use cases on the web.
#مقاله #ایده_جذاب
🔸 مطالب بیشتر 👇👇
✅ @AI_DeepMind
❤4
👌1
Demystifying GPT Self-Repair for Code Generation
We've seen a couple of papers showing the promise of self-repair in code generation. This paper finds that modest performance gains are seen when using GPT-4 for textual feedback.
Another interesting finding: significant performance is seen when GPT-4 provides feedback to GPT-3.5 and expert human programmers provide feedback to programs generated by GPT-4.
Feedback seems to be crucial for self-repair but I sense there is a lot more work to be done when using model-generated feedback. Human feedback is still a strong approach and more investigation is needed to figure out when to rely on human intervention.
arxiv.org/abs/2306.09896
We've seen a couple of papers showing the promise of self-repair in code generation. This paper finds that modest performance gains are seen when using GPT-4 for textual feedback.
Another interesting finding: significant performance is seen when GPT-4 provides feedback to GPT-3.5 and expert human programmers provide feedback to programs generated by GPT-4.
Feedback seems to be crucial for self-repair but I sense there is a lot more work to be done when using model-generated feedback. Human feedback is still a strong approach and more investigation is needed to figure out when to rely on human intervention.
arxiv.org/abs/2306.09896
👍2
DeepMind AI Expert
دراین مقاله اومدن از مدل Segment Anything (SAM) استفاده کردن و یک ماژول سبک وزن Mask-to-Matte (M2M) را برای تطبیق عکسها و... استفاده کردند که به نظرم یک انقلابیه...!! Matting everything (MAM) https://huggingface.co/papers/2306.05399 پ.ن:در این مقاله به نظرم…
قبلتر راجب این ابزار صحبتهایی شده حالا به شکل و روشهای دیگه ای مشغول بهینهسازی این این مدل هستند
Fast Segment Anything
https://huggingface.co/papers/2306.12156
#مقاله #ایده_جذاب
🔸 مطالب بیشتر 👇👇
✅ @AI_DeepMind
Fast Segment Anything
https://huggingface.co/papers/2306.12156
#مقاله #ایده_جذاب
🔸 مطالب بیشتر 👇👇
✅ @AI_DeepMind
ایده هایی که تاکنون در حال انتشار هستند یک بخشی از حل اونها RLHF هستش حال سوال اینست که چطور کار میکنه !؟
Why does reinforcement learning from human feedback (RLHF) work?
https://www.interconnects.ai/p/how-rlhf-works
#مقاله #ایده_جذاب
🔸 مطالب بیشتر 👇👇
✅ @AI_DeepMind
Why does reinforcement learning from human feedback (RLHF) work?
https://www.interconnects.ai/p/how-rlhf-works
#مقاله #ایده_جذاب
🔸 مطالب بیشتر 👇👇
✅ @AI_DeepMind
👍1
How to do continual learning on a data stream without restrictions on network architecture?
proposed framework learns a stream of learners with diverse architectures.
🔸 Heterogeneous Continual Learning
🔸 Youtube Paper CL
#مقاله #ایده_جذاب
🔸 مطالب بیشتر 👇👇
✅ @AI_DeepMind
proposed framework learns a stream of learners with diverse architectures.
🔸 Heterogeneous Continual Learning
🔸 Youtube Paper CL
#مقاله #ایده_جذاب
🔸 مطالب بیشتر 👇👇
✅ @AI_DeepMind
YouTube
Heterogeneous Continual Learning | CVPR 2023
CVPR 2023 Highlight: Heterogeneous Continual Learning by Divyam Madaan (NYU, NVIDIA), Hongxu Yin (NVIDIA), Wonmin Byeon (NVIDIA), Jan Kautz (NVIDIA), and Pavlo Molchanov (NVIDIA). We propose a novel framework and a solution to tackle the continual learning…
قبلتر راجب این ایده و موضوع مقالاتی منتشر کردم با پیگیری هشتگ #ایده_جذاب میتونید به موضوعات جالبی برسید.
🔸 Image and Language Understanding from Pixels Only
🔸 GitHub
🔸 Google Colab
🔸 پست های قبلی
#مقاله
🔸 مطالب بیشتر 👇👇
✅ @AI_DeepMind
🔸 Image and Language Understanding from Pixels Only
🔸 GitHub
🔸 Google Colab
🔸 پست های قبلی
#مقاله
🔸 مطالب بیشتر 👇👇
✅ @AI_DeepMind
در این مقاله شیوه ویرایش عکسها رو میتونین با استفاده از این ابزارها معرفی کرده مطالعه کنید ...
Perspective Fields for Single Image Camera Calibration
https://huggingface.co/spaces/jinlinyi/PerspectiveFields
https://jinlinyi.github.io/PerspectiveFields/
#مقاله #ایده_جذاب
🔸 مطالب بیشتر 👇👇
✅ @AI_DeepMind
Perspective Fields for Single Image Camera Calibration
https://huggingface.co/spaces/jinlinyi/PerspectiveFields
https://jinlinyi.github.io/PerspectiveFields/
#مقاله #ایده_جذاب
🔸 مطالب بیشتر 👇👇
✅ @AI_DeepMind
Opportunities and Risks of LLMs for Scalable Deliberation with Polis
https://huggingface.co/papers/2306.11932
#مقاله
🔸 مطالب بیشتر 👇👇
✅ @AI_DeepMind
https://huggingface.co/papers/2306.11932
#مقاله
🔸 مطالب بیشتر 👇👇
✅ @AI_DeepMind
بهترین مقالات برگزیده در کنفرانس CVPR 2023
1) Visual Programming for Compositional Visual Reasoning
https://prior.allenai.org/projects/visprog
2) Planning-oriented Autonomous Driving
https://opendrivelab.github.io/UniAD/
3) DynIBaR Neural Dynamic Image-Based Rendering
https://dynibar.github.io/
4) 3D Registration with Maximal Cliques
https://arxiv.org/abs/2305.10854
5) DreamBooth: Fine Tuning Text-to-Image Diffusion Models for Subject-Driven Generation
https://dreambooth.github.io/
#مقاله #ایده_جذاب
🔸 مطالب بیشتر 👇👇
✅ @AI_DeepMind
1) Visual Programming for Compositional Visual Reasoning
https://prior.allenai.org/projects/visprog
2) Planning-oriented Autonomous Driving
https://opendrivelab.github.io/UniAD/
3) DynIBaR Neural Dynamic Image-Based Rendering
https://dynibar.github.io/
4) 3D Registration with Maximal Cliques
https://arxiv.org/abs/2305.10854
5) DreamBooth: Fine Tuning Text-to-Image Diffusion Models for Subject-Driven Generation
https://dreambooth.github.io/
#مقاله #ایده_جذاب
🔸 مطالب بیشتر 👇👇
✅ @AI_DeepMind
👍2
یک کار علمی بسیار ارزشمند جهت شناسایی موقعیت کاربران موبایل توسط پیامک!
در این روش مهاجم تعدادی پیامک به شماره هدف میفرسته وبه کمک زمان بین ارسال پیامک و دریافت پیام تایید ارسال آن تولیدشده توسط اپراتور قادر به شناسایی مکان کاربر هدف با دقتی تا ۹۶% هستند.
Freaky Leaky SMS: Extracting User Locations by Analyzing SMS Timings
https://arxiv.org/abs/2306.07695
#مقاله #ایده_جذاب
🔸 مطالب بیشتر 👇👇
✅ @AI_DeepMind
در این روش مهاجم تعدادی پیامک به شماره هدف میفرسته وبه کمک زمان بین ارسال پیامک و دریافت پیام تایید ارسال آن تولیدشده توسط اپراتور قادر به شناسایی مکان کاربر هدف با دقتی تا ۹۶% هستند.
Freaky Leaky SMS: Extracting User Locations by Analyzing SMS Timings
https://arxiv.org/abs/2306.07695
#مقاله #ایده_جذاب
🔸 مطالب بیشتر 👇👇
✅ @AI_DeepMind
👍10
ابزارهایی که در لینوکس به درد #برنامه_نویس ها میخوره
https://courses.cs.washington.edu/courses/cse391/23sp/
ترم از قلم افتاده از دانشگاه mit
https://missing.csail.mit.edu/
#منابع #منابع_پیشنهادی
🔸 مطالب بیشتر 👇👇
✅ @AI_DeepMind
https://courses.cs.washington.edu/courses/cse391/23sp/
ترم از قلم افتاده از دانشگاه mit
https://missing.csail.mit.edu/
#منابع #منابع_پیشنهادی
🔸 مطالب بیشتر 👇👇
✅ @AI_DeepMind
❤4