Aspiring Data Science – Telegram
Aspiring Data Science
386 subscribers
465 photos
12 videos
12 files
2.15K links
Заметки экономиста о программировании, прогнозировании и принятии решений, научном методе познания.
Контакт: @fingoldo

I call myself a data scientist because I know just enough math, economics & programming to be dangerous.
Download Telegram
А, так у них ещё и конский ценник.

10,000 CPU-hours free every month
$0.05 per CPU-hour thereafter
Bulk discounts starting at $10,000
(Costs are in addition to your AWS or Google Cloud costs, which we work to help you minimize.)

Эти 10k CPU-часов пролетят незаметно, за сутки работы 200 мелких машинок с 2 ядрами. А потом надо будет платить coiled по сути БОЛЬШЕ, чем за сами сервера облачному провайдеру, потому что на спот-рынке даже не самые мелкие 2 vCPU сервера стоят $0.0134/hr. А Coiled за такой будет брать уже 0.05*2=$0.1/hr, фига себе, в 10 раз больше.
Разные области математики в представлении бота Kandinsky 2:

- Mathematical analysis
- Linear algebra
- Abstract algebra
- Topology
- Geometry
- Mathematical statistics and probability
- Number theory
- Equations of Mathematical Physics
- Category theory
- Foundations of Mathematics (4k).

P.S. Чтобы не получать в генерации обложки учебников, можно добавить модификатор стиля (4k) или переформулировать запрос
2❤‍🔥1🆒1
Forwarded from Борис опять
#работа
Посмотрел резюме, которые нам прислали через линкдин (не отсюда) на вакансию Data Engineer. И это фестиваль кринжа.

Мое любимое из разных резюме:
* Резюме на 12 страниц
* Парень, который вставил в резюме сканы шести своих бангладешских дипломов
* Ярко синий текст на белом фоне
* Прошлое место работы: клерк в банке
* Прошлое место работы: студент магистратуры
* Прошлое место работы: настраивал Майкрософт ворд и все такое
* Всратые пережатые сотней шакалов фотки
* Таблица на половину страницы, показывающая уровень знания четырёх языков в разрезе райтинг, листенинг, спикинг
* Простыня текста на половину первой и половину второй страницы
* Никакой верстки, просто ворд документ с текстом сплошняком сверху вниз. 3 страницы
* Резюме из конструкторов резюме с кучей разноцветных иконок
* Резюме файлом в формате .docx

Я и не предполагал, что обычное резюме из одной страницы, сверстанное в латехе, это такое большое преимущество. Среди всей пачки из 30+ резюме таких нашлось три штуки
👍2
#ml #metrics #brier

Как известно, оценка Бриера (Брайера?) для бинарного классификатора представляет собой по сути среднеквадратическую ошибку между реальными исходами и предсказанными вероятностями. В теории это число между 0 и 1, где 0 означает идеальную калибрацию (из всех событий, предсказанных с вероятностью 25%, реализовались точно 25%, и тд). Я на эту метрику в работе часто смотрю, т.к. откалиброванность модельки очень важна, особенно когда бизнес-решения принимаются на вероятностях. И вот сегодня узнал нечто новое. Задумался, а чего вообще можно ожидать от модели, идеально предсказывающей вероятности, в терминах оценки Бриера. Давайте для этого скрафтим реализации миллиона событий, следующие заранее известным вероятностям:

probs = np.random.uniform(size=1000_000)
realizations = np.random.uniform(size=len(probs))
realizations = (realizations < probs).astype(np.int8)

В теории, у нас теперь есть массив единичек и нулей realizations, порождённый "истинными" вероятностями probs. Если ситуацию перевернуть, рассмотреть probs как вероятности, предсказанные моделью машинного обучения, а realizations как то, что мы реально пронаблюдали в жизни, то подобная точность должна быть мечтой любого ML-щика!
1
↑ Какой же будет оценка Бриера для такой отличной модели? Что выдаст brier_score_loss(realizations, probs)?
Anonymous Quiz
0%
0
38%
0.166
25%
0.5
38%
1
А что, если реализации никак не связаны с вероятностями? realizations = (realizations < 0.5).astype(np.int8), какой будет оценка Бриера?
Anonymous Quiz
13%
1
63%
0.5
13%
0.33
13%
0
Ну и последнее. Что за оценку получит "антимодель", которая прогнозирует, что событие не случится, а оно обычно случается, и наоброт? realizations = (realizations > probs).astype(np.int8)
Anonymous Quiz
33%
1
22%
0.99
44%
0.5
0%
0
#astronomy #surdin

Достойный человек этот Сурдин. Профессионал, хороший лектор, действительно любит астрономию. Против войны. Я часто ловлю себя на мысли, какой бы это классный был руководитель Роскосмоса, вместо очередного путинского вора. С Сурдиным мы бы уже давно полетели на Энцелад и построили базы на Луне и Марсе. На его "Неземной подкаст" можно подписаться на бусти, от 200 р./мес. Я вот подписался, чтобы поддержать его просветительские выпуски. Там пока всего 188 человек. Кто со мной?
PS. Ого ) Спасибо тем, кто подписался, приятно.
1