Авиация, как это работает❓ 🛫 – Telegram
Авиация, как это работает 🛫
1.16K subscribers
40 photos
7 videos
246 links
Познавательный канал про авиацию и системы самолёта, что и как работает!
Автор: @sieg_ykrop
Download Telegram
Здравствуйте, дорогие читатели, я вернулся и хотел бы вам сегодня рассказать о первых истребителях и как придумали устройство, позволяющее не задевать лопасти при стрельбе.
Синхронизатор
Первые истребители представляли собой те же самолёты, использовавшиеся для разведки, со скоростью полёта до 150 км/ч и двумя членами экипажа, однако штурман брал с собой в полёт не фотокамеру, а тяжёлые предметы — пушечные ядра, металлические бруски и даже гири. Заметив самолёт противника, пилот подлетал к нему сверху, а штурман сбрасывал на него свой груз. Уже через год этот метод был усовершенствован — штурман брал с собой ручной пулемёт или пистолет и стрелял в пилота вражеского самолёта.
Позже было придумано новое устройство — турель, позволявшая вращаться пулемёту на 360 град., она устанавливалась позади пилота. Теперь стрелок мог обстреливать заднюю полусферу, однако исключалась наиболее актуальная для истребителя фронтальная зона. Пулемёты того времени были не столь надёжны, чтобы устанавливать их на крыльях, а установке курсового пулемёта препятствовал вращающийся воздушный винт.
Однако вскоре французский лётчик Ролан Гаррос изобрёл систему, которая позволяла стрелять через вращающийся винт. Устройство представляло собой металлические уголки, закреплённые в основании лопастей винта таким образом, что пуля при попадании рикошетировала в безопасную для пилота и самолёта область. Недостатком такого устройства являлась потеря 7 — 10 процентов пуль. Данная проблема была устранена несколько позже, когда Антон Фоккер создал синхронизатор стрельбы, позволяющий стрелять через плоскость винта без риска повреждения последнего.
Электронная система контроля двигателя
анг. Electronic Engine Control (EEC)
Эта система относится к навесному оборудованию двигателя. Оно выполняет функцию регулирование расхода топлива и управление тягой для оптимизации летно-технических характеристик в любое время при одновременной защите двигателя от опасностей. Также EEC контролирует почти все параметры двигателя. EEC также известный ECU (Engine Control Unit) - блок контроля двигателя.
Параметры электросети самолёта
Большинство современной техники внутри работают электротоком.
На самолётах когда-то давно ток этот был постоянным, напряжением 27 В, и всех всё устраивало.
Потом запросы самолётных потребителей стали расти, и мощности - увеличиваться.
Мощность производителя электричества - это какую силу тока он может выдать и какое при этом поддерживать напряжение в сети. То есть, произведение силы тока на напряжение.
Увеличивать мощность, соответственно, можно по двум направлениям - увеличением силы тока или увеличением напряжения.
1. Сначала стали увеличивать силу тока. Потому что имеющиеся потребители уже были рассчитаны на постоянное напряжение 27 В, и менять всю систему было трудно.
Силу тока увеличивать хорошо, но не очень. Потому что при протекании тока по проводу, имеющему сопротивление, выделяется тепло, пропорциональное квадрату величины тока. И на участке с сопротивлением на нагрев тратится часть исходного напряжения. То есть, к потребителю приходит меньше напряжения.
Для уменьшения потерь надо уменьшать сопротивление провода, а поскольку используемая в проводке медь - это и так уже второй по лучшести проводник (после серебра), то остаётся только увеличивать сечение провода.
Медь тяжёлая, а поднимать в воздух толстые провода - это значит уменьшать полезную нагрузку самолёта. При больших размерах самолётов это становится актуально.
Поэтому производители какие-то годы терпели безобразие, но в итоге перешли ко второму способу оптимизации.
2. Увеличение напряжения в бортовой сети совместили заодно с переходом на переменный ток.
Переменный ток местами даже лучше постоянного - от него, например, проще приводить электромоторы.
Частота тока - тоже штука интересная.
В бытовой сети частота невысокая - 50 Гц (а в странах, которые нам завидуют, добились даже 60 Гц).
Это устроили потому, что при низкой частоте меньше потери на излучение электромагнитной энергии в пространство. А для тысячекилометровых линий электропередач такой вопрос более чем актуален.
В авиации люди аккуратнее и ответственнее, чем на воле, и самолёты тоже не приучены излучать в пространство что попало.
Поэтому в авиации приняли частоту повыше, и сейчас большинство серьёзной авиатехники пользуется бортовой трёхфазной сетью напряжением 115/200 В частотой 400 Гц. А также из физики известно что при низкой чистоте электричество можно передавать на большое расстояние, но требует больших трансформаторов, а так как большие размеры и вес не позволительная роскошь в авиации и внутри самолёта не нужно преодолевать большие расстояния, то высокая частота в сети это разумное решение. Источники постоянного тока на самолётах тоже имеются, но выполняют обычно функцию резервного электропитания, когда всё плохо. Это всё те же аккумуляторы напряжением 27 В.
Наземное электропитание самолётов
Ящик на колёсах со шлангом - это ведь очень интересно, правда?
Пока самолётка лётает или готовится к полёту, оно питается электричеством от своего специально обученного генератора на ВСУ (вспомогательной силовой установке).
Это всё хорошо, но, как обычно, не очень :)
ВСУ потребляет керосин в количестве порядка 100 кг в час. Некоторым компаниям такое не нравится, и они хотят поиметь на время стоянки хоть некоторую экономию. При том, что электричество всё же хотят поиметь в то же самое время.
Лучшие умы человечества нашли выход в подключении источника наземного электропитания.
Вот, например, когда мы глазеем из окна аэрационного вокзала на самолёт, то можем заметить, что в носу у его торчит вниз шланга (как обычно называют пассажиры).
Все радуются, видя такую идиллию.
Но не все при этом понимают проследить взглядом, куда же оно проистекает.
А между тем утыкается оно в неприметный ящичек, висящий, например, под телетрапом.
Обычно в такой коробчонке размещён преобразователь из обычных гражданских трёхфазных 220/380 В 50 Гц в уже любимые нами 115/200 В 400 Гц.
Такие штуки можно, например, таскать и по ангарам.
Однако трудности подстерегают нас на каждом шагу.
Что делать, когда нет у нас лишней розетки в поле чистом, посреди перрона бетоннаго?
Чип&Дейл и тут спешат к нам на помощь, предоставляя генератор на тележке, приводимый от дизельного двигателя.
Названия у этих всех устройств по всему миру различны.
Например, так сложилось, что в аэропорту Пулково первопроходцами стали передвижные агрегаты фирмы Hobart, и теперь тут подобные штуки все называют Хобартами.
В Домодедово плацдарм захватили изделия фирмы Houchin, и там для того, чтобы вас быстрее поняли, надо просить привезти на самолёт Хоучин.
Среди стационарных преобразователей напряжения в Пулково когда-то были приняты агрегаты фирмы Axa. Соответственно, на стоянках, оборудованных ими, лучше было просить подключить Аксу :)
Ну, а если прилетел в незнакомый порт, осмотрелся, и не увидел названия фирмы на агрегате, приходится просить просто наземное питание (или Ground power).
Подключаются агрегатины через стандартный разъём, обычно расположенный в носовой части самолёта - ведь именно там сосредоточено большинство электроники и коммутационных реле.
Некоторые производители устают от однообразия и выдают блестящие оригинальностью решения. Например, на Ан-148 разъём находится в обтекателе левой основной опоры шасси, позади ноги.
👍1
Барометрические высоты
Сегодня в авиации применяются три системы отсчета барометрической высоты:  QNH, QFE, QNE . Стоит оговориться, что это не аббревиатуры, а оставшиеся со времен широкого применения азбуки Морзе радиотелефонные коды.
QNH – это давление на уровне моря в точке измерения, еще его называют давлением приведенным к уровню моря. Если вы установите давление QNH на высотомере, то получите свое превышение относительно уровня моря. После посадки, высотомер, на котором установлено QNH аэродрома, должен показать превышение аэродрома.
QFE – давление, измеренное на уровне аэродрома. Установив давление аэродрома и находясь на этом аэродроме, на высотомере увидим ноль.
QNE – стандартное давление, его значение закреплено документально, и оно постоянно. Как уже говорилось ранее, в зависимости от применяемых единиц измерения, стандартное давление может принимать следующий вид: 760 mmHg; 1013,25 hPA или 29,92 inHg. Кстати, поскольку давление величина переменная, выдерживая постоянное давление самолет фактически не находится в горизонтальном полете. Установив стандартное давление на высотомере, получаем высоту от условного уровня, который может находиться как над уровнем моря, так и под ним (в зависимости от атмосферных условий).
Последовательность установки давления.
Если говорить о «большой» авиации, которая летает высоко и далеко, последовательность установки давления выглядит следующим образом.
В зависимости от правил применяемых в конкретной стране и авиакомпании, при подготовке к вылету на высотомере устанавливают текущее значение QNH или QFE аэродрома вылета. Далее в наборе высоты на так называемой высоте перехода, как следует из названия, осуществляется «переход» на стандартное давление (QNE). Высота перехода может быть как своя на каждом аэродроме (как правило, 1000-2000 метров), так и единая на территории государства. Полет по маршруту выше высоты перехода выполняется по давлению QNE, т.е. по стандартному. В снижении, пересекая эшелон перехода, экипаж устанавливает QNH или QFE измеренные на аэродроме посадки. Эшелон перехода, аналогично высоте перехода, может быть как свой для конкретного аэродрома, так и единый для целого государства, например в США на всей территории установлены высота и эшелон перехода 18000 футов.
Крайне важно чтобы на высоте перехода экипаж установил стандартное давление. Вертикальное эшелонирование воздушных судов осуществляется по данным о высоте автоматически передаваемым с борта на землю, именно поэтому необходимо, чтобы на всех воздушных судах высота измерялась от одного и того же уровня. Сегодня во всем мире при полете выше высоты перехода применяется давление QNE, то есть стандартное давление.
Как аэропорты защищают самолеты от столкновений с птицами
Птицы представляют серьезную угрозу для воздушных судов, как во время полета, так и на взлетно-посадочной полосе. К сожалению, столкновение с пернатыми не редкость в гражданской авиации, а ежегодный ущерб мировых авиакомпаний от подобных происшествий, по оценкам экспертов, составляет более 1 миллиарда долларов в год.
Как аэропорты защищают самолеты от столкновений с птицами
Существует даже специальное направление в науке — авиационная орнитология, которая изучает закономерности столкновения авиалайнеров с птицами, а также биологические и технологические способы борьбы с подобными происшествиями. Согласно российскому и международному законодательству, за безопасность воздушных судов отвечают специальные службы аэропортов.
Для отпугивания птиц используют биоакустические установки, которые размещают по периметру аэропортов. Подобные установки воспроизводят голоса нескольких видов птиц и обеспечивают защиту территории в радиусе 220 метров.
На вооружении аэропортов также состоят пиротехнические средства. Это всевозможные хлопушки, отпугивающие птиц резкими звуками, но не причиняющие им вреда. А в периоды наибольшей активности пернатых самолеты в пределах взлетно-посадочной полосы перемещаются с включенными фарами, для дополнительного обеспечения безопасности.
Интересно, что, помимо технических средств, отпугивать неразумных пернатых помогают хищные птицы. Например, в число сотрудников «Домодедово» и «Внуково» входят специально обученные соколы и ястребы. Такая же практика существует и в аэропорту Санкт-Петербурга, Нижнего Новгорода, Нью-Йорка, Антверпена, а также во многих других городах по всему миру.
А в аэропорту Амстердама и некоторых других населенных пунктов птиц отпугивает беспилотник в образе хищной птицы, который патрулирует воздушную гавань круглосуточно.
Газовые пушки — еще одно средство борьбы с непрошеными гостями на территории взлетно-посадочной полосы. Производимые ими микровзрывы имеют уровень шума до 150 дБ и напоминают звуки выстрела из огнестрельного оружия. Кроме того, птиц отпугивают при помощи лазерных установок, которые особенно эффективны в утренние и вечерние часы.
За рубежом популярным помощником в борьбе с подобными авариями являются специально обученные собаки, например, породы бордер-колли. Сотрудники аэропорта с собаками постоянно патрулируют территорию, отгоняя пернатых, что имеет высокую эффективность. Так, благодаря служебным собакам, военный аэродром в штате Делавэр (США) почти в два раза сократил расходы на ремонт техники и оборудования, пострадавшего в результате столкновения с птицами.
Одним из обязательных условий по сокращению числа случаев столкновения с птицами является удаление свалок на значительное расстояние от аэропортов, так как места хранения отходов — это, как правило, кормовая база для птиц.
Такое разнообразие способов борьбы с пернатыми связано с тем, что ни один из них не дает 100% эффективности. Несмотря на принимаемые меры, количество столкновений с птицами ежегодно возрастает, вслед за увеличением мировых объемов авиаперевозок.
Как взлетает самолет: по ветру или против ветра
Управление летательными аппаратами – это сложная система определенных правил, которая требует учитывать множество различных факторов и на основании этих факторов принимать соответствующие решения. Чтобы самолет поднялся в воздух, нужно учитывать целый ряд показателей, включая скорость и направление ветра. Многие люди задаются вопросами, связанными с авиацией и с управлением самолетом, в частности. Для многих неизвестно, как взлетает самолет: по ветру или против ветра? На первый взгляд может показаться, что было бы логичней, если бы авиалайнеры осуществляли взлет по ветру.
Но в действительности самолет взлетает против ветра. Чем сильнее воздушные потоки, встречные для авиалайнера, тем большей высоты он достигнет при взлете.
Высота увеличивается как раз благодаря действию встречного потока, который уменьшает скорость воздушного судна относительно земли. Прежде чем начинать полет, самолет обязательно должен развернуться против ветра. Важно, чтобы перед авиалайнером в этот момент было довольно большое пространство, поскольку для разбега при любом направлении ветра требуется преодолеть большую дистанцию. Разбег нужен для того, чтобы развить необходимую для отрыва от земли скорость. При движении по направлению ветра авиалайнеру потребуется больший разбег и понадобится большая скорость разгона. Это увеличивает расход топлива и осложняет взлет. Кроме того, при попутном ветре возможен помпаж. Его возникновение может привести к авиакатастрофе. Поэтому взлет при попутном ветре не только не рационален, но и небезопасен.
Как авиалайнер взлетает?
Подъемная сила – это то, что позволяет тяжелому большому самолету взлететь. Главную роль для достижения требуемой подъемной силы играет крыло. В процессе разбега встречные воздушные потоки обтекают крыло сверху и снизу. При этом верхний поток над крылом сужается. Это достигается за счет определенной формы крыла: профиль этой конструкции имеет выпуклую форму в верхней части. Из-за сужения верхнего потока авиалайнеру приходится двигаться быстрее, чтобы над крылом проходило такое же количество воздуха, как и под ним.
Чем больше скорость воздушного потока, тем ниже в нем давление и наоборот. Давление в верхнем потоке над крылом меньше, чем под крылом. Именно из-за такой разницы давлений и возникает необходимая подъемная сила, которая позволяет тяжелому самолету взлететь в воздух. Эта сила как бы выталкивает крыло авиалайнера и сам авиалайнер вверх. Чем выше скорость движения воздушного судна, тем больше подъемная сила. При взлете против направления воздушных потоков к собственной скорости авиалайнера добавляется скорость ветра. Соответственно, набегающий поток воздуха позволяет увеличить подъемную силу и уменьшить минимальную скорость относительно земли для того, чтобы удержать самолет в воздухе. Аналогичное положение актуально и при совершении посадки. Чем меньше скорость авиалайнера, тем безопаснее и мягче посадка.
Узнав, почему самолет взлетает против ветра, следует также в качестве одной из причин назвать экономию топлива и времени. Сокращение времени разбега способствует значительной экономии топлива. При этом сокращается и время полета.
Современные модели самолетов могут взлетать не только против ветра, но и при попутном ветре. Даже боковые воздушные потоки для таких авиалайнеров не являются проблемой. И все же в большинстве случаев взлет осуществляется в противоположном по сравнению с воздушными потоками направлении.
Взлёт и посадка при боковом и попутном ветре (часть 1)
Многие задаются вопросом: при какой скорости ветра не летают самолеты? Действительно, есть определенные ограничения по скорости. По сравнению со скоростью движения воздушного судна, которая достигает 250 м/c, даже сильный ветер со скоростью 20 м/c не помешает самолету во время полета. Однако боковой ветер может помешать авиалайнеру, когда тот перемещается с меньшей скоростью, а именно в момент взлета или посадки. Поэтому при таких условиях не взлетают самолеты. Воздушные потоки влияют на скорость воздушного судна, направление движения, а также на длину пробега и разбега. В атмосфере эти потоки присутствуют на всех высотах. Такое движение воздуха по отношению к летящему авиалайнеру представляет собой переносное движение. Если дует сильный ветер, направление движения авиалайнера по отношению к земле не совпадает с продольной осью воздушного судна. Сильные воздушные потоки могут сносить самолет с курса.
Во время взлета, когда авиалайнер набирает высоту, он попадает в зону сильного встречного ветра. С набором высоты увеличивается подъемная сила воздушного судна. Причем увеличение происходит быстрее, чем это может проконтролировать летчик. Траектория полета при этом может оказаться выше расчетной. Если наблюдается резкое усиление ветра, это может стать причиной того, что авиалайнер попадет на закритический угол атаки. Это может привести к срыву воздушного потока и столкновению с поверхностью земли.
Кто устанавливает ограничения и какие они?
Как правило, допустимая максимальная сила ветра определяется для каждого самолета индивидуально в зависимости от специфики его конкретных характеристик и технических возможностей. Устанавливает максимальную скорость ветра, при которой можно осуществлять взлет или посадку, производитель авиалайнера. Точнее, производитель устанавливает две максимальные скорости: попутную и боковую. Попутная скорость для большинства современных авиалайнеров одинакова. При взлете и посадке попутная скорость не должна превышать 5 м/с. Что касается боковой скорости, то для каждого авиалайнера она различна:
• для самолетов ТУ-154 – 17 м/с;
• для АН-24 – 12 м/с;
• для ТУ-134 – 20 м/с.
В среднем для авиалайнеров устанавливается максимальная боковая скорость 17 м/с. При большей скорости подавляющее большинство самолетов не взлетают. Если в зоне прилета наблюдается резкое усиление ветра, скорость которого превышает допустимые показатели, самолеты не садятся в этом аэропорту, а совершают аварийную посадку на другой ВПП, где условия позволяют авиалайнеру безопасно приземлиться.
Отвечая на вопрос, при каком ветре не летают самолеты, можно с уверенностью сказать, что при скорости более 20 м/c, если ветер дует перпендикулярно ВПП, взлет не может быть осуществлен. Такой сильный ветер связан с прохождением мощных циклонов. Ниже вы можете посмотреть видео посадки самолета при сильном боковом ветре, чтобы увидеть, насколько это сложно сделать даже профессиональному опытному летчику с большим стажем. Особую опасность в данном случае представляет порывистый ветер в нижних слоях атмосферы. Он может начать дуть в самый неподходящий момент, образовав большой крен, который представляет огромную опасность для самолета.
Боковой ветер опасен тем, что требует от летчика определенных действий, которые совершить очень сложно. В авиации есть такое понятие, как «угол сноса». Этот термин означает величину угла, на который авиалайнер отклоняется от заданного направления из-за ветра. Чем сильнее ветер, тем больше этот угол. Соответственно, тем больше усилий требуется приложить пилоту, чтобы развернуть авиалайнер на этот угол в обратную сторону. Пока воздушное судно находится в полете, даже такой сильный ветер не вызывает никаких проблем. Но как только самолет соприкасается с поверхностью взлетно-посадочной полосы, авиалайнер обретает сцепление и начинает двигаться в направлении, параллельном своей оси. В этот момент летчик должен резко изменить направление движения авиалайнера, что очень непросто.
Взлёт и посадка при боковом и попутном ветре (часть 2)
Что касается проблемы сильного попутного ветра, она легко решается сменой рабочего порога взлетно-посадочной полосы. Однако такая возможность есть не у каждого аэровокзала. Например, Сочи и Геленджик лишены такой возможности. Если сильный ветер дует в сторону моря, посадка может быть осуществлена, а вот взлет при таких условиях небезопасный. То есть посадка самолета при сильном ветре возможна, но далеко не во всех случаях.
Состояние ВПП
Даже если скорость ветра позволяет совершать взлет или посадку, учитывается еще целый ряд факторов, которые могут повлиять на окончательное решение. В частности, помимо погодных условий, видимости, учитывается состояние взлетно-посадочной полосы. Если она покрылась льдом, посадка или взлет не могут быть осуществлены. В авиации есть такой термин, как «коэффициент сцепления». Если этот показатель ниже 0.3, данная взлетно-посадочная полоса не годится для осуществления посадки или взлета и нуждается в очистке. Если снижение коэффициента сцепления произошло из-за сильного снегопада, при котором очистка невозможна, закрывают весь аэропорт, пока погода не наладится. Такой перерыв в работе может длиться несколько часов.
Как принимают решение на взлет?
Такое решение должен принимать командир авиалайнера. Для этого прежде всего он должен ознакомиться с метеорологическими данными по аэроузлам вылета, посадки и запасным аэропортам. Для этого используются прогнозы METAR и TAF. Первый прогноз выпускается для всех аэропортов каждые полчаса. Второй предоставляется каждые 3—6 часов. В таких прогнозах отражается вся значимая информация, которая может оказать влияние на решение о взлете или отмене рейса. В частности, в таких прогнозах есть данные о скорости ветра и ее изменениях.
Для принятия решения все рейсы условно делятся на 2-часовые и более продолжительные. Если перелет длится менее двух часов, для взлета достаточно, чтобы фактическая погода была приемлемой (выше установленного минимума). Если полет более продолжительный, обязательно дополнительно учитывается прогноз TAF. Если в пункте назначения погодные условия не позволяют осуществить посадку, в некоторых случаях, решение о взлете может быть положительным. Например, если погодные условия в пункте назначения ниже минимума, однако, в непосредственной близости имеются два аэродрома с оптимальными погодными условиями. Но положительное решение и в этих случаях практически никогда не принимают, учитывая опасность такого полета.
Шасси самолета (часть 1 – введение)
Шасси самолета – это система, состоящая из опор, которые позволяют летательному аппарату осуществлять стоянку, перемещение машины по аэродрому или воде. С помощью данной системы осуществляется посадка и взлет самолетов. Система шасси состоит из стоек, на которые установлены колеса, поплавки или лыжи. Нужно отметить, что понятие «шасси» довольно обширно, поскольку составляющих стоек несколько, и они могут иметь различное строение.
Шасси обязано отвечать таким специальным требованиям:
•Управляемость и устойчивость аппарата при перемещении по земле.
•Иметь необходимую проходимость и не наносить урон взлетной полосе.
•Должно позволять летательному средству осуществлять развороты на 180 градусов при рулежке.
•Исключать возможность опрокидывания самолета или касания другими частями аппарата, кроме шасси, при посадке.
•Поглощение силы удара при посадке и передвижении по неровной поверхности. Быстрое гашение колебаний.
•Низкие показатели сопротивления при разбеге и высокая эффективность торможения при пробеге.
•Относительно быстрая уборка и выпуск системы шасси.
•Наличие аварийной системы выпуска.
•Исключение автоколебаний стоек и колес шасси.
•Наличие системы сигнализации о положении шасси.
Кроме этих показателей, шасси самолета должно отвечать требованиям ко всей конструкции летательного аппарата. Такими требованиями являются:
-Прочность, долговечность, жесткость конструкции при минимальных показателях веса.
-Минимальное аэродинамическое сопротивление системы в убранном и выпущенном положении.
-Высокие показатели технологичности конструкции.
-Долговечность, удобство и экономность при эксплуатации.
Шасси самолета (часть 2 – Разновидности систем шасси)
1) Колесное шасси
Колесное шасси может иметь разные схемы компоновки. В зависимости от назначения, конструкции и массы самолета конструкторы прибегают к использованию разных типов стоек и расположения колес.
Расположение колес шасси. Основные схемы:
•Шасси с хвостовым колесом, часто называют такую схему двухстоечной. Впереди центра тяжести расположены две главные опоры, а вспомогательная опора находится позади. Центр тяжести летательного аппарата расположен в районе передних стоек. Данная схема была применена на самолетах времен Второй мировой войны. Иногда хвостовая опора не имела колеса, а была представлена костылем, который скользил при посадке и служил в роли тормоза на грунтовых аэродромах. Ярким примером данной схемы шасси являются такие самолеты, как Ан-2 и DC-3.
•Шасси с передним колесом, такая схема имеет также название трехстоечное. За данной схемой было установлено три стойки. Одна носовая и две позади, на которые и припадал центр тяжести. Схему начали применять более широко в послевоенный период. Примером самолетов можно назвать Ту-154 и Boeing 747.
•Система шасси велосипедного типа. Данная схема предусматривает размещение двух главных опор в корпусе фюзеляжа самолета, одна впереди, а вторая позади центра тяжести самолета. Также имеются две опоры по бокам, возле законцовок крыльев. Подобная схема позволяет достичь высоких показателей аэродинамики крыла. В ту же очередь возникают сложности с техникой приземления и расположения оружия. Примерами таких самолетов являются Як-25, Boeing B-47, Lockheed U-2.
•Многоопорное шасси применяется на самолетах с большой взлетной массой. Данный тип шасси позволяет равномерно распределить вес самолета на ВПП, что позволяет снизить степень урона полосе. В этой схеме спереди могут стоять две и более стойки, но это снижает маневренность машины на земле. Для повышения маневренности в многоопорных аппаратах основные опоры также могут управляться, как и носовые. Примерами многостоечных самолетов является Ил-76, «Боинг-747».

2) Лыжное шасси
Лыжное шасси служит для посадки летательных аппаратов на снег. Данный тип используется на самолетах специального назначения, как правило, это машины с небольшой массой. Параллельно с данным типом могут использоваться и колеса.

Составляющие части шасси самолета
-Амортизационные стойки обеспечивают плавность хода самолета при побеге и разгоне. Основной задачей является гашение ударов в момент приземления. В основе системе используется азото-масляный тип амортизаторов, функцию пружины выполняет азот под давлением. Для стабилизации используются демпферы.
-Колеса, установленные на самолеты, могут отличаться по типу и размеру. Колесные барабаны изготовляются из качественных сплавов магния. В отечественных аппаратах их окрашивали в зеленый цвет. Современные самолеты оснащены колесами пневматического типа без камер. Они заполняются азотом или воздухом. Шины колес не имеют рисунка протектора, кроме продольных водоотводящих канавок. С помощью их также фиксируется степень износа резины. Разрез шины имеет округлую форму, что позволяет достичь максимального контакта с полотном.
-Пневматики самолетов оснащаются колодочными или дисковыми тормозами. Привод тормозов может быть электрическим, пневматическим или гидравлическим. С помощью данной системы сокращается длина пробега после посадки. Летательные аппараты с большой массой оснащаются многодисковыми системами, для повышения их эффективности устанавливается система охлаждения принудительного типа.
-Шасси имеет набор тяг, шарниров и раскосов, которые позволяют осуществлять крепление, уборку и выпуск.

Шасси убирается в больших пассажирских и грузовых самолетах и боевых машинах. Как правило, неубирающееся шасси имеют самолеты с низкими показателями скорости и малой массой.
👍1
Шасси самолета (часть 3 – Выпуск и уборка шасси самолета)
Большинство современных самолетов оборудованы гидроприводами для уборки и выпуска шасси. До этого использовались пневматические и электрические системы. Основной деталью системы выступают гидроцилиндры, которые крепятся к стойке и корпусу самолета. Для фиксации положения используются специальные замки и распоры.
Конструкторы самолетов стараются создавать максимально простые системы шасси, что позволяет снизить степень поломок. Все же существуют модели со сложными системами, ярким примером могут послужить самолеты ОКБ Туполева. При уборке шасси в машинах Туполева оно поворачивается на 90 градусов, это делается для лучшей укладки в ниши гондол.
Для фиксации стойки в убранном положении используют замок крюкового типа, который защелкивает серьгу, размещенную на стойке самолета. Каждый самолет имеет систему сигнализации положения шасси, при выпущенном положении горит лампа зеленого цвета. Нужно отметить, что лампы имеются для каждой из опор. При уборке стоек загорается красная лампа или просто гаснет зеленая.
Процесс выпуска является одним из главных, поэтому самолеты оснащаются дополнительными и аварийными системами выпуска. В случае отказа выпуска стоек основной системы используют аварийные, которые заполняют гидроцилиндры азотом под высоким давлением, что обеспечивает выпуск. На крайний случай некоторые летательные аппараты имеют механическую систему открытия. Выпуск стойки поперек потока воздуха позволяет им открываться за счет собственного веса.
Шасси самолета (часть 4 – Тормозная система самолетов)
Легкие летательные аппараты имеют пневматические системы торможения, аппараты с большой массой оснащают гидравлическими тормозами. Управление данной системы осуществляется пилотом из кабины. Стоит сказать, что каждый конструктор разрабатывал собственные системы торможения. В итоге используюся два типа, а именно:
•Курковый рычаг, который устанавливается на ручке управления. Нажатие пилотом на курок приводит к торможению всех колес аппарата.
•Тормозные педали. В кабине пилота устанавливают две педали торможения. Нажатие на левую педаль осуществляет торможение колес левой части, соответственно, правая педаль управляет правой частью.

Стойки самолетов имеют антиюзовые системы. Это уберегает колеса самолета от разрывов и возгорания при посадке. Отечественные машины оснащались растормаживающим оборудованием с датчиками инерции. Это позволяет постепенно снижать скорость за счет плавного усиления торможения.
Современная электрическая автоматика торможения позволяет анализировать параметры вращения, скорости и выбирать оптимальный вариант торможения. Аварийное торможение летательных аппаратов осуществляется более агрессивно, невзирая на антиюзовую систему.
Шасси самолета (часть 5 –Эффект Шимми)
Шимми (англ. shimmy) — автоколебания колёс шасси ЛА, возникающие вследствие неустойчивости процесса их прямолинейного качения. Явление Ш. во многом аналогично явлению флаттера. Ш. проявляется как интенсивные поперечные колебания колёс шасси при движении ЛА по земле с относительно высокой скоростью (обычно более 100 км/ч). Частота колебаний колёс при Ш. зависит от параметров опоры шасси и находится в пределах 5—25 Гц. При Ш. колёса совершают угловые колебания относительно оси, перпендикулярной плоскости земли, сочетаемые с колебаниями той же частоты в поперечном направлении. Ш. возникает под действием поперечных сил со стороны земли на шину катящегося колеса при его колебаниях. Если вектор скорости центра катящегося колеса не параллелен плоскости его симметрии, пятно контакта шины с поверхностью земли благодаря силам сцепления шины с землёй смещается в поперечном направлении, вызывая деформацию шины и реакцию на шину со стороны земли.
Появление Ш. связано с переходом на шасси трёхопорной схемы с ориентирующимся носовым колесом. Однако Ш. могут быть подвержены как ориентирующиеся (управляемые), так и неориентирующиеся (неуправляемые) колёса. Ш. неориентирующихся колёс возникает вследствие упругости конструкций опоры шасси. При Ш. на шасси действуют значительные динамические нагрузки, способные иногда вызвать разрушение конструкции или существенно сократить срок её службы, поэтому при проектировании опор шасси самолёта принимаются меры, обеспечивающие устойчивость колёс от Ш. на всех возможных при эксплуатации режимах движения самолета по земле. Для предупреждения Ш. ориентирующихся колёс опоры шасси оснащаются демпферами (обычно гидравлическими), противодействующими вращению колеса относительно оси ориентировки. На ЛА с неориентирующимися колёсами с этой целью устанавливают опоры, обладающие достаточно высокой собственной жёсткостью. Иногда на опоре двухколёсного шасси для предупреждения Ш. закрепляют на общей оси два колеса так, чтобы исключить их независимое вращение. При проектировании ЛА устойчивость колёс проверяется расчётом шасси. Кроме того, проводятся подтверждающие расчёт испытания натурных опор шасси на копре с вращающимся барабаном.
👍1
Шасси самолета (часть 6 –конструкция)
Предлагаю вашему вниманию размещение стоек шасси на самолётах Boeing и Airbus. По их расположению можно легко отличить какая перед вами модель самолёта.
А так же предлагаю вам подробно изучить из каких основных элементов состоит
основная стойка Airbus A320:
1 — стойка
2 — механизм распора
3 — цилиндр уборки-выпуска
4 — складывающийся подкос
5 — серьга
6 — гидролинии тормозов
7 — поршень тормоза. (Зелёными линиями на врезке показана стрела провеса механизма распора.)
Прогноз погоды в авиации часть 1
Информация о погоде жизненно важна для авиации. Разумеется, для обеспечения полетов недостаточно информации на подобии той, которую все привыкли слышать из телевизора: «завтра пасмурно, возможен дождь». Авиационные метеорологические прогнозы и наблюдения включают себя ряд специфических параметров, кроме того требования к точности этих данных очень высокие.
Существует коды METAR, SPECI, TAF являются кодами Всемирной метеорологической организации (ВМО) для передачи регулярных, специальных метеорологических сводок и прогнозов по аэродрому:
METAR (METeorological Aerodrome Report) — авиационный метеорологический код для передачи сводок о фактической погоде на аэродроме. Также является кодовым названием регулярной сводки, составленной в одноимённом коде.
Сводки в коде METAR содержат данные о скорости и направлении ветра, видимости, дальности видимости на ВПП, атмосферных явлениях, облачности, температуре воздуха, температуре точки росы, атмосферном давлении, прогнозе на посадку типа «Тренд» (на ближайшие 2 часа). В сводку может включаться и дополнительная информация (явления предшествующей погоды, сдвиг ветра, состояние ВПП и т. д.).
Сводки в коде METAR выпускаются для распространения и использования за пределами аэродрома составления этих сводок для целей:
• предполетной подготовки пилотов на авиационной метеорологической станции аэродрома вылета;
• обеспечения пилотов информацией о погоде на аэродроме назначения и на запасных аэродромах (как во время предполетной подготовки с помощью системы «Брифинг», так и при нахождении на маршруте через диспетчеров службы ОВД);
• обеспечения радиовещательных передач ВОЛМЕТ.
METAR (сообщения по результатам регулярных наблюдений) выпускается с часовыми или получасовыми интервалами, в 00 и 30 минут каждого часа.
SPECI – название кода для передачи специальных метеорологических сводок погоды по аэродрому. SPECI выпускаются по результатам специальных наблюдений в любое время, за исключением 00 и 30 минут каждого часа, и только при переходе пороговых значений (установленных эксплуатационных критериев).
TAF – название кода для передачи прогнозов погоды по аэродрому. Прогнозы погоды в коде TAF подготавливаются квалифицированными профессиональными специалистами в соответствии с требованиями.
Вследствие изменчивости метеорологических элементов в пространстве и времени, несовершенства методов прогнозирования и ограничений в определении некоторых элементов, значения любого элемента в прогнозе следует понимать авиационными пользователями как наиболее приближенное вероятное значение, которое элемент может принимать в течение периода действия прогноза. Аналогично, если в прогнозе указано время возникновения или изменения элемента, то это время следует рассматривать как наиболее вероятное время.
Прогноз погоды в авиации часть 2 (Учимся читать METAR)
Информация о фактической погоде кодируется в специальном международном формате, который называется METAR (METeorological Aerodrome Report). Именно об этом коде и пойдет речь в данной статье. Любой уважающий себя авиационный специалист, будь то летчик, диспетчер или сотрудник наземных служб должен не только понимать этот код, но и быть способным моментально дать оценку погодных условий только бросив взгляд на METAR.
Итак, сводка METAR – это данные о фактической погоде на аэродроме и краткосрочный прогноз на два часа от момента наблюдения. Сводка выпускается каждые полчаса, однако в международные базы данных она попадает с небольшой задержкой, как правило, 10 минут.
Для поиска METAR интересующего вас аэродрома мы рекомендуем пользоваться государственным американским сайтом aviationweather.gov, так как он предоставляет прямой доступ к международной базе данных, страница с поиском METAR доступна по ссылке.
В целом, код довольно примитивен, достаточно знать порядка двух десятков самых распространенных сокращений, и расположение в коде того или иного параметра, это позволит понимать 90 процентов всех сводок. В качестве примера разберем реальную сводку METAR.
UAAA 221700Z 16002MPS 0500 R23R/1800D R23L/1400N FZFG FU SCT200 M11/M13 Q1028 R88/CLRD65 NOSIG
•UAAA – обозначение аэродрома ИКАО, в данном случае Алматы, конечно, знать коды всех аэродромов невозможно, их можно легко найти в интернете.
•221700Z – дата наблюдения (22 число текущего месяца) и время (17.00Z – время по Гринвичу).
•16002MPS – направление метеорологического ветра (т.е. откуда дует ветер) – 160 градусов, и скорость – 2 метра в секунду.
•0500 – метеорологическая видимость – 500 метров.
•R23R/1800D R23L/1400N – дальность видимости на ВПП, в данном случае на ВПП 23R видимость составляет 1800 метров, а на 23L 1400 метров, D и N означают тенденцию изменения видимости за крайние 10 минут, D — Down, т.е. видимость ухудшалась, N – без изменений
•FZFG FU – явления погоды. Freezing Fog Fume – переохлажденный туман, дым
•SCT200 – Количество облачности и ее нижняя граница: Scattered – рассеянная, 200 – высота в сотнях футов, т.е. 20000 футов.
•M11/M13 – температура/точка росы, М означает минус.
Q1028 – давление QNH на аэродроме, 1028 гектопаскалей.
•R88/CLRD65 – группа состояния ВПП, R88 – все ВПП аэродрома, CLRD – cleared (очищена), 65 –коэффициент сцепления 0,65.
•NOSIG – прогноз на 2 часа от времени наблюдения, NOSIG – No Significant Change (без существенных изменений)
Как видно, ничего сложно в расшифровке METAR нет.
Для вашего удобства мы свели подробную информацию со всеми сокращениями в удобном виде в одну таблицу в формате PDF.
👍1
Лётная и нелётная погода (часть 1)
Взлет и посадка самолета в дождь
Нелетная погода Взлет – самый сложный этап при полете. Конечно, автоматический взлетный режим после отпуска тормозов не представляется сложным, но экипаж самолета во главе с командиром должны быть настроены на критические моменты.
Объективная оценка
Самолеты летают в дождь, но чтобы полет прошел успешно, существуют строгие нормативы для пилотов и диспетчеров, которые допускают самолет к рейсу и его посадке. Для каждого борта и аэродрома правила индивидуальны, но со схожими показателями:
• минимальная видимость. Определяется как вертикальная, так и горизонтальная видимость с уровнем освещенности;
• покрытие взлетно-посадочной полосы. Гололед на аэродроме недопустим;
• способность пилотов получать сигналы по приборам о неблагоприятных условиях погоды.
Обычно прогноз погоды должен соответствовать метеорологическому минимуму, чтобы пилот имел возможность предпринять экстренные действия при возникновении критической обстановки.
Параметры первостепенной важности
Метеорологический минимум - это условия, которые применяются по отношению к видимости, облачности, скорости и направлению ветра. Данные критерии могут быть опасны при перелетах, в особенности, когда говорится о грозах, ливнях и сильной турбулентности. Безусловно, большинство грозовых туч можно миновать, но тянущиеся на сотни километров фронтальные грозы обойти практически невозможно.
В случае если речь идет о минимумах, то определяются критерии видимости на аэродроме и высоте принятия решения (ВПР). Это уровень высоты, при котором экипаж самолета обязан осуществить разворот на дополнительный круг, когда не определяется ВПП.
Выделяют три типа минимумов:
• воздушного транспорта – допустимые критерии для безопасного полета самолета при неблагоприятных метеоусловиях, установленные производителем;
• аэродрома – зависит от типа установленных навигационных и технических систем на взлетно-посадочной полосе и на окруженной территории;
• экипажа – допуск пилотов в соответствии с их программой тренировки при конкретных погодных условиях и практическими навыками полетов.
Допускать воздушное судно к вылету или нет, определяет только командир самолета. Чтобы принять решение, следует предварительно ознакомиться с предоставленными метеорологическими данными по аэродромам назначения, а также запасным и оценить их.
Гроза полету не помеха
Гроза – это довольно опасное явление, но для современного лайнера она не является причиной катастрофы. Техника и человек научились преодолевать огромные расстояния безопасно в любых погодных условиях.
В своей практике каждый опытный пилот не раз сталкивался с грозовыми облаками, которые существенно затрудняют посадку и взлет самолета в дождь. Во время «входа» в облака экипаж лишается зрительного восприятия машины в пространстве. Поэтому полет в "нелетную" погоду можно проводить только по техническим приборам. В некоторых случаях может возникнуть неприятная ситуация – электризация самолета. Здесь радиосвязь резко ухудшается, что доставляет большие неудобства даже профессиональным пилотам.
Но больше всего "нелетная" погода усложняет посадку лайнеров. В таких метеорологических условиях экипаж максимально загружен. Капитан даже в современном самолете при посадке самолета в дождь бросает взгляды на авиационную технику до 200 раз в минуту, сосредотачиваясь на каждом приборе до 1 секунды. Низкая облачность в комплексе с грозой – серьезная помеха для правильного движения воздушного судна. Поэтому чрезвычайно важно хорошо знать облака, их состояние и ближайшее изменения. Ухудшение погоды начинается, если наблюдается:
– ускоренное падение атмосферного давления;
– резкое изменение направления и скорости ветра;
– увеличение разного рода облачности и быстрое ее движение;
– «нарастание» к вечеру кучевых облаков;
– образование цветных кругов вокруг спутников Земли.
С грозой играть нельзя, её нужно обходить подальше, согласно нормативам. К тому же при наборе высоты или снижении пилот должен соотносить информацию развития стихии с возможностями самолета.
Лётная и нелётная погода (часть 2)
Когда на небе тучи
Пассажирский лайнер проходит путь по заданным воздушным путям. На случай непогоды координаты могут изменяться при согласовании с диспетчером в центре управления полетов. Высота полета - около 11000 метров. По этой причине он становится комфортным благодаря большей разреженности воздуха. Именно эта высота полета позволяет воздушному судну подняться над облаками – источниками дождя или снега. Поэтому перемещение самолета на большой высоте совершенно не зависит от погодных условий. Зачастую можно наблюдать, как в окно лайнера попадают лучи солнца, а при посадке темно и идет дождь.
Теоретически капли дождя могут повлиять на работу двигателя воздушного судна. Но дождь – это не то количество воды, которое может спровоцировать замыкание. На испытаниях компрессоры двигателя подвергается хорошему «заливу», не сравненному с природными явлениями.
Принимаем во внимание
Сами осадки не представляют никакой опасности для полета. Другое дело – видимость. Но при проливных дождях на помощь приходят стеклоочистители. Современные «дворники» у самолетов отличаются от автомобильных. Во-первых, у них совершенно другая конструкция. Во-вторых, стеклоочистители работают в очень высоком темпе, что обеспечивает идеальный обзор.
Наибольшую критичность в непогоду представляют «атмосферные возмущения». Самолет на посадке имеет небольшую скорость и легко может быть подвержен влиянию движения воздушных масс. Для прохождения неблагоприятных последствий во время этого явления пилоты тратят много времени «на тренажерах», оттачивая свое мастерство. Если в такую погоду опасность аварии велика, то посадку откладывают или отправляют судно на другой аэродром.
Другой важный фактор во время дождя – сцепление с полосой. Мокрое покрытие снижает его коэффициент, но такая ситуация критичной не признается. Намного опаснее, если вода на асфальте замерзает, а значение коэффициента снижается. В большинстве подобных случаев аэропорт не разрешает взлеты и посадки самолетов.
Другие природные преграды
Помимо основных метеоявлений, выделяют и другие важные критерии, ограничивающие возможности авиации:
• ветер – требует особой внимательности и ловкости от пилота, в особенности на взлетно-посадочной полосе;
• рему – вертикальное движение воздуха, подбрасывающее воздушное судно, образуя «воздушные ямы»;
• туман – настоящий враг при перелетах, ограничивающий видимость и принуждающий пилотов ориентироваться по компасам;
• оледенение – на покрытой льдом взлетно-посадочной полосе движение самолетов категорически запрещено.
Благодаря разработанным электронным приборам и системам современная авиация готова преодолеть любые погодные условия. Движение по взлетно-посадочной полосе безопасно, т. к. в критических ситуациях лайнер на рейс просто не отправляется или остается в определенных зонах ожидания.
Критерии тяжелого полета
Кучевые облака в холодное время и летний период на большой высоте могут представлять опасность для воздушного судна. Именно здесь вероятность обледенения самолета довольно высока. В мощнокучевых облаках полет тяжелых самолетов усложняется турбулентностью. Если сохраняется вероятность неблагоприятных явлений, рейс переносят на несколько часов.
Показателями плохой устойчивой погоды служат:
– атмосферное давление с низкими показателями, которые практически не изменяются или вовсе снижаются;
– высокая скорость ветра;
– облака на небе преимущественно слоистого или слоисто-дождевого типа;
– продолжительные осадки в виде дождя или снега;
– мелкие колебания температуры в течение суток.
Если с дождем проблема может быть решена быстрее, то обложные осадки особенно в виде мороси создадут трудности. Они занимают очень большие площади, и миновать их практически невозможно. В такой зоне видимость значительно снижается, а при низких температурах происходит обледенение корпуса воздушного судна. Поэтому на небольшой высоте в таких ситуациях полет классифицируется как затрудненный.
Лётная и нелётная погода (часть 3)
По долгу службы
Чтобы не подвергать себя и пассажиров на борту опасности и страху, экипаж самолета перед вылетом должен выполнить ряд важных действий:
• прослушать информацию от дежурного метеоролога о предстоящих погодных условиях по установленному маршруту: данные облачности, скорости и направления ветра, наличие опасных зон и пути их обхода;
• получить специальный бюллетень, где обозначена информация о состоянии атмосферы, о прогнозе погоды по маршруту и на месте посадки;
• при отложенном рейсе более чем на полтора часа пилот должен получить новую информацию о состоянии погоды.
Однако на этом обязанности экипажа не заканчиваются.
Дополнительный круг обязательств
Во время полета пилот должен тщательно наблюдать за погодными явлениями, особенно если маршрут проходит рядом с опасными зонами или в скором времени предвидится ухудшение погоды. Внимательность и профессионализм штурмана позволит грамотно оценить состояние атмосферы и в случае чего принять верное решение.
Кроме того, за несколько сотен километров до пункта посадки следует подать запрос о метеорологической обстановке на аэродроме и оценить безопасность приземления.
Природный «противник» рейса
Прекрасно, когда полет проходит в ясную солнечную погоду. Но если снегопад или дождь, а за бортом низкая температура? Тут начинается обледенение корпуса самолета.
Лед, как броня, увеличивает вес воздушного судна, в несколько раз уменьшая его подъемную силу и снижая мощность двигателя. Если вдруг капитан экипажа, изучая метеорологическую обстановку, определил, что корпус лайнера покрыт коркой, то поступает команда очистить судно. Обработка самолета осуществляется противообледенительной жидкостью. Причем внимание уделяется всему корпусу судна, а не только крыльям и носу.
Надежность превыше всего
Гроза или дождь – романтическое явление только в литературе. Авиация рассматривает природное явление как чрезвычайное обстоятельство. Стихия может принести большие человеческие жертвы, поэтому крайне важно подходить к полетам с высокой точностью и грамотностью. Рейс в неблагоприятных условиях – это большая ответственность и огромные переживания не только за свою жизнь, но и за жизнь сотни пассажиров.
Буксировка самолёта (часть 1)
Буксировка самолёта - это процесс, который в той или иной мере затрагивает многих участников (водители, техники или механики, буксировочная бригада, диспетчеры, представитель авиакомпании, ... ).
Также он имеет много нюансов - как организационных, так и технических.
Я расскажу вам о буксировке преимущественно с точки зрения устройства матчасти.
Буксировать самолёт бывает нужно в разных случаях.
Например, когда внутрироссийские и международные рейсы в Пулково были распределены между терминалами 1 и 2, часто случались прибытия на перрон одного терминала, а вылет - с другого перрона.
бывает, самолёт приходит и будет долго стоять - например, большая форма ТО. В таком случае долго занимать удобную стоянку (например, у телетрапа) не дают, и самолёт надо убирать.
Перемещение самолёта по территории аэродрома обычно производится буксировкой с помощью тягача.
Буксировать самолёт также бывает необходимо, например, при выкатывании с полосы на вязкий грунт.
В таком случае буксировка производится тросами за основные стойки шасси.
Если же говорить только о штатных буксировках с меньшими усилиями, то они производятся тягачами за переднюю ногу.
В зарубежных портах бывают распространены тягачи, отрывающие переднюю ногу самолёта от поверхности гидроподъёмниками, и перемещающие самолёт за эту ногу. В наших портах таких тягачей практически нету. Потому что им нужен очень ровный и чистый перрон, что в России, сами понимаете... :)
Так что обычно самолёты буксируются на жёсткой сцепке - водилом, цепляющимся за переднюю ногу.
Во время буксировки в самолёте обязательно кто-то есть.
Процесс называется "посидеть на тормозах".
Человек в кабине находится не для покатушек.
Он - последнее звено цепочки безопасности. Он один может остановить самолёт, если что.
Человек на тормозах применяет тормоза в случаях:
1. расцепления тягача и самолёта.
2. при опасности наезда на препятствие.
3. по команде руководителя буксировки.