📖 کتاب بخوانیم؛
📌 "Big Data for Big Decisions: Building a Data-Driven Organization"
🔹در فصل هفتم کتاب "دادههای عظیم برای تصمیمات بزرگ: ایجاد یک سازمان داده محور" مختصر تاریخچه ای از داده و چگونگی رشد آن در یک سازمان ارائه میشود.
رشد اصلی دادهها در یک سازمان را میتوان نتیجه رشد در پایگاه داده سازمان که در ابتدا در دپارتمانهای مختلف توزیع شده بودند، دانست. بر اساس کارکردهای مختلف هر یک از بخشهای سازمان و فرآیندهای از پیش تعریف شده و همچنین نیاز به ثبت و استفاده مجدد از دادهها، اهمیت وجود پایگاه داده های منسجم در یک سازمان پر رنگ تر شد. شکلگیری پایگاه دادهها در یک دستهبندی کلی میتوان در شش طبقه قرار داد:
1. سیستمهای مبتنی بر فلت فایل
2. سیستمهای سلسله مراتبی
3. پایگاه دادههای رابطهای
4. پایگاه دادههای مبتنی بر تراکنش برخط
5. پایگاه دادههای مبتنی بر XML
6. پایگاه دادههای غیر رابطهای
در کنار رشد پایگاه داده ،ظهور و رشد سیستمهای یکپارچه برنامهریزی منابع سازمانی نیز تاثیر زیادی در رشد دادهها در یک سازمان داشتند. به دلیل یکپارچگی فرآیندهای دپارتمانهای مختلف در پشت این سیستم، دادههای بیشتری تولید شده و تحلیل این داده از منظر فرآیندی کمک شایانی به یک سازمان میکند. این یکپارچگی در سطح برنامهها و فرآیندها در نقاط زیادی داده تولید خواهند کرد که در مقایسه با حالت سنتی برنامههای یک سازمان که به صورت جزیرهای شکل گرفتند منجر به تولید داده بیشتری خواهند شد.
علاوه بر این دو روند، رشد و توسعه اینترنت به عنوان یکی دیگر از عوامل مهم در رشد دادهها محسوب میشود. این رشد هم در بحث سرعت و حجم دادهها و همچنین در بحث دادههای غیر ساختار یافته که از ویژگیهای عظیم داده میباشند خود را نشان داده است.
همچنین نیاز به ذکر است که رشد دادهها منجر به ایجاد وظایفی همچون حاکمیت و مدیریت داده در یک سازمان شده است که تا پیش از این وجود نداشتند. علاوه بر این، آنچه که در عصر کنونی به عنوان داده تلقی میشود تنها در مرزهای یک سازمان و درون آن تولید نمیشوند، بلکه در بیرون سازمان همچون شبکههای اجتماعی نیز وجود دارند که از این منظر تحلیل شبکههای اجتماعی در مقیاس عظیم داده به عنوان یکی دیگر از نتایج رشد داده محسوب میشوند.
#کتاب_بخوانیم
#فصل_هفتم
#علی_محمدی
#تصمیم_گیری
#سازمان_داده_محور
www.bdbanalytics.ir
@BigData_BusinessAnalytics
📌 "Big Data for Big Decisions: Building a Data-Driven Organization"
🔹در فصل هفتم کتاب "دادههای عظیم برای تصمیمات بزرگ: ایجاد یک سازمان داده محور" مختصر تاریخچه ای از داده و چگونگی رشد آن در یک سازمان ارائه میشود.
رشد اصلی دادهها در یک سازمان را میتوان نتیجه رشد در پایگاه داده سازمان که در ابتدا در دپارتمانهای مختلف توزیع شده بودند، دانست. بر اساس کارکردهای مختلف هر یک از بخشهای سازمان و فرآیندهای از پیش تعریف شده و همچنین نیاز به ثبت و استفاده مجدد از دادهها، اهمیت وجود پایگاه داده های منسجم در یک سازمان پر رنگ تر شد. شکلگیری پایگاه دادهها در یک دستهبندی کلی میتوان در شش طبقه قرار داد:
1. سیستمهای مبتنی بر فلت فایل
2. سیستمهای سلسله مراتبی
3. پایگاه دادههای رابطهای
4. پایگاه دادههای مبتنی بر تراکنش برخط
5. پایگاه دادههای مبتنی بر XML
6. پایگاه دادههای غیر رابطهای
در کنار رشد پایگاه داده ،ظهور و رشد سیستمهای یکپارچه برنامهریزی منابع سازمانی نیز تاثیر زیادی در رشد دادهها در یک سازمان داشتند. به دلیل یکپارچگی فرآیندهای دپارتمانهای مختلف در پشت این سیستم، دادههای بیشتری تولید شده و تحلیل این داده از منظر فرآیندی کمک شایانی به یک سازمان میکند. این یکپارچگی در سطح برنامهها و فرآیندها در نقاط زیادی داده تولید خواهند کرد که در مقایسه با حالت سنتی برنامههای یک سازمان که به صورت جزیرهای شکل گرفتند منجر به تولید داده بیشتری خواهند شد.
علاوه بر این دو روند، رشد و توسعه اینترنت به عنوان یکی دیگر از عوامل مهم در رشد دادهها محسوب میشود. این رشد هم در بحث سرعت و حجم دادهها و همچنین در بحث دادههای غیر ساختار یافته که از ویژگیهای عظیم داده میباشند خود را نشان داده است.
همچنین نیاز به ذکر است که رشد دادهها منجر به ایجاد وظایفی همچون حاکمیت و مدیریت داده در یک سازمان شده است که تا پیش از این وجود نداشتند. علاوه بر این، آنچه که در عصر کنونی به عنوان داده تلقی میشود تنها در مرزهای یک سازمان و درون آن تولید نمیشوند، بلکه در بیرون سازمان همچون شبکههای اجتماعی نیز وجود دارند که از این منظر تحلیل شبکههای اجتماعی در مقیاس عظیم داده به عنوان یکی دیگر از نتایج رشد داده محسوب میشوند.
#کتاب_بخوانیم
#فصل_هفتم
#علی_محمدی
#تصمیم_گیری
#سازمان_داده_محور
www.bdbanalytics.ir
@BigData_BusinessAnalytics
🔎 معرفی کسب و کار داده محور
🔹 شرکت اسپاتیفای (Spotify) یکی از بزرگترین و پرآوازهترین شرکتها در حوزه موسیقی آنلاین و پخش موسیقی است. این شرکت در سال 2006 توسط دو کارآفرین سوئدی، دانیل اک (Daniel Ek) و مارتین لورنتسون (Martin Lorentzon) تأسیس شد. اسپاتیفای به عنوان یکی از نخستین سرویسهای پخش موسیقی آنلاین با مدل کسبوکار اشتراکی به موفقیت رسید.
🔸 استفاده از دادهها در شرکتهای موسیقی نظیر اسپاتیفای (Spotify) یکی از مهمترین عناصر برای بهبود تجربه کاربری و توسعه کسبوکار است. اسپاتیفای به عنوان یکی از بزرگترین سرویسهای پخش موزیک آنلاین در جهان، دارای مقدار عظیمی از دادهها است که در تمام جوانب عملکرد خود مورد استفاده قرار میدهد. در این مطلب، به بررسی نمونه واقعی کاربرد دادهها در اسپاتیفای خواهیم پرداخت.
🔹 یکی از کاربردهای اصلی داده در اسپاتیفای، تجزیه و تحلیل عادات گوش دادن کاربران و توصیههای شخصیسازی موسیقی به آنها است. این سرویس توانسته است با استفاده از دادههای جمعآوری شده از عادات گوش دادن کاربران، سیستمهای پیشنهادی قدرتمندی را ایجاد کند. به عبارت دیگر، اسپاتیفای از دادهها برای فهم بهتر موزیک مورد علاقه کاربران، سلیقههای آنها، و حتی میزان انرژی و احساساتی که از آهنگها دریافت میکنند، استفاده میکند. این اطلاعات به تولید لیستهای پخش شخصیسازی شده برای هر کاربر کمک میکند. بنابراین، هر کاربر تجربه گوش دادن منحصر به فردی دارد و برخوردها با موزیک مطابق با سلیقه شخصی او انجام میشود.
در ادامه به بررسی چندین نمونه کاربرد داده در اسپاتیفای خواهیم پرداخت:
1️⃣ پیشنهاد موزیک: اسپاتیفای با استفاده از دادههای تاریخچه گوش دادن و مورد علاقههای کاربران، میتواند موزیکهای پیشنهادی را به هر کاربر ارائه دهد. این پیشنهادها ممکن است بر اساس ژانر، هنرمند، آلبومهای مشابه یا حتی فصل سال تنظیم شوند. این پیشنهادات به کاربران اجازه میدهند تا موسیقی جدید کشف کنند و تجربه موزیک آنلاین بهتری داشته باشند.
2️⃣ تحلیل موسیقی: اسپاتیفای دارای اطلاعات زیادی در مورد ویژگیهای موسیقی مانند سرعت، انرژی، ریتم و آکوردهای مورد استفاده در هر آهنگ است. این دادهها به تیمهای موسیقی اسپاتیفای کمک میکنند تا موزیکها را دستهبندی کنند و ارتباطات موسیقی را درک کنند. این اطلاعات میتوانند به تولید پیشنهادات دقیقتر و تجربه بهتری برای کاربران منتجب شوند.
3️⃣ کاهش سوءاستفاده و پایش کیفیت: اسپاتیفای با تجزیه و تحلیل دادهها میتواند سعی در شناسایی هرگونه سوءاستفاده از سرویس را داشته باشد. این ممکن است شامل شناسایی حسابهای تقلبی، دسترسی غیرمجاز و یا مشکلاتی در کیفیت پخش موزیک باشد. از این طریق، اسپاتیفای تضمین میکند که کاربران تجربه پخش بهتری داشته باشند و همچنین متداولترین تخلفات را کنترل کند.
4️⃣ بهبود تبلیغات: اسپاتیفای از دادهها برای بهینهسازی تبلیغات نیز استفاده میکند. این شامل ارائه تبلیغات مرتبط با سلیقه موسیقی کاربران و تحلیل عملکرد تبلیغات بر اساس اطلاعات کلیک و تبدیلی است. این کاربرد دادهها به تأثیرگذاری تبلیغات و افزایش درآمد شرکت کمک میکند.
5️⃣ مدیریت حقوق نشر: اسپاتیفای نیاز به پیگیری و مدیریت حقوق نشر دارد. از دادهها برای ردیابی استفاده از آهنگها و پرداخت حقوق به هنرمندان و صاحبان موسیقی استفاده میشود. این مدیریت دقیق اطلاعات حقوق نشر باعث میشود که هنرمندان و صاحبان موسیقی اعتماد به سرویس اسپاتیفای داشته باشند و موسیقی خود را در این پلتفرم منتشر کنند.
🔸 در نهایت، دادهها یکی از باارزشترین داراییهای شرکتهای موسیقی مانند اسپاتیفای هستند. این دادهها به شرکت این امکان را میدهند تا بهبودهای مستمر در تجربه کاربری ایجاد کنند، موسیقیهای جدید را با کاربران به اشتراک بگذارند و به شکل موثرتری با هنرمندان و صاحبان موسیقی همکاری کنند. از این رو، اسپاتیفای به عنوان یکی از بزرگترین و موفقترین شرکتهای موسیقی آنلاین به بهرهگیری حداکثری از دادهها برای بهبود کیفیت خدمات خود متعهد است.
#محمدرضا_مرادی
#اسپاتیفای
#Spotify
#کسب_و_کار_داده_محور
@BigData_BusinessAnalytics
www.bdbanalytics.ir
🔹 شرکت اسپاتیفای (Spotify) یکی از بزرگترین و پرآوازهترین شرکتها در حوزه موسیقی آنلاین و پخش موسیقی است. این شرکت در سال 2006 توسط دو کارآفرین سوئدی، دانیل اک (Daniel Ek) و مارتین لورنتسون (Martin Lorentzon) تأسیس شد. اسپاتیفای به عنوان یکی از نخستین سرویسهای پخش موسیقی آنلاین با مدل کسبوکار اشتراکی به موفقیت رسید.
🔸 استفاده از دادهها در شرکتهای موسیقی نظیر اسپاتیفای (Spotify) یکی از مهمترین عناصر برای بهبود تجربه کاربری و توسعه کسبوکار است. اسپاتیفای به عنوان یکی از بزرگترین سرویسهای پخش موزیک آنلاین در جهان، دارای مقدار عظیمی از دادهها است که در تمام جوانب عملکرد خود مورد استفاده قرار میدهد. در این مطلب، به بررسی نمونه واقعی کاربرد دادهها در اسپاتیفای خواهیم پرداخت.
🔹 یکی از کاربردهای اصلی داده در اسپاتیفای، تجزیه و تحلیل عادات گوش دادن کاربران و توصیههای شخصیسازی موسیقی به آنها است. این سرویس توانسته است با استفاده از دادههای جمعآوری شده از عادات گوش دادن کاربران، سیستمهای پیشنهادی قدرتمندی را ایجاد کند. به عبارت دیگر، اسپاتیفای از دادهها برای فهم بهتر موزیک مورد علاقه کاربران، سلیقههای آنها، و حتی میزان انرژی و احساساتی که از آهنگها دریافت میکنند، استفاده میکند. این اطلاعات به تولید لیستهای پخش شخصیسازی شده برای هر کاربر کمک میکند. بنابراین، هر کاربر تجربه گوش دادن منحصر به فردی دارد و برخوردها با موزیک مطابق با سلیقه شخصی او انجام میشود.
در ادامه به بررسی چندین نمونه کاربرد داده در اسپاتیفای خواهیم پرداخت:
1️⃣ پیشنهاد موزیک: اسپاتیفای با استفاده از دادههای تاریخچه گوش دادن و مورد علاقههای کاربران، میتواند موزیکهای پیشنهادی را به هر کاربر ارائه دهد. این پیشنهادها ممکن است بر اساس ژانر، هنرمند، آلبومهای مشابه یا حتی فصل سال تنظیم شوند. این پیشنهادات به کاربران اجازه میدهند تا موسیقی جدید کشف کنند و تجربه موزیک آنلاین بهتری داشته باشند.
2️⃣ تحلیل موسیقی: اسپاتیفای دارای اطلاعات زیادی در مورد ویژگیهای موسیقی مانند سرعت، انرژی، ریتم و آکوردهای مورد استفاده در هر آهنگ است. این دادهها به تیمهای موسیقی اسپاتیفای کمک میکنند تا موزیکها را دستهبندی کنند و ارتباطات موسیقی را درک کنند. این اطلاعات میتوانند به تولید پیشنهادات دقیقتر و تجربه بهتری برای کاربران منتجب شوند.
3️⃣ کاهش سوءاستفاده و پایش کیفیت: اسپاتیفای با تجزیه و تحلیل دادهها میتواند سعی در شناسایی هرگونه سوءاستفاده از سرویس را داشته باشد. این ممکن است شامل شناسایی حسابهای تقلبی، دسترسی غیرمجاز و یا مشکلاتی در کیفیت پخش موزیک باشد. از این طریق، اسپاتیفای تضمین میکند که کاربران تجربه پخش بهتری داشته باشند و همچنین متداولترین تخلفات را کنترل کند.
4️⃣ بهبود تبلیغات: اسپاتیفای از دادهها برای بهینهسازی تبلیغات نیز استفاده میکند. این شامل ارائه تبلیغات مرتبط با سلیقه موسیقی کاربران و تحلیل عملکرد تبلیغات بر اساس اطلاعات کلیک و تبدیلی است. این کاربرد دادهها به تأثیرگذاری تبلیغات و افزایش درآمد شرکت کمک میکند.
5️⃣ مدیریت حقوق نشر: اسپاتیفای نیاز به پیگیری و مدیریت حقوق نشر دارد. از دادهها برای ردیابی استفاده از آهنگها و پرداخت حقوق به هنرمندان و صاحبان موسیقی استفاده میشود. این مدیریت دقیق اطلاعات حقوق نشر باعث میشود که هنرمندان و صاحبان موسیقی اعتماد به سرویس اسپاتیفای داشته باشند و موسیقی خود را در این پلتفرم منتشر کنند.
🔸 در نهایت، دادهها یکی از باارزشترین داراییهای شرکتهای موسیقی مانند اسپاتیفای هستند. این دادهها به شرکت این امکان را میدهند تا بهبودهای مستمر در تجربه کاربری ایجاد کنند، موسیقیهای جدید را با کاربران به اشتراک بگذارند و به شکل موثرتری با هنرمندان و صاحبان موسیقی همکاری کنند. از این رو، اسپاتیفای به عنوان یکی از بزرگترین و موفقترین شرکتهای موسیقی آنلاین به بهرهگیری حداکثری از دادهها برای بهبود کیفیت خدمات خود متعهد است.
#محمدرضا_مرادی
#اسپاتیفای
#Spotify
#کسب_و_کار_داده_محور
@BigData_BusinessAnalytics
www.bdbanalytics.ir
📚معرفی کتاب
📌محاسبات شناختی برای سیستمهای عظیمداده از طریق اینترنت اشیا
"Cognitive Computing for Big Data Systems Over IoT"
📌نویسندگان:
Arun kumar Sangaiah, Arunkumar Thangavelu, Venkatesan Meenakshi Sundaram
📌این کتاب در سال 2018 توسط Springer انتشار یافته است.
📍 این کتاب جامع به عنوان یک منبع ارزشمند برای کسانی که به دنبال درک عمیقتری از تقاطع بین محاسبات شناختی، عظیمداده و اینترنت اشیا هستند، عمل میکند. همگرایی عظیمداده و اینترنت اشیا حجم زیادی از داده را تولید و مبادله کرده و استخراج اطلاعات معتبر را چالش برانگیز میسازد. در این کتاب، تکنیکهای یادگیری ماشینی برای تجزیه و تحلیل حجم زیاد دادهها و بهبود فرایند تصمیمگیری پیشنهاد شده است. محاسبات شناختی روشی است که رویکردهای فعلی علم داده را با بینش متخصصان و همچنین مفهوم هوش مصنوعی و استنتاج بر دانش ترکیب کرده و گسترش میدهد؛ همچنین در بسیاری از برنامههای کاربردی هوش مصنوعی از جمله سیستمهای خبره، پردازش زبان طبیعی، شبکههای عصبی، روباتیک و واقعیت مجازی استفاده میشود.
📍نویسندگان در این کتاب دانش زمینهای، استدلال علم داده و روشهای شناختی را بر روی اینترنت اشیا بررسی کرده و تمرکز اصلی کتاب را بر طراحی بهترین فناوریهای تعبیهشده شناختی برای پردازش و تجزیه و تحلیل عظیمداده جمعآوریشده توسط اینترنت اشیا و همچنین بهبود فرآيند تصمیمگیری قرار دادهاند.
📍این کتاب به طیف گستردهای از پارادایمهای محاسبات شناختی و تصمیمگیری در یک صنعت یا سازمان، در تمام سطوح چالشهای علم داده میپردازد. این کتاب برای دانشمندان علم داده، متخصصان، محققان و دانشگاهیان در نظر گرفته شده که با چالشها و پیشرفتهای جدید در زمینههای خاص محاسبات شناختی و علم داده در زمینه اینترنت اشیا سر و کار دارند. در این کتاب همچنین، چارچوبها و ابزارهای عملی طراحی و برای مقابله با چالشهای پیچیده مرتبط با تجزیه و تحلیل عظیمداده در محیط اینترنت اشیا ارائه شده است.
📍هدف این کتاب ارائه چارچوب نظری و آخرین یافتههای تحقیقات تجربی در این زمینه است. راهحلهای عظیمداده در مورد مشکلات اینترنت اشیا از طریق طیف گستردهای از چارچوبهای محاسباتی الگوریتمی و شناختی مانند بهینهسازی، یادگیری ماشین و سیستمهای پشتیبان تصمیم به طور مؤثری مدیریت شدهاند. نویسندگان فراتر از مرزهای نظری پیش رفته و برنامههای کاربردی دنیای واقعی را در حوزههای مختلف مانند مراقبتهای بهداشتی، تولید و انرژی ارائه میدهند.
این کتاب را میتوانید در پست بعد دریافت نمایید.
#معرفی_کتاب
#عظیم_داده
#زهرا_رفیعیپور
@BigData_BusinessAnalytics
http://www.bdbanalytics.ir
📌محاسبات شناختی برای سیستمهای عظیمداده از طریق اینترنت اشیا
"Cognitive Computing for Big Data Systems Over IoT"
📌نویسندگان:
Arun kumar Sangaiah, Arunkumar Thangavelu, Venkatesan Meenakshi Sundaram
📌این کتاب در سال 2018 توسط Springer انتشار یافته است.
📍 این کتاب جامع به عنوان یک منبع ارزشمند برای کسانی که به دنبال درک عمیقتری از تقاطع بین محاسبات شناختی، عظیمداده و اینترنت اشیا هستند، عمل میکند. همگرایی عظیمداده و اینترنت اشیا حجم زیادی از داده را تولید و مبادله کرده و استخراج اطلاعات معتبر را چالش برانگیز میسازد. در این کتاب، تکنیکهای یادگیری ماشینی برای تجزیه و تحلیل حجم زیاد دادهها و بهبود فرایند تصمیمگیری پیشنهاد شده است. محاسبات شناختی روشی است که رویکردهای فعلی علم داده را با بینش متخصصان و همچنین مفهوم هوش مصنوعی و استنتاج بر دانش ترکیب کرده و گسترش میدهد؛ همچنین در بسیاری از برنامههای کاربردی هوش مصنوعی از جمله سیستمهای خبره، پردازش زبان طبیعی، شبکههای عصبی، روباتیک و واقعیت مجازی استفاده میشود.
📍نویسندگان در این کتاب دانش زمینهای، استدلال علم داده و روشهای شناختی را بر روی اینترنت اشیا بررسی کرده و تمرکز اصلی کتاب را بر طراحی بهترین فناوریهای تعبیهشده شناختی برای پردازش و تجزیه و تحلیل عظیمداده جمعآوریشده توسط اینترنت اشیا و همچنین بهبود فرآيند تصمیمگیری قرار دادهاند.
📍این کتاب به طیف گستردهای از پارادایمهای محاسبات شناختی و تصمیمگیری در یک صنعت یا سازمان، در تمام سطوح چالشهای علم داده میپردازد. این کتاب برای دانشمندان علم داده، متخصصان، محققان و دانشگاهیان در نظر گرفته شده که با چالشها و پیشرفتهای جدید در زمینههای خاص محاسبات شناختی و علم داده در زمینه اینترنت اشیا سر و کار دارند. در این کتاب همچنین، چارچوبها و ابزارهای عملی طراحی و برای مقابله با چالشهای پیچیده مرتبط با تجزیه و تحلیل عظیمداده در محیط اینترنت اشیا ارائه شده است.
📍هدف این کتاب ارائه چارچوب نظری و آخرین یافتههای تحقیقات تجربی در این زمینه است. راهحلهای عظیمداده در مورد مشکلات اینترنت اشیا از طریق طیف گستردهای از چارچوبهای محاسباتی الگوریتمی و شناختی مانند بهینهسازی، یادگیری ماشین و سیستمهای پشتیبان تصمیم به طور مؤثری مدیریت شدهاند. نویسندگان فراتر از مرزهای نظری پیش رفته و برنامههای کاربردی دنیای واقعی را در حوزههای مختلف مانند مراقبتهای بهداشتی، تولید و انرژی ارائه میدهند.
این کتاب را میتوانید در پست بعد دریافت نمایید.
#معرفی_کتاب
#عظیم_داده
#زهرا_رفیعیپور
@BigData_BusinessAnalytics
http://www.bdbanalytics.ir
📌📌معرفی ابزار: Alluxio
🖌ابزار Alluxio یک پلتفرم هماهنگسازی دادههای منبع باز و توزیع شده است که نقش مهمی در بهینهسازی و تسریع دسترسی به دادهها برای دادههای عظیم و حجم کاری تجزیه و تحلیل دارد. این ابزار به عنوان یک لایه ذخیرهسازی توزیع شده مجازی عمل میکند و به سازمانها کمک میکند شکاف بین منابع داده و چارچوبهای محاسباتی را پر کنند. Alluxio برای رسیدگی به چالشهای رایج مرتبط با پردازش دادههای توزیع شده، مانند موقعیت مکانی داده، مدیریت دادهها و سرعت دسترسی به داده طراحی شده است.
✳️ویژگیها و عملکردهای کلیدی:
📍انتزاع دادهها: Alluxio یک فضای نام یکپارچه فراهم میکند که دادهها را از چندین سیستم ذخیرهسازی زیربنایی، مانند HDFS، ذخیرهسازی اشیاء ابری، یا سیستمهای فایل توزیع شده انتزاع میکند. این انتزاع دسترسی و مدیریت دادهها را برای کاربران و برنامهها ساده میکند.
📍ذخیره دادهها: Alluxio دادهها را در حافظه پنهان میکند، دسترسی سریعتر به دادهها را امکانپذیر میکند و نیاز به واکشی مکرر دادهها از سیستمهای ذخیره سازی راه دور را کاهش میدهد. این عملکرد پرس و جو و کار را بهبود میبخشد، به خصوص برای بارهای کاری که نیاز به خواندن مکرر داده دارند.
📍 اشتراک گذاری دادهها: Alluxio اجازه میدهد تا دادهها به طور موثر در چندین چارچوب محاسباتی به اشتراک گذاشته شوند و نیاز به تکرار دادهها را کاهش دهد. این به سازمانها کمک میکند تا از سیلوهای دادهای که ممکن است در زمانی که ابزارها و چارچوبهای مختلف نیاز به نسخههای خود از همان دادهها دارند، ایجاد شوند، اجتناب کنند.
📍 محل سکونت دادهها: Alluxio با حفظ آگاهی از محل ذخیره دادهها و محل انجام محاسبات، موقعیت دادهها را بهینه میکند. این میتواند به طور هوشمند دادهها را در نزدیکی منابع محاسباتی قرار دهد و زمان انتقال دادهها را کاهش دهد و عملکرد کلی سیستم را افزایش دهد.
📍 سازگاری دادهها: Alluxio تضمینهای قوی برای سازگاری دادهها ارائه میدهد و اطمینان میدهد که دادههای مورد دسترسی برنامهها و چارچوبهای مختلف دقیق و به روز هستند. این برای حفظ یکپارچگی دادهها در محیطهای پیچیده و توزیع شده ضروری است.
📍 مقیاس پذیری: Alluxio بسیار مقیاس پذیر است و میتواند بر روی دستههایی از ماشینها مستقر شود. در صورت نیاز میتواند رشد کند تا حجم زیادی از دادهها و بارهای کاری بالا را در خود جای دهد.
📍سازگاری با API : Alluxio با سیستمهای ذخیره سازی مختلف و چارچوبهای تجزیه و تحلیل، مانند Apache Hadoop، Apache Spark و Apache Flink سازگار است. این سازگاری به سازمانها اجازه میدهد تا Alluxio را به صورت یکپارچه در خطوط لوله پردازش دادههای موجود خود ادغام کنند.
📍 تحمل خطا: Alluxio به گونه ای طراحی شده است که در مقابل خطا مقاوم باشد. می تواند از خرابی گرهها بازیابی شود و حتی در صورت وجود مشکلات سخت افزاری یا شبکه از در دسترس بودن دادهها اطمینان حاصل کند.
📍متن باز: Alluxio یک نرم افزار منبع باز است، به این معنی که به طور رایگان در دسترس سازمانها است تا از آن استفاده کنند و مطابق با نیازهای خود تغییر دهند.
ابزار Alluxio اغلب در محیطهای عظیم داده استفاده میشود که در آن دادهها در سیستمهای فایل توزیعشده، ذخیرهسازی اشیاء ابری یا سایر سیستمهای ذخیرهسازی راه دور ذخیره میشوند. با ارائه یک لایه دسترسی سریع و کارآمد به داده ها، به سازمان ها کمک می کند تا به عملکرد بهتر و تاخیر کمتری برای تجزیه و تحلیل داده ها و حجم کاری پردازشی خود دست یابند. در سناریوهایی که بهبود سرعت دسترسی به دادهها، مدیریت محلی بودن دادهها و دستیابی به ثبات دادهها از عوامل حیاتی در دستیابی به موفقیت با پروژه های عظیم داده هستند، محبوبیت پیدا کرده است.
#معرفی_ابزار
#دادههای_عظیم
#فاطمه_مصلحی
#Alluxio
@BigData_BusinessAnalytics
www.bdbanalytics.ir
🖌ابزار Alluxio یک پلتفرم هماهنگسازی دادههای منبع باز و توزیع شده است که نقش مهمی در بهینهسازی و تسریع دسترسی به دادهها برای دادههای عظیم و حجم کاری تجزیه و تحلیل دارد. این ابزار به عنوان یک لایه ذخیرهسازی توزیع شده مجازی عمل میکند و به سازمانها کمک میکند شکاف بین منابع داده و چارچوبهای محاسباتی را پر کنند. Alluxio برای رسیدگی به چالشهای رایج مرتبط با پردازش دادههای توزیع شده، مانند موقعیت مکانی داده، مدیریت دادهها و سرعت دسترسی به داده طراحی شده است.
✳️ویژگیها و عملکردهای کلیدی:
📍انتزاع دادهها: Alluxio یک فضای نام یکپارچه فراهم میکند که دادهها را از چندین سیستم ذخیرهسازی زیربنایی، مانند HDFS، ذخیرهسازی اشیاء ابری، یا سیستمهای فایل توزیع شده انتزاع میکند. این انتزاع دسترسی و مدیریت دادهها را برای کاربران و برنامهها ساده میکند.
📍ذخیره دادهها: Alluxio دادهها را در حافظه پنهان میکند، دسترسی سریعتر به دادهها را امکانپذیر میکند و نیاز به واکشی مکرر دادهها از سیستمهای ذخیره سازی راه دور را کاهش میدهد. این عملکرد پرس و جو و کار را بهبود میبخشد، به خصوص برای بارهای کاری که نیاز به خواندن مکرر داده دارند.
📍 اشتراک گذاری دادهها: Alluxio اجازه میدهد تا دادهها به طور موثر در چندین چارچوب محاسباتی به اشتراک گذاشته شوند و نیاز به تکرار دادهها را کاهش دهد. این به سازمانها کمک میکند تا از سیلوهای دادهای که ممکن است در زمانی که ابزارها و چارچوبهای مختلف نیاز به نسخههای خود از همان دادهها دارند، ایجاد شوند، اجتناب کنند.
📍 محل سکونت دادهها: Alluxio با حفظ آگاهی از محل ذخیره دادهها و محل انجام محاسبات، موقعیت دادهها را بهینه میکند. این میتواند به طور هوشمند دادهها را در نزدیکی منابع محاسباتی قرار دهد و زمان انتقال دادهها را کاهش دهد و عملکرد کلی سیستم را افزایش دهد.
📍 سازگاری دادهها: Alluxio تضمینهای قوی برای سازگاری دادهها ارائه میدهد و اطمینان میدهد که دادههای مورد دسترسی برنامهها و چارچوبهای مختلف دقیق و به روز هستند. این برای حفظ یکپارچگی دادهها در محیطهای پیچیده و توزیع شده ضروری است.
📍 مقیاس پذیری: Alluxio بسیار مقیاس پذیر است و میتواند بر روی دستههایی از ماشینها مستقر شود. در صورت نیاز میتواند رشد کند تا حجم زیادی از دادهها و بارهای کاری بالا را در خود جای دهد.
📍سازگاری با API : Alluxio با سیستمهای ذخیره سازی مختلف و چارچوبهای تجزیه و تحلیل، مانند Apache Hadoop، Apache Spark و Apache Flink سازگار است. این سازگاری به سازمانها اجازه میدهد تا Alluxio را به صورت یکپارچه در خطوط لوله پردازش دادههای موجود خود ادغام کنند.
📍 تحمل خطا: Alluxio به گونه ای طراحی شده است که در مقابل خطا مقاوم باشد. می تواند از خرابی گرهها بازیابی شود و حتی در صورت وجود مشکلات سخت افزاری یا شبکه از در دسترس بودن دادهها اطمینان حاصل کند.
📍متن باز: Alluxio یک نرم افزار منبع باز است، به این معنی که به طور رایگان در دسترس سازمانها است تا از آن استفاده کنند و مطابق با نیازهای خود تغییر دهند.
ابزار Alluxio اغلب در محیطهای عظیم داده استفاده میشود که در آن دادهها در سیستمهای فایل توزیعشده، ذخیرهسازی اشیاء ابری یا سایر سیستمهای ذخیرهسازی راه دور ذخیره میشوند. با ارائه یک لایه دسترسی سریع و کارآمد به داده ها، به سازمان ها کمک می کند تا به عملکرد بهتر و تاخیر کمتری برای تجزیه و تحلیل داده ها و حجم کاری پردازشی خود دست یابند. در سناریوهایی که بهبود سرعت دسترسی به دادهها، مدیریت محلی بودن دادهها و دستیابی به ثبات دادهها از عوامل حیاتی در دستیابی به موفقیت با پروژه های عظیم داده هستند، محبوبیت پیدا کرده است.
#معرفی_ابزار
#دادههای_عظیم
#فاطمه_مصلحی
#Alluxio
@BigData_BusinessAnalytics
www.bdbanalytics.ir
📖 کتاب بخوانیم؛
📌 "Big Data for Big Decisions: Building a Data-Driven Organization"
🔹 فصل هشتم: ایجاد یک استراتژی فناوری اطلاعات داده محور
📍تا سالهای اخیر، استراتژی داده، اگر اصولاً چنین چیزی در یک سازمان وجود داشت، همواره به عنوان جزئی از استراتژی فناوری اطلاعات به شمار میرفت. گفته شده است که اگر داده ها را مانند خون بدانیم، زیرساخت فناوری اطلاعات، سیستم گردش خونی است که سازمان ها را توانمند میسازد. طراحی ضعیف استراتژی IT میتواند به معنای دادههای با کیفیت پایین و پراکنده باشد که با تاخیر زمانی بیشتر از عمر مفید دادهها تحویل میشود. از این رو، ایجاد یک استراتژی فناوری اطلاعات منسجم و همسو با کسب و کار، به اندازه ساختن یک استراتژی اثربخش دادهای در سازمان حیاتی است.
❓سوال اساسی که در اینجا مطرح است این است که آیا سازمان باید استراتژی IT خود را پیش از استراتژی داده تعریف کند یا بالعکس؟ به عبارت دیگر، آیا ظرف باید محتویات آن را تعریف نماید یا محتویات باید ظرف را تعریف نماید؟
📍یک استراتژی اساساً مجموعهای از تصمیمات بلندمدت است. استراتژی فناوری اطلاعات یک جزء از استراتژی کسب و کار است - مجموعه ای از تصمیمات بلند مدت در مورد چگونگی شکل دادن به فناوری اطلاعات به گونهای که از سازمان در تحقق اهداف بلندمدت کسب و کاری خود حمایت کند. بنابراین، یک استراتژی فناوری اطلاعات، در هسته، مجموعه ای از تصمیمات استراتژیک مهم است. سوال این است: چگونه می توان اطمینان حاصل کرد که این تصمیمات مبتنی بر داده هستند؟ در فصل هشتم کتاب دادههای عظیم برای تصمیمات بزرگ با نگاهی انتقادی به آنچه که یک استراتژی فناوری اطلاعات مبتنی بر داده را تشکیل می دهد پرداخته میشود.
🔹با توجه به اینکه هدف اصلی استراتژی فناوری اطلاعات داده محور، ارائه ارزش کسب و کاری و افزایش عملکرد کسب و کاری شرکت است، کشف پیشران کلیدی ارزش ضروری میباشد و در این راستا سوالاتی مطرح است:
1️⃣ پیشرانهای کلیدی ارزش برای استراتژی فناوری اطلاعات چیست؟ آیا آنها تصمیمات "بزرگ" استراتژی فناوری اطلاعات را تعریف میکنند؟
2️⃣ چه نوع دادهای برای حمایت از تصمیمات بزرگ استراتژی فناوری اطلاعات مورد نیاز است؟
3️⃣ منابع چنین دادههایی چیست؟
📍پیشرانهای کلیدی باید با استراتژی کسب و کار همراستا باشند. ابتکارات فناوری اطلاعات باید سازمان را برای دستیابی به اهداف استراتژیک کسب و کار توانمند سازند و منابع کلیدی داده برای طرحریزی و ابداع استراتژی فناوری اطلاعات به کار روند.
در واقع استراتژی فناوری اطلاعات داده محور بر پایههای زیر قرار میگیرد:
✅ همراستایی با استراتژی کسب و کار
✅ بهینه کاوی با صنعت، رقابت و داخل سازمان
✅ جریان کاری و زنجیره ارزش اطلاعات
✅ پوشش زنجیره ارزش سازمان
✅ بهینه سازی منابع
✅ ارزش کسب و کاری
✅ معماری سازمانی از دید سازمان، داده، کنترل، کارکرد و محصول یا خدمت
📍این پایهها بر ممیزی امنیت اطلاعات و زیرساخت، تحلیل پورتفولیوی کاربردها و استراتژی دادهای سازمانی همراستا با استراتژی کسب و کار قرار میگیرند که به نوبه خود بر منابع دادهای مختلف سازمان شامل اپلیکیشنهای سازمانی محوری قرار گرفته بر روی ابر یا مراکز داده سازمان، دادههای اینترنت اشیا، موبایل، دستگاههای متصل، دادههای عظیم، هوش مصنوعی، روباتیک، شبکههای اجتماعی، تجارت الکترونیک و ... بنا شده است.
بنابراین فصل هشتم کتاب به بررسی اجزای شکل دهنده استراتژی فناوری اطلاعات داده محور و پاسخ به سوالاتی پیرامون آنها میپردازد.
#کتاب_بخوانیم
#فصل_هشتم
#فاطمه_مظفری
#استراتژی_فناوری_اطلاعات_داده_محور
#دادههای_عظیم_برای_تصمیمات_بزرگ
www.bdbanalytics.ir
@BigData_BusinessAnalytics
📌 "Big Data for Big Decisions: Building a Data-Driven Organization"
🔹 فصل هشتم: ایجاد یک استراتژی فناوری اطلاعات داده محور
📍تا سالهای اخیر، استراتژی داده، اگر اصولاً چنین چیزی در یک سازمان وجود داشت، همواره به عنوان جزئی از استراتژی فناوری اطلاعات به شمار میرفت. گفته شده است که اگر داده ها را مانند خون بدانیم، زیرساخت فناوری اطلاعات، سیستم گردش خونی است که سازمان ها را توانمند میسازد. طراحی ضعیف استراتژی IT میتواند به معنای دادههای با کیفیت پایین و پراکنده باشد که با تاخیر زمانی بیشتر از عمر مفید دادهها تحویل میشود. از این رو، ایجاد یک استراتژی فناوری اطلاعات منسجم و همسو با کسب و کار، به اندازه ساختن یک استراتژی اثربخش دادهای در سازمان حیاتی است.
❓سوال اساسی که در اینجا مطرح است این است که آیا سازمان باید استراتژی IT خود را پیش از استراتژی داده تعریف کند یا بالعکس؟ به عبارت دیگر، آیا ظرف باید محتویات آن را تعریف نماید یا محتویات باید ظرف را تعریف نماید؟
📍یک استراتژی اساساً مجموعهای از تصمیمات بلندمدت است. استراتژی فناوری اطلاعات یک جزء از استراتژی کسب و کار است - مجموعه ای از تصمیمات بلند مدت در مورد چگونگی شکل دادن به فناوری اطلاعات به گونهای که از سازمان در تحقق اهداف بلندمدت کسب و کاری خود حمایت کند. بنابراین، یک استراتژی فناوری اطلاعات، در هسته، مجموعه ای از تصمیمات استراتژیک مهم است. سوال این است: چگونه می توان اطمینان حاصل کرد که این تصمیمات مبتنی بر داده هستند؟ در فصل هشتم کتاب دادههای عظیم برای تصمیمات بزرگ با نگاهی انتقادی به آنچه که یک استراتژی فناوری اطلاعات مبتنی بر داده را تشکیل می دهد پرداخته میشود.
🔹با توجه به اینکه هدف اصلی استراتژی فناوری اطلاعات داده محور، ارائه ارزش کسب و کاری و افزایش عملکرد کسب و کاری شرکت است، کشف پیشران کلیدی ارزش ضروری میباشد و در این راستا سوالاتی مطرح است:
1️⃣ پیشرانهای کلیدی ارزش برای استراتژی فناوری اطلاعات چیست؟ آیا آنها تصمیمات "بزرگ" استراتژی فناوری اطلاعات را تعریف میکنند؟
2️⃣ چه نوع دادهای برای حمایت از تصمیمات بزرگ استراتژی فناوری اطلاعات مورد نیاز است؟
3️⃣ منابع چنین دادههایی چیست؟
📍پیشرانهای کلیدی باید با استراتژی کسب و کار همراستا باشند. ابتکارات فناوری اطلاعات باید سازمان را برای دستیابی به اهداف استراتژیک کسب و کار توانمند سازند و منابع کلیدی داده برای طرحریزی و ابداع استراتژی فناوری اطلاعات به کار روند.
در واقع استراتژی فناوری اطلاعات داده محور بر پایههای زیر قرار میگیرد:
✅ همراستایی با استراتژی کسب و کار
✅ بهینه کاوی با صنعت، رقابت و داخل سازمان
✅ جریان کاری و زنجیره ارزش اطلاعات
✅ پوشش زنجیره ارزش سازمان
✅ بهینه سازی منابع
✅ ارزش کسب و کاری
✅ معماری سازمانی از دید سازمان، داده، کنترل، کارکرد و محصول یا خدمت
📍این پایهها بر ممیزی امنیت اطلاعات و زیرساخت، تحلیل پورتفولیوی کاربردها و استراتژی دادهای سازمانی همراستا با استراتژی کسب و کار قرار میگیرند که به نوبه خود بر منابع دادهای مختلف سازمان شامل اپلیکیشنهای سازمانی محوری قرار گرفته بر روی ابر یا مراکز داده سازمان، دادههای اینترنت اشیا، موبایل، دستگاههای متصل، دادههای عظیم، هوش مصنوعی، روباتیک، شبکههای اجتماعی، تجارت الکترونیک و ... بنا شده است.
بنابراین فصل هشتم کتاب به بررسی اجزای شکل دهنده استراتژی فناوری اطلاعات داده محور و پاسخ به سوالاتی پیرامون آنها میپردازد.
#کتاب_بخوانیم
#فصل_هشتم
#فاطمه_مظفری
#استراتژی_فناوری_اطلاعات_داده_محور
#دادههای_عظیم_برای_تصمیمات_بزرگ
www.bdbanalytics.ir
@BigData_BusinessAnalytics
تحلیلگری عظیمداده و کسبوکار
Video
"🔬 بررسی تأثیر عظیم داده در صنعت بهداشت و درمان 🔬
✅ این ویدیو به بررسی دقیق و علمی چگونگی تحول بهداشت و درمان توسط آنالیز عظیم داده میپردازد.
📘 چالشهای مرتبط با دادههای پزشکی: این ویدیو با بررسی ناهمگونی و پراکندگی دادههای بهداشتی آغاز میشود و بر ضرورت اتخاذ رویکردی سیستماتیک در جمعآوری و ذخیرهسازی دادهها تأکید دارد.
📈 اهداف آنالیز در صنعت بهداشت و درمان: این صنعت با استفاده از آنالیز به دنبال دستیابی به اهدافی از قبیل پیشبینی و پیشگیری از اپیدمیها، کمک به درمان بیماریهای دشوار، کاهش هزینههای بهداشتی و ارتقای کیفیت زندگی است.
🔍 آنالیز پیشبینیکننده: این ویدیو به پتانسیل بالای آنالیز پیشبینیکننده در حوزه بهداشت برای تشخیص بیماریها قبل از بروز نشانههای بالینی میپردازد.
🗃 مشکلات مربوط به سیلوهای داده: یکی از چالشهای اصلی، ناهماهنگی و پراکندگی دادههای بهداشتی است که مانع از استفاده مؤثر از دادهها میشود.
📋 تهیه پروفایلهای جامع بیمار: هدف اصلی این است که پروفایلهای کاملی از بیماران شامل تمامی مراقبتهای پزشکی در طول حیات فرد تهیه شود.
🚀 مزایای آنالیز در بهداشت و درمان:
- سوابق بهداشت الکترونیکی (EHRs)
- بهبود پیشبینیهای بیمار
- پشتیبانی تصمیمگیریهای بالینی
- افزایش مشارکت بیماران
- برنامهریزی استراتژیک
- تلهمدیسین
- آنالیز پیشبینیکننده
- تشخیص تقلب
- تصویربرداری پزشکی
- پیشگیری از خودآسیبرسانی
🏥 معرفی نمونههایی از شرکتهای فعال در زمینه آنالیز بهداشتی: ویدیو به معرفی شرکتهایی نظیر Tempus، Pisces Technology، Hera Health و Innoplexis میپردازد که هر کدام به نوعی در حوزه آنالیز بهداشتی فعالیت دارند.
🚧 چالشهای پیش روی این شرکتها:
- یکپارچهسازی دادهها
- پذیرش آهسته فناوریهای نوین
- تفاوت در استانداردهای داده
- رعایت مقررات مرتبط
- حفظ حریم خصوصی
- مالکیت و سودآوری دادهها
📚 برای کسب اطلاعات بیشتر، ویدیو را مشاهده کنید:
https://www.youtube.com/watch?v=-TE_CD3vG90
#معرفی_ویدئو
#عظیم_داده
#صنعت_بهداشت_و_درمان
#حمید_جمالی
www.bdbanalytics.ir
@BigData_BusinessAnalytics
✅ این ویدیو به بررسی دقیق و علمی چگونگی تحول بهداشت و درمان توسط آنالیز عظیم داده میپردازد.
📘 چالشهای مرتبط با دادههای پزشکی: این ویدیو با بررسی ناهمگونی و پراکندگی دادههای بهداشتی آغاز میشود و بر ضرورت اتخاذ رویکردی سیستماتیک در جمعآوری و ذخیرهسازی دادهها تأکید دارد.
📈 اهداف آنالیز در صنعت بهداشت و درمان: این صنعت با استفاده از آنالیز به دنبال دستیابی به اهدافی از قبیل پیشبینی و پیشگیری از اپیدمیها، کمک به درمان بیماریهای دشوار، کاهش هزینههای بهداشتی و ارتقای کیفیت زندگی است.
🔍 آنالیز پیشبینیکننده: این ویدیو به پتانسیل بالای آنالیز پیشبینیکننده در حوزه بهداشت برای تشخیص بیماریها قبل از بروز نشانههای بالینی میپردازد.
🗃 مشکلات مربوط به سیلوهای داده: یکی از چالشهای اصلی، ناهماهنگی و پراکندگی دادههای بهداشتی است که مانع از استفاده مؤثر از دادهها میشود.
📋 تهیه پروفایلهای جامع بیمار: هدف اصلی این است که پروفایلهای کاملی از بیماران شامل تمامی مراقبتهای پزشکی در طول حیات فرد تهیه شود.
🚀 مزایای آنالیز در بهداشت و درمان:
- سوابق بهداشت الکترونیکی (EHRs)
- بهبود پیشبینیهای بیمار
- پشتیبانی تصمیمگیریهای بالینی
- افزایش مشارکت بیماران
- برنامهریزی استراتژیک
- تلهمدیسین
- آنالیز پیشبینیکننده
- تشخیص تقلب
- تصویربرداری پزشکی
- پیشگیری از خودآسیبرسانی
🏥 معرفی نمونههایی از شرکتهای فعال در زمینه آنالیز بهداشتی: ویدیو به معرفی شرکتهایی نظیر Tempus، Pisces Technology، Hera Health و Innoplexis میپردازد که هر کدام به نوعی در حوزه آنالیز بهداشتی فعالیت دارند.
🚧 چالشهای پیش روی این شرکتها:
- یکپارچهسازی دادهها
- پذیرش آهسته فناوریهای نوین
- تفاوت در استانداردهای داده
- رعایت مقررات مرتبط
- حفظ حریم خصوصی
- مالکیت و سودآوری دادهها
📚 برای کسب اطلاعات بیشتر، ویدیو را مشاهده کنید:
https://www.youtube.com/watch?v=-TE_CD3vG90
#معرفی_ویدئو
#عظیم_داده
#صنعت_بهداشت_و_درمان
#حمید_جمالی
www.bdbanalytics.ir
@BigData_BusinessAnalytics
YouTube
How Big Data Helps Healthcare
There are a lot of industries where analytics is having a big impact. One of the biggest is healthcare. So what does big data in healthcare look like? How is data science being used to revolutionize how medicine is being practiced?
⏯RELATED VIDEOS⏯…
⏯RELATED VIDEOS⏯…
📖 کتاب بخوانیم؛
📌 "Big Data for Big Decisions: Building a Data-Driven Organization"
🔹فصل ۹: ساختن استراتژی داده
❗️چرایی استراتژی داده
این بخش از کتاب با مقدمهای از مسائل مرسوم سازمانها اهمیت استراتژی داده را مرکز توجه قرار میدهد؛ مسائلی همچون ذخیرهسازی جزیرهای دادهها، وجود نداشتن استانداردهایی مشخص مربوط به دادهها، اپلیکیشنهایی مختلفی که هرکدام دادههای مربوط به خود را ذخیرهسازی میکنند، کیفیت نامطلوب دادهها و حکمرانی ضعیف در این حوزه. مسئلهی دیگر، دادههای تاریخی موجود در سازمان است که ممکن است از منابع متفاوتی باقیمانده باشند و تشخیص دادههای مفید و تمیزسازی آنها برای تحلیلهای آتی دردسر بزرگی برای سازمانها خواهد بود. منابع متفاوتی از دادههایی که داخل و خارج از سازمان وجود دارند برای تحلیلهای مهم مورد نیاز هستند و دستیابی به آنها نیازمند پیشبینیهای زیرساختی و استراتژیک است.
📌 چیستی استراتژی داده
تعریف استراتژی داده با توجه به منابع متفاوت را میتوان به این صورت بیان کرد که راهنمایی مشخص برای دریافت، ذخیرهسازی، مدیریت، اشتراک و استفادهی داده است به صورتی که دادهی مناسب، در زمان مناسب، در اختیار فرد مناسب قرار گرفته و تحلیلهای مورد نیاز برای تصمیمهای مهم را ممکن میسازد.
استراتژی داده میتواند راه را برای استفادهی تجاری شرکتها از ارزش بالقوهی دادههای خود باز کند به صورتی که محصولاتی ارزانتر، سریعتر و بهتر را با شناخت مناسب از سلایق متغیر مشتریان خود تولید و با توجه به نیاز شخصی هر مشتری، ارزش خود را ارائه کند.
✅ مسئول استراتژی داده
نکتهای که کتاب بر آن تاکید دارد تفاوت استراتژی داده از استراتژی فناوری اطلاعات سازمان است که همین امر نیاز مسئولی متفاوت با سبد مهارتی متفاوتی از مدیر ارشد فناوری اطلاعات سازمان (که معمولا مسئول استراتژی فناوری اطلاعات است) را به وجود میآورد. به همین دلیل وجود مدیر ارشد داده را در سازمان پیشنهاد میدهد که همزمان با زیرساختهای فناوری و تحلیلی مورد نیاز سازمان آشنایی دارد. مهارت اصلی او آنجایی است که تشخیص دهد کدام تصمیمهای مهم در سازمان نیازمند چه تحلیلهایی و چه دادههایی هستند تا بتواند دادههای مناسب را در زمان مناسب برای استفادهکنندهی مناسب فراهم کند.
📐 چهارچوب و ویژگیهای استراتژی دادهی مناسب
چهارچوب استراتژی داده شامل بخشهای متفاوتی از جمله دیدگاههای کنترلی، لجستیک داده، رقابت، تصمیمهای بزرگ، تکنولوژی، اهداف کسبوکار، منابع و پخش و … است. نکتهی حائز اهمیت این است که استراتژی داده باید بر اساس نیازهای هر سازمان، صنعتی که سازمان در آن فعالیت دارد، سیستمهای کنترلی داخل شرکت و توانمندیهای افراد سازمان، برای آن سازمان شخصیسازی شود.
در صورتی که سازمان با حجم زیادی از دادهای که از منابع مختلف با سرعت بالا تولید میشود و از طرفی برای تحلیل انتخاب نمونه کار راحتی نبوده و یا خود نمونه حجم بالایی را به خود اختصاص میدهد در استراتژی داده باید برنامهای مشخص برای عظیمداده داشته باشد.
استراتژی دادهی مناسب برای انواع داده ساختار یافته، ساختار نیافته(همانند شبکههای اجتماعی)، عظیم داده و انواع منابع داخل و بیرون سازمان را پوشش میدهد. از طرف دیگر استراتژی دادهی مناسب باید به این نکته توجه داشته باشد که دادهی درست در زمان صحیح تولید شده و به کارکرد مناسب یا استفادهکنندهی مناسب خود میرسد. همچنان در استراتژی داده باید تمامی کاربردهای تحلیلی داده که میتواند به تصمیمسازیهای متفاوت کمک کند دیده شود.
✏️ توسعه و پیادهسازی استراتژی داده
با توجه به ویژگیهای ذکر شده، استراتژی داده را میتوان در توسعه به بخشهایی همچون زیرساخت، حکمرانی، سرویسهای اشتراکی، مراکز بهینهسازی، اتوماسیون سازی و هوش مصنوعی و در نهایت تحلیلگری تقسیم نمود که هرکدام به ترتیب پیشنیاز زیرساختی بخش بعدی به حساب میآیند.
برای توسعهی یک استراتژی دادهی مناسب میتوان مراحل زیر را برشمرد:
۱. شناخت منابع داده در سازمان و دادههایی که برای تصمیمهای بزرگ و تحلیلها مورد نیاز هستند
۲. آماده کردن لیستی از تمامی داراییهای دادهی سازمان
۳. شناخت نیازهای سازمان و شکاف موجود بین وضعیت موجود و وضعیت مطلوب
۴. بهبود و اصلاح اهداف کسبوکار با هدف یک استراتژی دادهی یکپارچه
۵. ایجاد یک ساختار کامل سازمانی داده
۶. به کارگیری و فراگیر سازی ساختارهای دادهی جدید، فرایندها، سیاستها و مدلهای حكمراني ایجاد شده
#کتاب_بخوانیم
#فصل_نهم
#احسان_نگهدار
#استراتژی_داده
#دادههای_عظیم_برای_تصمیمات_بزرگ
www.bdbanalytics.ir
@BigData_BusinessAnalytics
📌 "Big Data for Big Decisions: Building a Data-Driven Organization"
🔹فصل ۹: ساختن استراتژی داده
❗️چرایی استراتژی داده
این بخش از کتاب با مقدمهای از مسائل مرسوم سازمانها اهمیت استراتژی داده را مرکز توجه قرار میدهد؛ مسائلی همچون ذخیرهسازی جزیرهای دادهها، وجود نداشتن استانداردهایی مشخص مربوط به دادهها، اپلیکیشنهایی مختلفی که هرکدام دادههای مربوط به خود را ذخیرهسازی میکنند، کیفیت نامطلوب دادهها و حکمرانی ضعیف در این حوزه. مسئلهی دیگر، دادههای تاریخی موجود در سازمان است که ممکن است از منابع متفاوتی باقیمانده باشند و تشخیص دادههای مفید و تمیزسازی آنها برای تحلیلهای آتی دردسر بزرگی برای سازمانها خواهد بود. منابع متفاوتی از دادههایی که داخل و خارج از سازمان وجود دارند برای تحلیلهای مهم مورد نیاز هستند و دستیابی به آنها نیازمند پیشبینیهای زیرساختی و استراتژیک است.
📌 چیستی استراتژی داده
تعریف استراتژی داده با توجه به منابع متفاوت را میتوان به این صورت بیان کرد که راهنمایی مشخص برای دریافت، ذخیرهسازی، مدیریت، اشتراک و استفادهی داده است به صورتی که دادهی مناسب، در زمان مناسب، در اختیار فرد مناسب قرار گرفته و تحلیلهای مورد نیاز برای تصمیمهای مهم را ممکن میسازد.
استراتژی داده میتواند راه را برای استفادهی تجاری شرکتها از ارزش بالقوهی دادههای خود باز کند به صورتی که محصولاتی ارزانتر، سریعتر و بهتر را با شناخت مناسب از سلایق متغیر مشتریان خود تولید و با توجه به نیاز شخصی هر مشتری، ارزش خود را ارائه کند.
✅ مسئول استراتژی داده
نکتهای که کتاب بر آن تاکید دارد تفاوت استراتژی داده از استراتژی فناوری اطلاعات سازمان است که همین امر نیاز مسئولی متفاوت با سبد مهارتی متفاوتی از مدیر ارشد فناوری اطلاعات سازمان (که معمولا مسئول استراتژی فناوری اطلاعات است) را به وجود میآورد. به همین دلیل وجود مدیر ارشد داده را در سازمان پیشنهاد میدهد که همزمان با زیرساختهای فناوری و تحلیلی مورد نیاز سازمان آشنایی دارد. مهارت اصلی او آنجایی است که تشخیص دهد کدام تصمیمهای مهم در سازمان نیازمند چه تحلیلهایی و چه دادههایی هستند تا بتواند دادههای مناسب را در زمان مناسب برای استفادهکنندهی مناسب فراهم کند.
📐 چهارچوب و ویژگیهای استراتژی دادهی مناسب
چهارچوب استراتژی داده شامل بخشهای متفاوتی از جمله دیدگاههای کنترلی، لجستیک داده، رقابت، تصمیمهای بزرگ، تکنولوژی، اهداف کسبوکار، منابع و پخش و … است. نکتهی حائز اهمیت این است که استراتژی داده باید بر اساس نیازهای هر سازمان، صنعتی که سازمان در آن فعالیت دارد، سیستمهای کنترلی داخل شرکت و توانمندیهای افراد سازمان، برای آن سازمان شخصیسازی شود.
در صورتی که سازمان با حجم زیادی از دادهای که از منابع مختلف با سرعت بالا تولید میشود و از طرفی برای تحلیل انتخاب نمونه کار راحتی نبوده و یا خود نمونه حجم بالایی را به خود اختصاص میدهد در استراتژی داده باید برنامهای مشخص برای عظیمداده داشته باشد.
استراتژی دادهی مناسب برای انواع داده ساختار یافته، ساختار نیافته(همانند شبکههای اجتماعی)، عظیم داده و انواع منابع داخل و بیرون سازمان را پوشش میدهد. از طرف دیگر استراتژی دادهی مناسب باید به این نکته توجه داشته باشد که دادهی درست در زمان صحیح تولید شده و به کارکرد مناسب یا استفادهکنندهی مناسب خود میرسد. همچنان در استراتژی داده باید تمامی کاربردهای تحلیلی داده که میتواند به تصمیمسازیهای متفاوت کمک کند دیده شود.
✏️ توسعه و پیادهسازی استراتژی داده
با توجه به ویژگیهای ذکر شده، استراتژی داده را میتوان در توسعه به بخشهایی همچون زیرساخت، حکمرانی، سرویسهای اشتراکی، مراکز بهینهسازی، اتوماسیون سازی و هوش مصنوعی و در نهایت تحلیلگری تقسیم نمود که هرکدام به ترتیب پیشنیاز زیرساختی بخش بعدی به حساب میآیند.
برای توسعهی یک استراتژی دادهی مناسب میتوان مراحل زیر را برشمرد:
۱. شناخت منابع داده در سازمان و دادههایی که برای تصمیمهای بزرگ و تحلیلها مورد نیاز هستند
۲. آماده کردن لیستی از تمامی داراییهای دادهی سازمان
۳. شناخت نیازهای سازمان و شکاف موجود بین وضعیت موجود و وضعیت مطلوب
۴. بهبود و اصلاح اهداف کسبوکار با هدف یک استراتژی دادهی یکپارچه
۵. ایجاد یک ساختار کامل سازمانی داده
۶. به کارگیری و فراگیر سازی ساختارهای دادهی جدید، فرایندها، سیاستها و مدلهای حكمراني ایجاد شده
#کتاب_بخوانیم
#فصل_نهم
#احسان_نگهدار
#استراتژی_داده
#دادههای_عظیم_برای_تصمیمات_بزرگ
www.bdbanalytics.ir
@BigData_BusinessAnalytics
📌معرفی مقالات حوزه عظیم دادهها
❇️نام مقاله:
Big data analytics capabilities: Patchwork or progress? A systematic review of the status quo and implications for future research
🖋نویسندگان:
Minh-Tay Huynh, Michael Nippa, Thomas Aichner
🗓سال انتشار : 2023
📔ژورنال:
Technological Forecasting & Social Change
🔸این مقاله یک مرور سیستماتیک ادبیات از زمینه تحقیقات در مورد قابلیت های تجزیه و تحلیل داده های عظیم (BDAC) ارائه می دهد.
🔸با ظهور داده های عظیم و تحول دیجیتال، تعداد زیادی از محققین به نیاز سازمان ها به توسعه BDAC اشاره کرده اند. با این حال علیرغم تلاشهای ارزشمند برای بررسی عوامل تعیینکننده و کمک به معیارهای عملکرد، زمینه تحقیقاتی در مورد BDACها نسبتا ناشناخته باقی مانده است.
🔸 در حالی که تحلیل داده های عظیم (BDA) برای تبدیل آنها به اطلاعات ضروری است، با این حال برای تولید دانش ارزشمند، راهنمایی و بهبود تصمیم گیری استراتژیک کافی نیست. محققان تاکید کردهاند که علاوه بر تخصص فنی و تحلیلی مورد نیاز برای BDA، شرکتها باید مهارتهای مدیریتی را پرورش داده ، رویکرد کسبوکار و فرهنگ سازمانی بیشتر دادهمحور را اتخاذ کرده، یادگیری سازمانی را ارتقا داده و قابلیتهای سازمانی را تقویت کنند تا بینشهای ارزشمندی را از تحلیل داده های عظیم به دست آورند.
🔸در همین راستا تعداد مطالعات بر روی قابلیت های تجزیه و تحلیل داده های عظیم (BDAC) در حوزه های مختلف، به ویژه مدیریت عمومی، مدیریت زنجیره تامین و مراقبت های بهداشتی، به طور قابل توجهی افزایش یافته است. در نتیجه، محققان ممکن است به طور مستقل تحقیقات قبلی را برای مطالعه BDAC به کار برده باشند که منجر به تناقضات آشکار در مفهومسازی، ابعاد، نظریهها و روشهای اعمال شده آن میشود. لذا مشارکتهای نظری و پیامدهای عملی جزئی بوده ، درک پیشرفت در این زمینه را دشوار کرده و فقدان راهنمایی برای تحقیقات بعدی فراهم میکند.
🔸 علیرغم وجود مقالات بررسی ادبیات اولیه در مورد BDAC، یک چارچوب جامع برای سازماندهی اجزای کلیدی BDAC هنوز وجود ندارد. بنابراین، برای برجسته کردن وضعیت موجود و ادغام تحقیقات موجود، یک مرور سیستماتیک ادبیات شامل چارچوب سازماندهی جامع برای هدایت تحقیقات آینده انجام میشود. بر این اساس، در این مقاله یک مرور ادبیات تفسیری BDAC با سه هدف اصلی انجام می گردد. در مرحله اول، هدف کاوش ادبیات موجود در مورد بلوک های ساختمانی اساسی BDAC، مانند پیشنیازها، ابعاد، و نتایج است. در مرحله دوم، بحث خواهد شد که تا چه اندازه تحقیقات در این حوزه با توجه به تکامل تعاریف، مفروضات نظری، زمینهها و صنایع تحقیقاتی، سطوح تحلیل و لنزهای نظری اتخاذ شده پیشرفت کرده است. برای ادامه این امر، در گام سوم بر نیاز به مقایسه BDAC با قابلیتهای سازمانی قبلی، مانند فناوری اطلاعات، دیجیتالیسازی و قابلیتهای پویا، به منظور شناسایی شکافهای مهم، مسائل رسیدگینشده، و جهتدهیهای تحقیقاتی امیدوارکننده تاکید میگردد.
🔸برای این منظور یک بررسی ادبیات از مقالات علمی منتشر شده در 25 سال گذشته در پایگاه مقالات Scopus و Web of Science انجام گرفته است. در ابتدا 218 مقاله بازیابی شده و پس از اعمال معیارهای مرتبط، 103 مقاله به طور کامل مورد تجزیه و تحلیل قرار گرفته است. یافتهها نشان میدهد که علیرغم افزایش تحقیقات BDAC، موضوعات مختلف مربوط به مبانی مفهومی و نظری و همچنین قابلیت اطمینان و اعتبار سنجی نتایج تجربی بر ارزش کلی نتایج تأثیر میگذارد.
🔸این پژوهش از طریق ارائه بینشی در مورد ادبیات موجود BDACها، بررسی طیف وسیعی از جنبههای شامل این مفهوم و اجزای اصلی آن، به توسعه بیشتر این زمینه تحقیقاتی کمک میکند. علاوه بر این، به ادبیات عمومی مدیریت سازمانی کمک کرده و شباهتها و تفاوتهای رویکرد BDAC را با مفاهیم رایجتر قابلیتهای سازمانی برجسته میسازد. همچنین این مطالعه به ادبیات رو به رشد در مورد دیجیتالی شدن و تحول دیجیتال افزوده و در نهایت، به شکلگیری یک دستور کار تحقیقاتی آیندهنگر کمک کرده که محققان میتوانند بر اساس آن رویکردهای نظری و روششناختی را برای رسیدگی به شکافها و کاستیهای پژوهشی به شیوهای انباشته به دست آورند و در عین حال دانش بیشتری را به مجموعه ادبیات موجود برای پیشرفت این رشته اضافه کنند.
👈درصورت تمایل، میتوانید فایل مقاله را در ادامه دانلود نمایید
#معرفی_مقاله
#تحلیل_عظیم_داده
#صبا_بزرگی
www.bdbanalytics.ir
@BigData_BusinessAnalytics
❇️نام مقاله:
Big data analytics capabilities: Patchwork or progress? A systematic review of the status quo and implications for future research
🖋نویسندگان:
Minh-Tay Huynh, Michael Nippa, Thomas Aichner
🗓سال انتشار : 2023
📔ژورنال:
Technological Forecasting & Social Change
🔸این مقاله یک مرور سیستماتیک ادبیات از زمینه تحقیقات در مورد قابلیت های تجزیه و تحلیل داده های عظیم (BDAC) ارائه می دهد.
🔸با ظهور داده های عظیم و تحول دیجیتال، تعداد زیادی از محققین به نیاز سازمان ها به توسعه BDAC اشاره کرده اند. با این حال علیرغم تلاشهای ارزشمند برای بررسی عوامل تعیینکننده و کمک به معیارهای عملکرد، زمینه تحقیقاتی در مورد BDACها نسبتا ناشناخته باقی مانده است.
🔸 در حالی که تحلیل داده های عظیم (BDA) برای تبدیل آنها به اطلاعات ضروری است، با این حال برای تولید دانش ارزشمند، راهنمایی و بهبود تصمیم گیری استراتژیک کافی نیست. محققان تاکید کردهاند که علاوه بر تخصص فنی و تحلیلی مورد نیاز برای BDA، شرکتها باید مهارتهای مدیریتی را پرورش داده ، رویکرد کسبوکار و فرهنگ سازمانی بیشتر دادهمحور را اتخاذ کرده، یادگیری سازمانی را ارتقا داده و قابلیتهای سازمانی را تقویت کنند تا بینشهای ارزشمندی را از تحلیل داده های عظیم به دست آورند.
🔸در همین راستا تعداد مطالعات بر روی قابلیت های تجزیه و تحلیل داده های عظیم (BDAC) در حوزه های مختلف، به ویژه مدیریت عمومی، مدیریت زنجیره تامین و مراقبت های بهداشتی، به طور قابل توجهی افزایش یافته است. در نتیجه، محققان ممکن است به طور مستقل تحقیقات قبلی را برای مطالعه BDAC به کار برده باشند که منجر به تناقضات آشکار در مفهومسازی، ابعاد، نظریهها و روشهای اعمال شده آن میشود. لذا مشارکتهای نظری و پیامدهای عملی جزئی بوده ، درک پیشرفت در این زمینه را دشوار کرده و فقدان راهنمایی برای تحقیقات بعدی فراهم میکند.
🔸 علیرغم وجود مقالات بررسی ادبیات اولیه در مورد BDAC، یک چارچوب جامع برای سازماندهی اجزای کلیدی BDAC هنوز وجود ندارد. بنابراین، برای برجسته کردن وضعیت موجود و ادغام تحقیقات موجود، یک مرور سیستماتیک ادبیات شامل چارچوب سازماندهی جامع برای هدایت تحقیقات آینده انجام میشود. بر این اساس، در این مقاله یک مرور ادبیات تفسیری BDAC با سه هدف اصلی انجام می گردد. در مرحله اول، هدف کاوش ادبیات موجود در مورد بلوک های ساختمانی اساسی BDAC، مانند پیشنیازها، ابعاد، و نتایج است. در مرحله دوم، بحث خواهد شد که تا چه اندازه تحقیقات در این حوزه با توجه به تکامل تعاریف، مفروضات نظری، زمینهها و صنایع تحقیقاتی، سطوح تحلیل و لنزهای نظری اتخاذ شده پیشرفت کرده است. برای ادامه این امر، در گام سوم بر نیاز به مقایسه BDAC با قابلیتهای سازمانی قبلی، مانند فناوری اطلاعات، دیجیتالیسازی و قابلیتهای پویا، به منظور شناسایی شکافهای مهم، مسائل رسیدگینشده، و جهتدهیهای تحقیقاتی امیدوارکننده تاکید میگردد.
🔸برای این منظور یک بررسی ادبیات از مقالات علمی منتشر شده در 25 سال گذشته در پایگاه مقالات Scopus و Web of Science انجام گرفته است. در ابتدا 218 مقاله بازیابی شده و پس از اعمال معیارهای مرتبط، 103 مقاله به طور کامل مورد تجزیه و تحلیل قرار گرفته است. یافتهها نشان میدهد که علیرغم افزایش تحقیقات BDAC، موضوعات مختلف مربوط به مبانی مفهومی و نظری و همچنین قابلیت اطمینان و اعتبار سنجی نتایج تجربی بر ارزش کلی نتایج تأثیر میگذارد.
🔸این پژوهش از طریق ارائه بینشی در مورد ادبیات موجود BDACها، بررسی طیف وسیعی از جنبههای شامل این مفهوم و اجزای اصلی آن، به توسعه بیشتر این زمینه تحقیقاتی کمک میکند. علاوه بر این، به ادبیات عمومی مدیریت سازمانی کمک کرده و شباهتها و تفاوتهای رویکرد BDAC را با مفاهیم رایجتر قابلیتهای سازمانی برجسته میسازد. همچنین این مطالعه به ادبیات رو به رشد در مورد دیجیتالی شدن و تحول دیجیتال افزوده و در نهایت، به شکلگیری یک دستور کار تحقیقاتی آیندهنگر کمک کرده که محققان میتوانند بر اساس آن رویکردهای نظری و روششناختی را برای رسیدگی به شکافها و کاستیهای پژوهشی به شیوهای انباشته به دست آورند و در عین حال دانش بیشتری را به مجموعه ادبیات موجود برای پیشرفت این رشته اضافه کنند.
👈درصورت تمایل، میتوانید فایل مقاله را در ادامه دانلود نمایید
#معرفی_مقاله
#تحلیل_عظیم_داده
#صبا_بزرگی
www.bdbanalytics.ir
@BigData_BusinessAnalytics
📖 کتاب بخوانیم؛
📌 "Big Data for Big Decisions: Building a Data-Driven Organization"
📍بخش دهم: استراتژی بازاریابی داده محور
در فصل دهم کتاب "دادههای عظیم برای تصمیمات بزرگ: ایجاد یک سازمان داده محور" به ضرورت تحلیل عظیمداده در بخش بازاریابی در یک سازمان پرداخته میشود.
بسیاری از شرکتها در پیاده سازی بازاریابی داده محور با مشکلات زیادی مواجه میشوند که میتوان در چهار طبقه دسته بندی کرد:
1️⃣ عدم آگاهی به چگونگی پیاده سازی
2️⃣ وجود دادههای فراوان
3️⃣ زمان و منابع محدود
4️⃣ عدم وجود زیرساخت تحلیلی
یکی از پیش نیازهای اصلی در پیاده سازی درست استراتژیهای بازاریابی داده محور، تشخیص و شناسایی تفاوت بین دادههای در دسترس و دادههای مورد نیاز میباشد. درک درست این دو مفهوم یک ضرورت میباشد چرا که لزوما تمام دادههایی که برای بازاریابی داده محور مورد نیاز است برابر با دادههایی که در حال حاضر در دسترس میباشد، نیست. در بیشتر مواقع دادههایی که در یک سازمان در حال حاضر وجود دارد زیر مجموعه ای از دادههای مورد نیاز برای پیاده سازی بازاریابی داده محور میباشد، به این معنا که این دادهها کافی نیستند و طی مراحلی نیاز است تا جمع آوری شوند.
📍منابع داده مورنیاز برای بازاریابی داده محور
یکی از بخشهای اصلی بازاریابی داده محور فروش داده محور میباشد به این معنا که نمیتوان ادعای بازاریابی داده محور داشت، اما در فروش محصولات و خدمات مجموعه دادهها تحلیل نشوند. دادههای مربوط به فروش از کانالهای مختلفی میتوانند جمعآوری شوند که تحلیل توامان آنها میتواند بینشهای ارزشمندی در اختیار سازمان قرار دهد.
🔹 یکی از منابع دادهای ارزشمند، مجموعه تعاملات واحد فروش با مشتریان میباشد که تحلیل آنها به ارائه هدفمند محصولات و خدمات کمک شایانی خواهد کرد.
🔸پروفایل مشتریان که شامل اطلاعات جمعیت شناختی، علایق و ترجیحات میباشد و به مرور زمان اطلاعات رفتاری شامل نوع خرید و میزان خرید ثبت میشود به عنوان یکی دیگر از منابع دادهای غنی جهت پیاده سازی بازاریابی داده محور میباشد.
🔹 یکی دیگر از منابع داده که باید در کنار سایر دادههای کمی قرار بگیرد، استراتژیهای بازاریابی کلان یک سازمان میباشد از این جهت که بتوانند در کنار منابع دادهای بازاریابی قرار گیرند تا همراستا شوند.
📍اجرا و مدیریت کورکورانه بازاریابی:
اگر بحث داده از بازاریابی حذف شود و یا از منظر زمانی تاخیرهای معناداری بین دادههای تولید شده و تحلیل آن وجود داشته باشد، عملا مدیر بازاریابی نمیتواند بر مبنای داده عمل کند و تصمیمات کاملا شهودی خواهد شد. این دادهها تنها مربوط به مشتریان نمیباشد، بلکه تحلیل دادهها در سطح محصولات هم به عنوان یک پیشنیاز اصلی جهت دور شدن از تصمیمات کورکورانه در زمینه بازاریابی میباشد. از آنجاییکه ارتباط بین مدیر عامل و مدیر بازاریابی بسیار نزدیک و حیاتی میباشد، اگر مدیر بازاریابی بر مبنای داده فکر و تصمیمگیری نکند، این تصمیم گیری کورکورانه به سطح عالی مدیریت انتقال مییابد. بر همین مبنا است که طراحی استراتژی در بازاریابی داده محور نقش اساسی در کل سازمان را دارد که مبنای آن همان جمع آوری و تحلیل داده های مورد نیاز میباشد و کلید حل این تصمیم کورکورانه داده میباشد.
📍سازماندهی تیم بازاریابی داده محور
از آنجاییکه پیاده سازی موفق استراتژی نیازمند یک تیم سازمان یافته میباشد، طبیعتا جهت اجرا و پیاده سازی استراتژیهایی بازارایابی که در سطح کلان سازمان طراحی شدند، نیازمند جذب و به کارگیری افرادی است که تخصصهای لازم در زمینه داده و تحلیل آن در حوزه بازاریابی را دارند. چگونگی سازماندهی این تیم از کسب و کار به کسب و کار متفاوت میباشد که نیازمند همراستا شدن با سایر بخش ها میباشد تا حداکثر راندمان را داشته باشد. به طور کلی چهار قدم ذیل در طراحی موفق این تیم باید مدنظر باشد:
1️⃣ نیازسنجی و جمع آوری تمام دادههای مورد نیاز بازاریابی
2️⃣ در نظر گرفتن تمامی دادههای تولید شده در داخل سازمان
3️⃣ تحلیل و پیاده سازی الگوریتمهای شخصی سازی شده متناسب با سازمان
4️⃣ استفاده از بینش کسب شده جهت تصمیمات بازاریابی داده محور
#کتاب_بخوانیم
#دادههای_عظیم_برای_تصمیمات_بزرگ
#فصل_دهم
#استراتژی_بازاریابی_داده_محور
#علی_محمدی
www.bdbanalytics.ir
@BigData_BusinessAnalytics
📌 "Big Data for Big Decisions: Building a Data-Driven Organization"
📍بخش دهم: استراتژی بازاریابی داده محور
در فصل دهم کتاب "دادههای عظیم برای تصمیمات بزرگ: ایجاد یک سازمان داده محور" به ضرورت تحلیل عظیمداده در بخش بازاریابی در یک سازمان پرداخته میشود.
بسیاری از شرکتها در پیاده سازی بازاریابی داده محور با مشکلات زیادی مواجه میشوند که میتوان در چهار طبقه دسته بندی کرد:
1️⃣ عدم آگاهی به چگونگی پیاده سازی
2️⃣ وجود دادههای فراوان
3️⃣ زمان و منابع محدود
4️⃣ عدم وجود زیرساخت تحلیلی
یکی از پیش نیازهای اصلی در پیاده سازی درست استراتژیهای بازاریابی داده محور، تشخیص و شناسایی تفاوت بین دادههای در دسترس و دادههای مورد نیاز میباشد. درک درست این دو مفهوم یک ضرورت میباشد چرا که لزوما تمام دادههایی که برای بازاریابی داده محور مورد نیاز است برابر با دادههایی که در حال حاضر در دسترس میباشد، نیست. در بیشتر مواقع دادههایی که در یک سازمان در حال حاضر وجود دارد زیر مجموعه ای از دادههای مورد نیاز برای پیاده سازی بازاریابی داده محور میباشد، به این معنا که این دادهها کافی نیستند و طی مراحلی نیاز است تا جمع آوری شوند.
📍منابع داده مورنیاز برای بازاریابی داده محور
یکی از بخشهای اصلی بازاریابی داده محور فروش داده محور میباشد به این معنا که نمیتوان ادعای بازاریابی داده محور داشت، اما در فروش محصولات و خدمات مجموعه دادهها تحلیل نشوند. دادههای مربوط به فروش از کانالهای مختلفی میتوانند جمعآوری شوند که تحلیل توامان آنها میتواند بینشهای ارزشمندی در اختیار سازمان قرار دهد.
🔹 یکی از منابع دادهای ارزشمند، مجموعه تعاملات واحد فروش با مشتریان میباشد که تحلیل آنها به ارائه هدفمند محصولات و خدمات کمک شایانی خواهد کرد.
🔸پروفایل مشتریان که شامل اطلاعات جمعیت شناختی، علایق و ترجیحات میباشد و به مرور زمان اطلاعات رفتاری شامل نوع خرید و میزان خرید ثبت میشود به عنوان یکی دیگر از منابع دادهای غنی جهت پیاده سازی بازاریابی داده محور میباشد.
🔹 یکی دیگر از منابع داده که باید در کنار سایر دادههای کمی قرار بگیرد، استراتژیهای بازاریابی کلان یک سازمان میباشد از این جهت که بتوانند در کنار منابع دادهای بازاریابی قرار گیرند تا همراستا شوند.
📍اجرا و مدیریت کورکورانه بازاریابی:
اگر بحث داده از بازاریابی حذف شود و یا از منظر زمانی تاخیرهای معناداری بین دادههای تولید شده و تحلیل آن وجود داشته باشد، عملا مدیر بازاریابی نمیتواند بر مبنای داده عمل کند و تصمیمات کاملا شهودی خواهد شد. این دادهها تنها مربوط به مشتریان نمیباشد، بلکه تحلیل دادهها در سطح محصولات هم به عنوان یک پیشنیاز اصلی جهت دور شدن از تصمیمات کورکورانه در زمینه بازاریابی میباشد. از آنجاییکه ارتباط بین مدیر عامل و مدیر بازاریابی بسیار نزدیک و حیاتی میباشد، اگر مدیر بازاریابی بر مبنای داده فکر و تصمیمگیری نکند، این تصمیم گیری کورکورانه به سطح عالی مدیریت انتقال مییابد. بر همین مبنا است که طراحی استراتژی در بازاریابی داده محور نقش اساسی در کل سازمان را دارد که مبنای آن همان جمع آوری و تحلیل داده های مورد نیاز میباشد و کلید حل این تصمیم کورکورانه داده میباشد.
📍سازماندهی تیم بازاریابی داده محور
از آنجاییکه پیاده سازی موفق استراتژی نیازمند یک تیم سازمان یافته میباشد، طبیعتا جهت اجرا و پیاده سازی استراتژیهایی بازارایابی که در سطح کلان سازمان طراحی شدند، نیازمند جذب و به کارگیری افرادی است که تخصصهای لازم در زمینه داده و تحلیل آن در حوزه بازاریابی را دارند. چگونگی سازماندهی این تیم از کسب و کار به کسب و کار متفاوت میباشد که نیازمند همراستا شدن با سایر بخش ها میباشد تا حداکثر راندمان را داشته باشد. به طور کلی چهار قدم ذیل در طراحی موفق این تیم باید مدنظر باشد:
1️⃣ نیازسنجی و جمع آوری تمام دادههای مورد نیاز بازاریابی
2️⃣ در نظر گرفتن تمامی دادههای تولید شده در داخل سازمان
3️⃣ تحلیل و پیاده سازی الگوریتمهای شخصی سازی شده متناسب با سازمان
4️⃣ استفاده از بینش کسب شده جهت تصمیمات بازاریابی داده محور
#کتاب_بخوانیم
#دادههای_عظیم_برای_تصمیمات_بزرگ
#فصل_دهم
#استراتژی_بازاریابی_داده_محور
#علی_محمدی
www.bdbanalytics.ir
@BigData_BusinessAnalytics
📌📌معرفی ابزار: Databricks Lakehouse Platform
🖌نوع جدیدی از معماری داده تحت عنوان "data lakehouse" دریاچه داده و انبارداده را ترکیب مینماید تا نقاط ضعفی را که هر یک از آنها به طور مستقل میتوانند داشته باشند، برطرف نماید. پلتفرم lakehouse، مانند دریاچههای داده از ذخیرهسازی کم هزینه برای نگهداری حجم عظیمی از دادهها در فرمت اصلی خود بهره میبرد و افزودن یک لایه متادیتا بر روی محل ذخیرهسازی نیز ساختار داده را فراهم نموده و ابزارهای مدیریت داده را مشابه آنچه در انبارداده وجود دارد امکان پذیر میسازد.
🔹این معماری شامل حجم از عظیمی از دادههای ساختیافته، نیمه ساختیافته و بدون ساختار است که از اپلیکیشنها، سیستمها و دستگاههای مختلفی که در سراسر سازمان مورد استفاده قرار میگیرند، به دست میآیند.
بر خلاف دریاچه داده، پلتفرمهای lakehouse میتوانند دادهها را برای عملکرد SQL مدیریت و بهینهسازی نمایند. همچنین این قابلیت را دارند تا حجم بزرگی از دادههای متنوع را با هزینهای پایینتر از انبارهای داده ذخیرهسازی و پردازش نمایند. این پلتفرمها هنگامی که نیاز به اجرای هر گونه دسترسی به دادهها یا تحلیلگری داریم اما در خصوص دادهها یا تحلیل مورد نظر اطمینان نداریم میتوانند بسیار مفید باشند.
❇️ ویژگیهای data lakehouse عبارتند از:
✅ خواندن و نوشتن همزمان دادهها
✅ سازگاری و مقیاس پذیری
✅ اسکیماهای مورد نیاز توسط ابزارهای حکمرانی داده
✅ ذخیره سازی مقرون به صرفه
✅ پشتیبانی از همه انواع دادهها و فرمتهای فایل
✅ امکان دسترسی ابزارهای علم داده و یادگیری ماشین
✅ دسترسی سریعتر و دقیقتر تیمهای داده به تنها یک سیستم برای انتقال بارهای کاری
✅ قابلیتهای بلادرنگ برای ابتکارات در علم داده، یادگیری ماشین و تحلیلگری
🔹دیتابریکس (Databricks) یک سرویس آپاچی اسپارک مدیریت شده را ارائه میدهد که به عنوان پلتفرمی برای دریاچههای داده قرار داده میشود. دریاچه داده، delta lake و موتور delta، اجزای معماری databricks lakehouse هستند که کاربردهای هوش کسب و کار، علم داده و یادگیری ماشین و از جمله تکنیکهای هوش مصنوعی مولد مانند LLM را توانمند میسازند.
🔸دریاچه داده یک مخزن ذخیرهسازی ابری عمومی است که از پشتیبانی از مدیریت متادیتا، پردازش داده دستهای و جریانی برای مجموعه دادههای چندساختاری، اکتشاف داده، کنترل دسترسی ایمن و تجزیه و تحلیل SQL بهرهمند میباشد.
🔹دیتابریکس بیشتر کارکردهای انبارداده که از یک پلتفرم lakehouse انتظار میرود را ارائه میدهد. همچنین اخیراً از یک بارگذاری خودکار (auto loader) رونمایی کرده است که ETL و ورود داده را خودکار نموده است و از نمونهگیری از دادهها برای استنتاج اسکیمای انواع مختلف دادهها جهت ارائه اجزای اساسی استراتژی ذخیرهسازی دریاچه داده استفاده مینماید. همچنین کاربران میتوانند پایپلاینهای ETL را میان ساختار ابری دریاچه داده و Delta lake با استفاده از جداول لایو دلتا ایجاد کنند.
❗️هر چند به نظر میرسد این ابزار تمام مزیتهای انبارداده و دریاچه داده را دارد، اما پیادهسازی این راهکار و ایجاد پایپلاینها، نیازمند نیروی انسانی و توسعه دهندگان ماهر است که به ویژه در مقیاس بالاتر پیچیدگیهای بیشتری پیدا مینماید.
#معرفی_ابزار
#دادههای_عظیم
#فاطمه_مظفری
#Data_Lakehouse
#Databricks_Lakehouse_platform
@BigData_BusinessAnalytics
www.bdbanalytics.ir
🖌نوع جدیدی از معماری داده تحت عنوان "data lakehouse" دریاچه داده و انبارداده را ترکیب مینماید تا نقاط ضعفی را که هر یک از آنها به طور مستقل میتوانند داشته باشند، برطرف نماید. پلتفرم lakehouse، مانند دریاچههای داده از ذخیرهسازی کم هزینه برای نگهداری حجم عظیمی از دادهها در فرمت اصلی خود بهره میبرد و افزودن یک لایه متادیتا بر روی محل ذخیرهسازی نیز ساختار داده را فراهم نموده و ابزارهای مدیریت داده را مشابه آنچه در انبارداده وجود دارد امکان پذیر میسازد.
🔹این معماری شامل حجم از عظیمی از دادههای ساختیافته، نیمه ساختیافته و بدون ساختار است که از اپلیکیشنها، سیستمها و دستگاههای مختلفی که در سراسر سازمان مورد استفاده قرار میگیرند، به دست میآیند.
بر خلاف دریاچه داده، پلتفرمهای lakehouse میتوانند دادهها را برای عملکرد SQL مدیریت و بهینهسازی نمایند. همچنین این قابلیت را دارند تا حجم بزرگی از دادههای متنوع را با هزینهای پایینتر از انبارهای داده ذخیرهسازی و پردازش نمایند. این پلتفرمها هنگامی که نیاز به اجرای هر گونه دسترسی به دادهها یا تحلیلگری داریم اما در خصوص دادهها یا تحلیل مورد نظر اطمینان نداریم میتوانند بسیار مفید باشند.
❇️ ویژگیهای data lakehouse عبارتند از:
✅ خواندن و نوشتن همزمان دادهها
✅ سازگاری و مقیاس پذیری
✅ اسکیماهای مورد نیاز توسط ابزارهای حکمرانی داده
✅ ذخیره سازی مقرون به صرفه
✅ پشتیبانی از همه انواع دادهها و فرمتهای فایل
✅ امکان دسترسی ابزارهای علم داده و یادگیری ماشین
✅ دسترسی سریعتر و دقیقتر تیمهای داده به تنها یک سیستم برای انتقال بارهای کاری
✅ قابلیتهای بلادرنگ برای ابتکارات در علم داده، یادگیری ماشین و تحلیلگری
🔹دیتابریکس (Databricks) یک سرویس آپاچی اسپارک مدیریت شده را ارائه میدهد که به عنوان پلتفرمی برای دریاچههای داده قرار داده میشود. دریاچه داده، delta lake و موتور delta، اجزای معماری databricks lakehouse هستند که کاربردهای هوش کسب و کار، علم داده و یادگیری ماشین و از جمله تکنیکهای هوش مصنوعی مولد مانند LLM را توانمند میسازند.
🔸دریاچه داده یک مخزن ذخیرهسازی ابری عمومی است که از پشتیبانی از مدیریت متادیتا، پردازش داده دستهای و جریانی برای مجموعه دادههای چندساختاری، اکتشاف داده، کنترل دسترسی ایمن و تجزیه و تحلیل SQL بهرهمند میباشد.
🔹دیتابریکس بیشتر کارکردهای انبارداده که از یک پلتفرم lakehouse انتظار میرود را ارائه میدهد. همچنین اخیراً از یک بارگذاری خودکار (auto loader) رونمایی کرده است که ETL و ورود داده را خودکار نموده است و از نمونهگیری از دادهها برای استنتاج اسکیمای انواع مختلف دادهها جهت ارائه اجزای اساسی استراتژی ذخیرهسازی دریاچه داده استفاده مینماید. همچنین کاربران میتوانند پایپلاینهای ETL را میان ساختار ابری دریاچه داده و Delta lake با استفاده از جداول لایو دلتا ایجاد کنند.
❗️هر چند به نظر میرسد این ابزار تمام مزیتهای انبارداده و دریاچه داده را دارد، اما پیادهسازی این راهکار و ایجاد پایپلاینها، نیازمند نیروی انسانی و توسعه دهندگان ماهر است که به ویژه در مقیاس بالاتر پیچیدگیهای بیشتری پیدا مینماید.
#معرفی_ابزار
#دادههای_عظیم
#فاطمه_مظفری
#Data_Lakehouse
#Databricks_Lakehouse_platform
@BigData_BusinessAnalytics
www.bdbanalytics.ir
🔎 معرفی محصولات داده محور
🔹 دادهها به عنوان یکی از داراییهای حیاتی شرکتهای فناوری اطلاعات، نقش مهمی در تصمیمگیریها و بهبود سرویسها دارند. گوگل، به عنوان یکی از بزرگترین شرکتهای دنیا، در محصولات و خدمات مختلف خود از دادهها بهره میبرد. یکی از محصولات مهم این شرکت، گوگل ادز است. در این مقاله، به بررسی کاربردهای گوناگون دادهها در گوگل ادز میپردازیم.
📍گوگل ادز: یک نگاه کلی
گوگل ادز یکی از بزرگترین پلتفرمهای تبلیغاتی در جهان است. این پلتفرم به تبلیغدهندگان اجازه میدهد تا با استفاده از مجموعهای از ابزارها و تکنیکها، تبلیغات خود را به گونهای طراحی و اجرا کنند که بهترین بازده را داشته باشد.
❇️ جمعآوری دادهها
اولین قدم برای استفاده از دادهها در گوگل ادز، جمعآوری دادهها است. گوگل ادز دادههای مختلفی را در اختیار کسبوکارها قرار میدهد که میتوانند برای بهبود کمپینهای تبلیغاتی استفاده شوند. این دادهها عبارتند از:
🔹دادههای کمپین: این دادهها شامل اطلاعات مربوط به عملکرد کمپینهای تبلیغاتی، مانند تعداد نمایشها، کلیکها، تبدیلات و هزینهها هستند.
🔹دادههای مخاطبان: این دادهها شامل اطلاعات مربوط به مخاطبان هدف کمپینهای تبلیغاتی، مانند سن، جنسیت، مکان و علایق هستند.
🔹دادههای وبسایت: این دادهها شامل اطلاعات مربوط به وبسایت کسبوکار، مانند ترافیک، نرخ تبدیل و محتوای بازدید شده هستند.
کسبوکارها میتوانند از ابزارهای مختلف گوگل ادز و سایر ابزارهای تحلیل داده برای جمعآوری این دادهها استفاده کنند.
❇️ کاربرد دادهها در گوگل ادز
1️⃣ هدفگذاری مخاطبان
🔹 سن، جنسیت، و مکان جغرافیایی: تبلیغدهندگان میتوانند تبلیغات خود را بر اساس اطلاعات جمعآوری شده در مورد سن، جنسیت، و مکان جغرافیایی کاربران، بهینهسازی کنند.
🔹 علایق و نیازهای کاربران: با توجه به دادههای جستجویی و فعالیتهای کاربران، تبلیغدهندگان میتوانند تبلیغات خود را به نیازها و علایق ویژه کاربران متمرکز کنند.
2️⃣ تحلیل عملکرد تبلیغات
🔹 میزان کلیک و نمایش: با استفاده از دادههای تجزیه و تحلیل، تبلیغدهندگان میتوانند میزان کلیک و نمایش تبلیغات خود را ارزیابی و بهبود بخشید.
🔹 تبدیلشدگی: اطلاعات جمعآوری شده در مورد تبدیلشدگی تبلیغات، به تبلیغدهندگان کمک میکند تا فرآیندهای تبلیغاتی را بهینهسازی کنند.
3️⃣ پیشبینی رفتار کاربران
پیشبینی نیازهای آتی کاربران: با استفاده از یادگیری ماشینی، گوگل ادز میتواند رفتارهای آتی کاربران را پیشبینی کند و به تبلیغدهندگان اجازه دهد تا استراتژیهای تبلیغاتی خود را به نحوی تنظیم کنند که با نیازهای آتی کاربران هماهنگ باشد.
4️⃣ تبلیغات محتوایی
سفارشیسازی محتوا: بر اساس دادههای جمعآوری شده، تبلیغدهندگان میتوانند محتوای تبلیغاتی خود را به گونهای طراحی کنند که به بهترین شکل با نیازها و علایق کاربران همخوانی داشته باشد.
5️⃣ بهینهسازی بودجه تبلیغات
تخصیص بودجه بر اساس عملکرد: با توجه به دادههای تجزیه و تحلیل، تبلیغدهندگان میتوانند بودجه تبلیغات خود را در ناحیههایی تخصیص دهند که بهترین بازدهی را دارند.
6️⃣ بهبود ROI تبلیغات
یکی از مهمترین اهداف استفاده از دادهها در گوگل ادز، بهبود ROI تبلیغات است. با استفاده از دادهها میتوانید هزینههای تبلیغات خود را کاهش دهید و درآمد خود را افزایش دهید.
به عنوان مثال، با استفاده از دادهها میتوانید کمپینهایی را که ROI آنها پایین است، شناسایی کنید و اقدامات لازم برای بهبود آنها را انجام دهید. همچنین، میتوانید با استفاده از دادهها، کمپینهایی را ایجاد کنید که برای مخاطبان هدف شما جذابتر هستند و احتمال تبدیل آنها را افزایش میدهند.
📍نتیجهگیری
دادهها، ابزاری قدرتمند برای تبلیغدهندگان در گوگل ادز هستند. با استفاده از دادههای جمعآوری شده، تبلیغدهندگان میتوانند استراتژیهای تبلیغاتی خود را به بهترین شکل ممکن بهینهسازی کنند. اما همواره باید به مسائل حریم خصوصی و قوانین مرتبط توجه ویژهای داشته باشند.
#محمدرضا_مرادی
#گوگل_ادز
#Google_Ads
#محصولات_داده_محور
@BigData_BusinessAnalytics
www.bdbanalytics.ir
🔹 دادهها به عنوان یکی از داراییهای حیاتی شرکتهای فناوری اطلاعات، نقش مهمی در تصمیمگیریها و بهبود سرویسها دارند. گوگل، به عنوان یکی از بزرگترین شرکتهای دنیا، در محصولات و خدمات مختلف خود از دادهها بهره میبرد. یکی از محصولات مهم این شرکت، گوگل ادز است. در این مقاله، به بررسی کاربردهای گوناگون دادهها در گوگل ادز میپردازیم.
📍گوگل ادز: یک نگاه کلی
گوگل ادز یکی از بزرگترین پلتفرمهای تبلیغاتی در جهان است. این پلتفرم به تبلیغدهندگان اجازه میدهد تا با استفاده از مجموعهای از ابزارها و تکنیکها، تبلیغات خود را به گونهای طراحی و اجرا کنند که بهترین بازده را داشته باشد.
❇️ جمعآوری دادهها
اولین قدم برای استفاده از دادهها در گوگل ادز، جمعآوری دادهها است. گوگل ادز دادههای مختلفی را در اختیار کسبوکارها قرار میدهد که میتوانند برای بهبود کمپینهای تبلیغاتی استفاده شوند. این دادهها عبارتند از:
🔹دادههای کمپین: این دادهها شامل اطلاعات مربوط به عملکرد کمپینهای تبلیغاتی، مانند تعداد نمایشها، کلیکها، تبدیلات و هزینهها هستند.
🔹دادههای مخاطبان: این دادهها شامل اطلاعات مربوط به مخاطبان هدف کمپینهای تبلیغاتی، مانند سن، جنسیت، مکان و علایق هستند.
🔹دادههای وبسایت: این دادهها شامل اطلاعات مربوط به وبسایت کسبوکار، مانند ترافیک، نرخ تبدیل و محتوای بازدید شده هستند.
کسبوکارها میتوانند از ابزارهای مختلف گوگل ادز و سایر ابزارهای تحلیل داده برای جمعآوری این دادهها استفاده کنند.
❇️ کاربرد دادهها در گوگل ادز
1️⃣ هدفگذاری مخاطبان
🔹 سن، جنسیت، و مکان جغرافیایی: تبلیغدهندگان میتوانند تبلیغات خود را بر اساس اطلاعات جمعآوری شده در مورد سن، جنسیت، و مکان جغرافیایی کاربران، بهینهسازی کنند.
🔹 علایق و نیازهای کاربران: با توجه به دادههای جستجویی و فعالیتهای کاربران، تبلیغدهندگان میتوانند تبلیغات خود را به نیازها و علایق ویژه کاربران متمرکز کنند.
2️⃣ تحلیل عملکرد تبلیغات
🔹 میزان کلیک و نمایش: با استفاده از دادههای تجزیه و تحلیل، تبلیغدهندگان میتوانند میزان کلیک و نمایش تبلیغات خود را ارزیابی و بهبود بخشید.
🔹 تبدیلشدگی: اطلاعات جمعآوری شده در مورد تبدیلشدگی تبلیغات، به تبلیغدهندگان کمک میکند تا فرآیندهای تبلیغاتی را بهینهسازی کنند.
3️⃣ پیشبینی رفتار کاربران
پیشبینی نیازهای آتی کاربران: با استفاده از یادگیری ماشینی، گوگل ادز میتواند رفتارهای آتی کاربران را پیشبینی کند و به تبلیغدهندگان اجازه دهد تا استراتژیهای تبلیغاتی خود را به نحوی تنظیم کنند که با نیازهای آتی کاربران هماهنگ باشد.
4️⃣ تبلیغات محتوایی
سفارشیسازی محتوا: بر اساس دادههای جمعآوری شده، تبلیغدهندگان میتوانند محتوای تبلیغاتی خود را به گونهای طراحی کنند که به بهترین شکل با نیازها و علایق کاربران همخوانی داشته باشد.
5️⃣ بهینهسازی بودجه تبلیغات
تخصیص بودجه بر اساس عملکرد: با توجه به دادههای تجزیه و تحلیل، تبلیغدهندگان میتوانند بودجه تبلیغات خود را در ناحیههایی تخصیص دهند که بهترین بازدهی را دارند.
6️⃣ بهبود ROI تبلیغات
یکی از مهمترین اهداف استفاده از دادهها در گوگل ادز، بهبود ROI تبلیغات است. با استفاده از دادهها میتوانید هزینههای تبلیغات خود را کاهش دهید و درآمد خود را افزایش دهید.
به عنوان مثال، با استفاده از دادهها میتوانید کمپینهایی را که ROI آنها پایین است، شناسایی کنید و اقدامات لازم برای بهبود آنها را انجام دهید. همچنین، میتوانید با استفاده از دادهها، کمپینهایی را ایجاد کنید که برای مخاطبان هدف شما جذابتر هستند و احتمال تبدیل آنها را افزایش میدهند.
📍نتیجهگیری
دادهها، ابزاری قدرتمند برای تبلیغدهندگان در گوگل ادز هستند. با استفاده از دادههای جمعآوری شده، تبلیغدهندگان میتوانند استراتژیهای تبلیغاتی خود را به بهترین شکل ممکن بهینهسازی کنند. اما همواره باید به مسائل حریم خصوصی و قوانین مرتبط توجه ویژهای داشته باشند.
#محمدرضا_مرادی
#گوگل_ادز
#Google_Ads
#محصولات_داده_محور
@BigData_BusinessAnalytics
www.bdbanalytics.ir
📚معرفی کتاب
📌کاربردهای عظیمداده در صنعت ۴
"Big Data Applications in Industry 4.0"
📌نویسندگان:
P. Kaliraje, T. Devi
📌این کتاب در سال ۲۰۲۲ توسط CRC Press انتشار یافته است.
📍 در این کتاب، نویسندگان به چشمانداز تحولآفرین صنعت ۴ میپردازند که بیانگر آخرین مرز فناوری در تولید است. محور این تحول، نقش بنیادی تجزیه و تحلیل عظیمداده بوده که به عنوان سنگ بنای صنعت ۴ شناسایی شدهاست. عظیمداده بینشهای ارزشمندی را برای مدیریت موثر کارخانههای هوشمند ارائه میدهد. این کتاب همچنین بر ضرورت ابزارها و فنآوریهای پیشرفته برای پردازش دادهها و اطمینان از تحویل اطلاعات مربوطه تأکید میکند. مزیتهای بالقوه عظیم داده زمانیکه با صنعت ۴ ادغام شود، به شکلدهی به فرآیندهای صنعتی، تأثیرگذاری بر مصرف منابع، سادهسازی فرآیندها، جهتدهی به اتوماسیون و نیز اهداف توسعه پایدار گسترش مییابد.
📍تکامل سریع این فناوریها، به افراد با مهارتهای سطح بالا و دانش عمیق نیاز دارد تا به چالشهای بیوقفه رسیدگی کنند. این کتاب بر اهمیت هماهنگ ماندن با تغییرات کوچک در دادههای تولید شده و بر تأثیر بالقوه آنها بر محیط و صنعت تأکید میکند. افزایش نرخ تولید دادهها، پیچیدگی تجزیه و تحلیل عظیمدادهها را تشدید، و آن را به یک قلمرو چالشبرانگیز پژوهشی تبدیل میکند.
📍 پیشبینی میشود که چشمانداز بازار برای تجزیه و تحلیل عظیمدادهها، رشد قابل توجهی را تجربه کند. این افزایش در تقاضا نیاز روز افزون به متخصصان در این زمینه را برجسته میکند. افزایش تقاضا به دلیل حجم فزاینده، سرعت و تنوع دادههای تولید شده در عصر دیجیتال امروزی است که نیازمند فناوریها و روشهای پیشرفته برای کشف اطلاعات ارزشمند برای تصمیمگیری، توسعه استراتژی و حل مشکلات در صنایع و بخشهای مختلف است. توسعه مهارت برای هدایت صنعت ۴ و ایجاد زیرساختهای پیشرفته از منظر فناوری به عنوان عناصر کلیدی برای ستونهای آینده توسعه جهانی پدیدار میشود.
📍 تغییرات پیشرونده تحولآفرین و تصاعدی، مؤسسات آموزشی و دانشگاهها را ملزم میکند که ابزارهای صنعت ۴ را به طور فعالانه در برنامههای متنوع آموزشی و پژوهشی خود بگنجانند. این کتاب خود را به عنوان منبعی ارزشمند برای انتقال مفاهیم اساسی و دانش عظیمداده به فارغالتحصیلان معرفی میکند. نویسندگان همچنین با کشف جنبههای مختلف عظیمداده، کاربردها را در بخشهای مختلف، از جمله امور مالی، آموزش، رسانههای اجتماعی، سنجش از راه دور و مراقبتهای بهداشتی بررسی میکنند. دانشمندان، مهندسان و آماردانان با هدف ساخت برنامههای کاربردی عظیمدادهها برای حل مسئله در دنیای واقعی، مرجع جامعی را در این کتاب خواهند یافت.
📍در دیگر بخشهای این کتاب به موضوعات خاصی مانند کاربردهای علم داده، ادغام صنعت ۴، اصول پیشبینی، کاربردهای مراقبتهای بهداشتی و نقش عظیمداده در آموزش میپردازند. هر فصل به عنوان یک کاوش دقیق عمل میکند، و بینشهای ارزشمندی را برای توسعه دهندگان نرمافزار، دانشجویان و اساتید و نیز محققان ارائه میدهد. محتوا به گونهای طراحی شده است که غنی و جامع باشد و به خوانندگان کمک کند تا درک عمیقی از موضوع پیدا کنند. بینشهای به اشتراک گذاشته شده در هر فصل چند وجهی است و میتواند در حوزههای مختلف حرفهای و آموزشی اعمال شود و کتاب را به منبعی ارزشمند برای هر علاقهمند به این حوزه تبدیل میکند.
این کتاب را میتوانید در پست بعد دریافت نمایید.
#معرفی_کتاب
#عظیم_داده
#زهرا_رفیعیپور
@BigData_BusinessAnalytics
http://www.bdbanalytics.ir
📌کاربردهای عظیمداده در صنعت ۴
"Big Data Applications in Industry 4.0"
📌نویسندگان:
P. Kaliraje, T. Devi
📌این کتاب در سال ۲۰۲۲ توسط CRC Press انتشار یافته است.
📍 در این کتاب، نویسندگان به چشمانداز تحولآفرین صنعت ۴ میپردازند که بیانگر آخرین مرز فناوری در تولید است. محور این تحول، نقش بنیادی تجزیه و تحلیل عظیمداده بوده که به عنوان سنگ بنای صنعت ۴ شناسایی شدهاست. عظیمداده بینشهای ارزشمندی را برای مدیریت موثر کارخانههای هوشمند ارائه میدهد. این کتاب همچنین بر ضرورت ابزارها و فنآوریهای پیشرفته برای پردازش دادهها و اطمینان از تحویل اطلاعات مربوطه تأکید میکند. مزیتهای بالقوه عظیم داده زمانیکه با صنعت ۴ ادغام شود، به شکلدهی به فرآیندهای صنعتی، تأثیرگذاری بر مصرف منابع، سادهسازی فرآیندها، جهتدهی به اتوماسیون و نیز اهداف توسعه پایدار گسترش مییابد.
📍تکامل سریع این فناوریها، به افراد با مهارتهای سطح بالا و دانش عمیق نیاز دارد تا به چالشهای بیوقفه رسیدگی کنند. این کتاب بر اهمیت هماهنگ ماندن با تغییرات کوچک در دادههای تولید شده و بر تأثیر بالقوه آنها بر محیط و صنعت تأکید میکند. افزایش نرخ تولید دادهها، پیچیدگی تجزیه و تحلیل عظیمدادهها را تشدید، و آن را به یک قلمرو چالشبرانگیز پژوهشی تبدیل میکند.
📍 پیشبینی میشود که چشمانداز بازار برای تجزیه و تحلیل عظیمدادهها، رشد قابل توجهی را تجربه کند. این افزایش در تقاضا نیاز روز افزون به متخصصان در این زمینه را برجسته میکند. افزایش تقاضا به دلیل حجم فزاینده، سرعت و تنوع دادههای تولید شده در عصر دیجیتال امروزی است که نیازمند فناوریها و روشهای پیشرفته برای کشف اطلاعات ارزشمند برای تصمیمگیری، توسعه استراتژی و حل مشکلات در صنایع و بخشهای مختلف است. توسعه مهارت برای هدایت صنعت ۴ و ایجاد زیرساختهای پیشرفته از منظر فناوری به عنوان عناصر کلیدی برای ستونهای آینده توسعه جهانی پدیدار میشود.
📍 تغییرات پیشرونده تحولآفرین و تصاعدی، مؤسسات آموزشی و دانشگاهها را ملزم میکند که ابزارهای صنعت ۴ را به طور فعالانه در برنامههای متنوع آموزشی و پژوهشی خود بگنجانند. این کتاب خود را به عنوان منبعی ارزشمند برای انتقال مفاهیم اساسی و دانش عظیمداده به فارغالتحصیلان معرفی میکند. نویسندگان همچنین با کشف جنبههای مختلف عظیمداده، کاربردها را در بخشهای مختلف، از جمله امور مالی، آموزش، رسانههای اجتماعی، سنجش از راه دور و مراقبتهای بهداشتی بررسی میکنند. دانشمندان، مهندسان و آماردانان با هدف ساخت برنامههای کاربردی عظیمدادهها برای حل مسئله در دنیای واقعی، مرجع جامعی را در این کتاب خواهند یافت.
📍در دیگر بخشهای این کتاب به موضوعات خاصی مانند کاربردهای علم داده، ادغام صنعت ۴، اصول پیشبینی، کاربردهای مراقبتهای بهداشتی و نقش عظیمداده در آموزش میپردازند. هر فصل به عنوان یک کاوش دقیق عمل میکند، و بینشهای ارزشمندی را برای توسعه دهندگان نرمافزار، دانشجویان و اساتید و نیز محققان ارائه میدهد. محتوا به گونهای طراحی شده است که غنی و جامع باشد و به خوانندگان کمک کند تا درک عمیقی از موضوع پیدا کنند. بینشهای به اشتراک گذاشته شده در هر فصل چند وجهی است و میتواند در حوزههای مختلف حرفهای و آموزشی اعمال شود و کتاب را به منبعی ارزشمند برای هر علاقهمند به این حوزه تبدیل میکند.
این کتاب را میتوانید در پست بعد دریافت نمایید.
#معرفی_کتاب
#عظیم_داده
#زهرا_رفیعیپور
@BigData_BusinessAnalytics
http://www.bdbanalytics.ir
🛠معرفی ابزار Apache Zeppelin
🖌اپاچی زپلین (Apache Zeppelin) یک نوتبوک تعاملی مبتنی بر وب برای تجزیه و تحلیل داده است. این ابزار، محیطی همکاری برای دادهشناسان، تحلیلگران و مهندسان فراهم میکند تا با مجموعههای عظیم داده کار کنند، اکتشاف داده انجام دهند و نمودارها و گرافیکهای تصویری ایجاد کنند. زپلین از چندین زبان برنامهنویسی مختلف پشتیبانی میکند و به کاربران این امکان را میدهد که به صورت همزمان از تکنولوژیها و ابزارهای مختلف در یک تحلیل استفاده کنند.
✳️ویژگیها و اجزای کلیدی Apache Zeppelin عبارتند از:
📍پشتیبانی از چندین زبان: Zeppelin از زبانهای برنامهنویسی متعددی مانند اسکالا، پایتون، R، SQL و غیره پشتیبانی میکند. هر نوتبوک میتواند شامل چندین پاراگراف با زبانهای مختلف باشد که این امکان را به کاربران میدهد که از قابلیتهای مختلف زبانها در یک تحلیل استفاده کنند.
📍رابط نوتبوک: رابط اصلی Zeppelin نوتبوک است که به پاراگرافها تقسیم شده است. هر پاراگراف میتواند شامل کد، کوئری یا متن markdown باشد. این قابلیت به کاربران این امکان را میدهد که پاراگرافها را به صورت مستقل اجرا کرده و کد را به صورت تکاملی توسعه دهند.
📍تجزیه و تحلیل داده: Zeppelin از نمودارها، نمودارها و داشبوردهای تصویری مختلف پشتیبانی میکند. کاربران میتوانند نمودارهای تعاملی را ایجاد کرده و اطلاعات خود را از دادههای خود در نوتبوک به نمایش بگذارند.
📍ادغام با تکنولوژیهای عظیم داده: Zeppelin به طور شبیهسازی با چارچوبهای پردازش داده بزرگ مانند اپاچی اسپارک، اپاچی فلینک و دیگران ادغام میشود. این امکان به کاربران میدهد که از قابلیتهای پردازش توزیع شده برای تحلیل دادههای عظیم استفاده کنند.
📍همکاری و به اشتراکگذاری: Zeppelin امکان همکاری را با اشتراکگذاری نوتبوکها با دیگران فراهم میکند. همچنین از نسخهگذاری پشتیبانی میکند تا تغییرات را ردیابی کند و در صورت نیاز به نسخههای قبلی بازگردانی شود.
📍معماری مفسر: Zeppelin از یک معماری مفسر استفاده میکند که اجازه اجرای کد نوشته شده به زبانهای مختلف را فراهم میکند. هر مفسر با یک زبان خاص مرتبط است و Zeppelin میتواند مفسرهایی برای زبانهای مانند اسکالا، پایتون، SQL و غیره داشته باشد.
✳️ این ابزار به طور گسترده در حوزه علوم داده، یادگیری ماشین و تجزیه و تحلیل عظیم داده استفاده میشود. این ابزار فرآیند کار با مجموعههای داده متنوع و تکنولوژیهای مختلف را سادهتر میکند و یک پلتفرم یکپارچه برای اکتشاف و تحلیل تعاملی داده فراهم میکند. در زیر، تعدادی از موارد کاربرد اصلی اپاچی زپلین را بررسی میکنیم:
📌تجزیه و تحلیل عظیم داده: Zeppelin به عنوان یک نوتبوک تعاملی و با امکان پردازش توزیع شده از چارچوبهای مانند Apache Spark و Apache Flink پشتیبانی میکند. این امکان به تحلیل عظیم دادهها کمک میکند و امکان اجرای کدهای تحلیلی بر روی دادههای توزیع شده را فراهم میسازد.
📌یادگیری ماشین و تحلیل پیشرفته: دادهشناسان و محققان در زمینه یادگیری ماشین و تحلیل داده میتوانند از Zeppelin برای ایجاد، آزمایش، و بهبود مدلهای خود استفاده کنند. نوتبوکهای تعاملی این امکان را فراهم میکنند که مراحل یادگیری ماشین به صورت تفاوتی و تعاملی انجام شود.
📌تحلیل دادههای علمی: در زمینه علوم و تحقیقات، Zeppelin میتواند برای تجزیه و تحلیل دادههای آزمایشها، شبیهسازیها، و نتایج تجربیات مورد استفاده قرار گیرد. نمودارها و گرافیکهای تصویری میتوانند به دانشمندان کمک کنند تا الگوها و روندهای مختلف را در دادهها شناسایی کنند.
📌تحلیل لاگ و رصد: در محیطهای سیستمی و شبکه، زپلین میتواند برای تحلیل لاگها و رصد عملکرد سیستمها استفاده شود. از قابلیتهای تحلیل تعاملی برای کشف مشکلات و بهینهسازی عملکرد سیستمها استفاده میشود.
📌 تجزیه و تحلیل دادههای مالی: در صنعت مالی، دادههای عظیم و پیچیده اغلب نیاز به تحلیل دقیق دارند. Zeppelin میتواند به متخصصان مالی کمک کند تا دادههای خود را تجزیه و تحلیل کرده و اطلاعات مهم را استخراج کنند.
📌تحلیل دادههای بازاریابی: در صنعت بازاریابی، Zeppelin میتواند برای تحلیل دادههای مربوط به کمپینهای تبلیغاتی، رفتار مشتریان، و اثربخشی استراتژیهای بازاریابی استفاده شود.
📌 پیشبینی و تحلیلهای آماری: Zeppelin از زبانهای مختلف آماری و تحلیل داده پشتیبانی میکند، که این امکان را به تحلیلهای آماری و پیشبینیهای متنوع ارائه میدهد.
#معرفی_ابزار
#دادههای_عظیم
#فاطمه_مصلحی
#Apache_Zeppelin
@BigData_BusinessAnalytics
www.bdbanalytics.ir
🖌اپاچی زپلین (Apache Zeppelin) یک نوتبوک تعاملی مبتنی بر وب برای تجزیه و تحلیل داده است. این ابزار، محیطی همکاری برای دادهشناسان، تحلیلگران و مهندسان فراهم میکند تا با مجموعههای عظیم داده کار کنند، اکتشاف داده انجام دهند و نمودارها و گرافیکهای تصویری ایجاد کنند. زپلین از چندین زبان برنامهنویسی مختلف پشتیبانی میکند و به کاربران این امکان را میدهد که به صورت همزمان از تکنولوژیها و ابزارهای مختلف در یک تحلیل استفاده کنند.
✳️ویژگیها و اجزای کلیدی Apache Zeppelin عبارتند از:
📍پشتیبانی از چندین زبان: Zeppelin از زبانهای برنامهنویسی متعددی مانند اسکالا، پایتون، R، SQL و غیره پشتیبانی میکند. هر نوتبوک میتواند شامل چندین پاراگراف با زبانهای مختلف باشد که این امکان را به کاربران میدهد که از قابلیتهای مختلف زبانها در یک تحلیل استفاده کنند.
📍رابط نوتبوک: رابط اصلی Zeppelin نوتبوک است که به پاراگرافها تقسیم شده است. هر پاراگراف میتواند شامل کد، کوئری یا متن markdown باشد. این قابلیت به کاربران این امکان را میدهد که پاراگرافها را به صورت مستقل اجرا کرده و کد را به صورت تکاملی توسعه دهند.
📍تجزیه و تحلیل داده: Zeppelin از نمودارها، نمودارها و داشبوردهای تصویری مختلف پشتیبانی میکند. کاربران میتوانند نمودارهای تعاملی را ایجاد کرده و اطلاعات خود را از دادههای خود در نوتبوک به نمایش بگذارند.
📍ادغام با تکنولوژیهای عظیم داده: Zeppelin به طور شبیهسازی با چارچوبهای پردازش داده بزرگ مانند اپاچی اسپارک، اپاچی فلینک و دیگران ادغام میشود. این امکان به کاربران میدهد که از قابلیتهای پردازش توزیع شده برای تحلیل دادههای عظیم استفاده کنند.
📍همکاری و به اشتراکگذاری: Zeppelin امکان همکاری را با اشتراکگذاری نوتبوکها با دیگران فراهم میکند. همچنین از نسخهگذاری پشتیبانی میکند تا تغییرات را ردیابی کند و در صورت نیاز به نسخههای قبلی بازگردانی شود.
📍معماری مفسر: Zeppelin از یک معماری مفسر استفاده میکند که اجازه اجرای کد نوشته شده به زبانهای مختلف را فراهم میکند. هر مفسر با یک زبان خاص مرتبط است و Zeppelin میتواند مفسرهایی برای زبانهای مانند اسکالا، پایتون، SQL و غیره داشته باشد.
✳️ این ابزار به طور گسترده در حوزه علوم داده، یادگیری ماشین و تجزیه و تحلیل عظیم داده استفاده میشود. این ابزار فرآیند کار با مجموعههای داده متنوع و تکنولوژیهای مختلف را سادهتر میکند و یک پلتفرم یکپارچه برای اکتشاف و تحلیل تعاملی داده فراهم میکند. در زیر، تعدادی از موارد کاربرد اصلی اپاچی زپلین را بررسی میکنیم:
📌تجزیه و تحلیل عظیم داده: Zeppelin به عنوان یک نوتبوک تعاملی و با امکان پردازش توزیع شده از چارچوبهای مانند Apache Spark و Apache Flink پشتیبانی میکند. این امکان به تحلیل عظیم دادهها کمک میکند و امکان اجرای کدهای تحلیلی بر روی دادههای توزیع شده را فراهم میسازد.
📌یادگیری ماشین و تحلیل پیشرفته: دادهشناسان و محققان در زمینه یادگیری ماشین و تحلیل داده میتوانند از Zeppelin برای ایجاد، آزمایش، و بهبود مدلهای خود استفاده کنند. نوتبوکهای تعاملی این امکان را فراهم میکنند که مراحل یادگیری ماشین به صورت تفاوتی و تعاملی انجام شود.
📌تحلیل دادههای علمی: در زمینه علوم و تحقیقات، Zeppelin میتواند برای تجزیه و تحلیل دادههای آزمایشها، شبیهسازیها، و نتایج تجربیات مورد استفاده قرار گیرد. نمودارها و گرافیکهای تصویری میتوانند به دانشمندان کمک کنند تا الگوها و روندهای مختلف را در دادهها شناسایی کنند.
📌تحلیل لاگ و رصد: در محیطهای سیستمی و شبکه، زپلین میتواند برای تحلیل لاگها و رصد عملکرد سیستمها استفاده شود. از قابلیتهای تحلیل تعاملی برای کشف مشکلات و بهینهسازی عملکرد سیستمها استفاده میشود.
📌 تجزیه و تحلیل دادههای مالی: در صنعت مالی، دادههای عظیم و پیچیده اغلب نیاز به تحلیل دقیق دارند. Zeppelin میتواند به متخصصان مالی کمک کند تا دادههای خود را تجزیه و تحلیل کرده و اطلاعات مهم را استخراج کنند.
📌تحلیل دادههای بازاریابی: در صنعت بازاریابی، Zeppelin میتواند برای تحلیل دادههای مربوط به کمپینهای تبلیغاتی، رفتار مشتریان، و اثربخشی استراتژیهای بازاریابی استفاده شود.
📌 پیشبینی و تحلیلهای آماری: Zeppelin از زبانهای مختلف آماری و تحلیل داده پشتیبانی میکند، که این امکان را به تحلیلهای آماری و پیشبینیهای متنوع ارائه میدهد.
#معرفی_ابزار
#دادههای_عظیم
#فاطمه_مصلحی
#Apache_Zeppelin
@BigData_BusinessAnalytics
www.bdbanalytics.ir
📖 کتاب بخوانیم؛
📌 "Big Data for Big Decisions: Building a Data-Driven Organization"
📍بخش یازدهم: حکمرانی یکپارچه دادهها
🔹 فصل یازدهم کتاب "دادههای عظیم برای تصمیمات بزرگ: ایجاد یک سازمان داده محور،" با عنوان حکمرانی یکپارچه دادهها، به موضوعاتی همچون نیاز به حکمرانی دادهها، نیاز به حکمرانی دادهها در سازمانهای جهانی با پرداختن به دغدغههای ذینفعان، تشخیص حکمرانی ضعیف دادهها، هزینههای حکمرانی ضعیف دادهها، نقشه راه تحولی برای طراحی و نهادینهسازی حکمرانی دادهها، اهمیت کاتالوگ دادهها، تعریف ارزش با اولویت بندی دادهها و ایجاد یک مورد کسب و کاری برای حکمرانی دادهها، برنامهریزی و ایجاد اجزای حکمرانی دادهها و طراحی چارچوب حکمرانی دادههای سازمانی، رشد و تحکیم حکمرانی دادههای نهادینه شده، روندهای نوظهور و حکمرانی دادههای عظیم و در نهایت نقش در حال تحول مدیر ارشد دادهها (CDO) میپردازد.
📍لزوم حکمرانی دادهها
نیاز به حاکمیت داده با 3V دادهها (حجم، سرعت و تنوع) همبستگی بسیار قوی دارد. این سه V معمولاً در شرکتهای چندملیتی B2C با توجه به تعداد اشخاص حقوقی، کشورها، و خطوط تولید کسب و کار که باید تحت پوشش قرار گیرند، بسیار بالاتر از شرکتهای محلی در یک کشور هستند. همچنین این 3V در شرکتهایی که حضور دیجیتالی قوی دارند بسیار بالا بوده و رشد تصاعدی دارند. برای اینکه یک سازمان بتواند مدیریت درستی بر این دادهها داشته باشد نیازمند یک استراتژی کامل فناوری اطلاعات، یک استراتژی کامل داده، و یک ردپای فناوری اطلاعات است که کل وسعت سازمان را پوشش میدهد که میتواند در غیاب یک مدل حکمرانی کامل شکست بخورد.
🔹نقشه راه تحولی برای طراحی و نهادینه سازی حکمرانی دادهها:
حکمرانی دادهها اساساً در مورد تصمیم گیری درباره چگونگی تصمیم گیری است. به بیان دیگر به عنوان بستر تمام تصمیم گیریها در یک سازمان است. اگر سازمانها امیدوارند تصمیمگیری درستی داشته باشند، لزوماً باید مدیریت دادههای خود را درست انجام دهند. رویکردهای متعددی برای طراحی و اجرای برنامه حکمرانی دادههای سازمانی وجود دارد. تعداد قابل توجهی از کارشناسان طرفدار شروع از توسعه یک بیانیه ارزش و ایجاد یک مورد کسب و کاری و نقشه راه هستند. برخی دیگر از شروع با مرحله اکتشاف، به دنبال آن مرحله "طرح و ساخت" و در نهایت مرحله "رشد و نهادینهسازی" حمایت می کنند.
🔸کاتالوگ دادهها و دیکشنری دادهها:
ایجاد کاتالوگ داده و دیکشنری داده باید اولین قدم به عنوان بخشی از مرحله اکتشاف، قبل از اجرای هر راه حل حاکمیت داده باشد. بسیاری از راهحلهای مدیریت کیفیت دادهها، یا راهحلهای حکمرانی داده، ویژگیای برای ایجاد خودکار کاتالوگ دادهها دارند. در حالی که بسیاری از راهحلهای هوش کسب و کار (BI) و پلتفرمهای دادههای عظیم بصری سازی تعاملی از نمودارهای ارتباطات دادهای را ارائه میدهند، اما برخی دیگر از راهحلها نظیر SAP Information Steward، بخشی از راهحل مدیریت داده را ارائه میدهند که میتوانند بسیار قابل توجه باشند.
📍حکمرانی دادهها برای دادههای عظیم: روندهای نوظهور
موسسه مکنزی بر این باور است که هوش مصنوعی این پتانسیل را دارد که تا سال 2030 حدود 13 تریلیون دلار به اقتصاد جهانی از طریق بهبود در بهره وری، محصولات و تجارب مشتری اضافه نماید. از سوی دیگر، هوش مصنوعی میتواند به پیشرانی حکمرانی دادههای عظیم کمک نماید. فناوری یادگیری عمیق میتواند برای خودکارسازی خوشه بندی و دسته بندی دادههای عظیم و تخصیص خودکار تگهای متادیتا، ارزیابی مالکیت داده، حریم خصوصی، ریسک و غیره بسیار موثر باشد.
رشد اهمیت حکمرانی داده برای اقتصاد هوش مصنوعی و مفهوم جدیدی تحت عنوان «data lakehouse» که مزایای انبارداده و دریاچه داده را ترکیب مینماید، از روندهای نوظهور در حوزه حکمرانی دادههای عظیم هستند.
🔸نقش در حال تحول مدیر ارشد داده:
استخدام یک CDO اهمیت فزاینده دادهها را نشان میدهد با این حال عدم شفافیت نقش بین یک CDO و CIO می تواند عواقبی در پی داشته باشد. برخی از سازمانها نیز نقش یک مدیر ارشد دیجیتال را دارند که مسائل را بیش از پیش پیچیده میکند. بنابراین میتوان گفت یک CDO تنها در صورتی میتواند در زمینه حکمرانی داده موفق باشد که سرمایهگذاری کافی در فرآیند، ابزارها و مکانیسم انطباق و همچنین خرید سهامداران وجود داشته باشد.
#کتاب_بخوانیم
#دادههای_عظیم_برای_تصمیمات_بزرگ
#فصل_یازدهم
#حکمرانی_یکپارچه_دادهها
#فاطمه_مظفری
www.bdbanalytics.ir
@BigData_BusinessAnalytics
📌 "Big Data for Big Decisions: Building a Data-Driven Organization"
📍بخش یازدهم: حکمرانی یکپارچه دادهها
🔹 فصل یازدهم کتاب "دادههای عظیم برای تصمیمات بزرگ: ایجاد یک سازمان داده محور،" با عنوان حکمرانی یکپارچه دادهها، به موضوعاتی همچون نیاز به حکمرانی دادهها، نیاز به حکمرانی دادهها در سازمانهای جهانی با پرداختن به دغدغههای ذینفعان، تشخیص حکمرانی ضعیف دادهها، هزینههای حکمرانی ضعیف دادهها، نقشه راه تحولی برای طراحی و نهادینهسازی حکمرانی دادهها، اهمیت کاتالوگ دادهها، تعریف ارزش با اولویت بندی دادهها و ایجاد یک مورد کسب و کاری برای حکمرانی دادهها، برنامهریزی و ایجاد اجزای حکمرانی دادهها و طراحی چارچوب حکمرانی دادههای سازمانی، رشد و تحکیم حکمرانی دادههای نهادینه شده، روندهای نوظهور و حکمرانی دادههای عظیم و در نهایت نقش در حال تحول مدیر ارشد دادهها (CDO) میپردازد.
📍لزوم حکمرانی دادهها
نیاز به حاکمیت داده با 3V دادهها (حجم، سرعت و تنوع) همبستگی بسیار قوی دارد. این سه V معمولاً در شرکتهای چندملیتی B2C با توجه به تعداد اشخاص حقوقی، کشورها، و خطوط تولید کسب و کار که باید تحت پوشش قرار گیرند، بسیار بالاتر از شرکتهای محلی در یک کشور هستند. همچنین این 3V در شرکتهایی که حضور دیجیتالی قوی دارند بسیار بالا بوده و رشد تصاعدی دارند. برای اینکه یک سازمان بتواند مدیریت درستی بر این دادهها داشته باشد نیازمند یک استراتژی کامل فناوری اطلاعات، یک استراتژی کامل داده، و یک ردپای فناوری اطلاعات است که کل وسعت سازمان را پوشش میدهد که میتواند در غیاب یک مدل حکمرانی کامل شکست بخورد.
🔹نقشه راه تحولی برای طراحی و نهادینه سازی حکمرانی دادهها:
حکمرانی دادهها اساساً در مورد تصمیم گیری درباره چگونگی تصمیم گیری است. به بیان دیگر به عنوان بستر تمام تصمیم گیریها در یک سازمان است. اگر سازمانها امیدوارند تصمیمگیری درستی داشته باشند، لزوماً باید مدیریت دادههای خود را درست انجام دهند. رویکردهای متعددی برای طراحی و اجرای برنامه حکمرانی دادههای سازمانی وجود دارد. تعداد قابل توجهی از کارشناسان طرفدار شروع از توسعه یک بیانیه ارزش و ایجاد یک مورد کسب و کاری و نقشه راه هستند. برخی دیگر از شروع با مرحله اکتشاف، به دنبال آن مرحله "طرح و ساخت" و در نهایت مرحله "رشد و نهادینهسازی" حمایت می کنند.
🔸کاتالوگ دادهها و دیکشنری دادهها:
ایجاد کاتالوگ داده و دیکشنری داده باید اولین قدم به عنوان بخشی از مرحله اکتشاف، قبل از اجرای هر راه حل حاکمیت داده باشد. بسیاری از راهحلهای مدیریت کیفیت دادهها، یا راهحلهای حکمرانی داده، ویژگیای برای ایجاد خودکار کاتالوگ دادهها دارند. در حالی که بسیاری از راهحلهای هوش کسب و کار (BI) و پلتفرمهای دادههای عظیم بصری سازی تعاملی از نمودارهای ارتباطات دادهای را ارائه میدهند، اما برخی دیگر از راهحلها نظیر SAP Information Steward، بخشی از راهحل مدیریت داده را ارائه میدهند که میتوانند بسیار قابل توجه باشند.
📍حکمرانی دادهها برای دادههای عظیم: روندهای نوظهور
موسسه مکنزی بر این باور است که هوش مصنوعی این پتانسیل را دارد که تا سال 2030 حدود 13 تریلیون دلار به اقتصاد جهانی از طریق بهبود در بهره وری، محصولات و تجارب مشتری اضافه نماید. از سوی دیگر، هوش مصنوعی میتواند به پیشرانی حکمرانی دادههای عظیم کمک نماید. فناوری یادگیری عمیق میتواند برای خودکارسازی خوشه بندی و دسته بندی دادههای عظیم و تخصیص خودکار تگهای متادیتا، ارزیابی مالکیت داده، حریم خصوصی، ریسک و غیره بسیار موثر باشد.
رشد اهمیت حکمرانی داده برای اقتصاد هوش مصنوعی و مفهوم جدیدی تحت عنوان «data lakehouse» که مزایای انبارداده و دریاچه داده را ترکیب مینماید، از روندهای نوظهور در حوزه حکمرانی دادههای عظیم هستند.
🔸نقش در حال تحول مدیر ارشد داده:
استخدام یک CDO اهمیت فزاینده دادهها را نشان میدهد با این حال عدم شفافیت نقش بین یک CDO و CIO می تواند عواقبی در پی داشته باشد. برخی از سازمانها نیز نقش یک مدیر ارشد دیجیتال را دارند که مسائل را بیش از پیش پیچیده میکند. بنابراین میتوان گفت یک CDO تنها در صورتی میتواند در زمینه حکمرانی داده موفق باشد که سرمایهگذاری کافی در فرآیند، ابزارها و مکانیسم انطباق و همچنین خرید سهامداران وجود داشته باشد.
#کتاب_بخوانیم
#دادههای_عظیم_برای_تصمیمات_بزرگ
#فصل_یازدهم
#حکمرانی_یکپارچه_دادهها
#فاطمه_مظفری
www.bdbanalytics.ir
@BigData_BusinessAnalytics
📚 فایل ترجمه خلاصه کتاب "داده های عظیم برای تصمیمات بزرگ: ایجاد یک سازمان داده محور"
"Big Data for Big Decisions: Building a Data Driven Organization"
📌 ضمن تشکر بابت همراهی شما با کانال گروه تحلیلگری عظیم داده و کسب و کار، خلاصه کتاب "داده های عظیم برای تصمیمات بزرگ: ایجاد یک سازمان داده محور" در قالب یک فایل جمعآوری شده است.
می توانید این فایل را از لینک زیر دریافت فرمایید.
🔗 B2n.ir/b46500
#داده_های_عظیم_برای_تصمیمات_بزرگ
#Big_Data_for_Big_Decisions
@BigData_BusinessAnalytics
www.bdbanalytics.ir
"Big Data for Big Decisions: Building a Data Driven Organization"
📌 ضمن تشکر بابت همراهی شما با کانال گروه تحلیلگری عظیم داده و کسب و کار، خلاصه کتاب "داده های عظیم برای تصمیمات بزرگ: ایجاد یک سازمان داده محور" در قالب یک فایل جمعآوری شده است.
می توانید این فایل را از لینک زیر دریافت فرمایید.
🔗 B2n.ir/b46500
#داده_های_عظیم_برای_تصمیمات_بزرگ
#Big_Data_for_Big_Decisions
@BigData_BusinessAnalytics
www.bdbanalytics.ir