Forwarded from Eng. Hussein Sheikho 👨💻
with AFT, Get Forex Trading free signals we will guide you to earn and make money in crypto and forex!
https://news.1rj.ru/str/tradingaft
https://news.1rj.ru/str/tradingaft
👍6❤2
🖥 8 delightful Python noscripts that will brighten your day
8 cool python noscripts to brighten up your day .
These little gems will add some fun to your programming projects.
1. Speed test
2. Convert photo to cartoon format
3. Site status output
4. Image enhancement
5. Creating a web bot
6. Conversion: Hex to RGB
7. Convert PDF to images
8. Get song lyrics
https://news.1rj.ru/str/CodeProgrammer
8 cool python noscripts to brighten up your day .
These little gems will add some fun to your programming projects.
1. Speed test
2. Convert photo to cartoon format
3. Site status output
4. Image enhancement
5. Creating a web bot
6. Conversion: Hex to RGB
7. Convert PDF to images
8. Get song lyrics
https://news.1rj.ru/str/CodeProgrammer
❤18👍7❤🔥1
35 Best+FREE Coursera Courses for Data Science and Machine Learning!
https://www.mltut.com/best-coursera-courses-for-data-science/
https://news.1rj.ru/str/CodeProgrammer
https://www.mltut.com/best-coursera-courses-for-data-science/
https://news.1rj.ru/str/CodeProgrammer
👍14❤4
carbon - 2023-08-08T115041.994.png
1.3 MB
🖐 Python Mouse Control Remotely With Your Hand.
▪ Source Code: https://gist.github.com/Develp10/3d605ce6ef017fdfc3e66e147ec9cc18
https://news.1rj.ru/str/CodeProgrammer
▪ Source Code: https://gist.github.com/Develp10/3d605ce6ef017fdfc3e66e147ec9cc18
https://news.1rj.ru/str/CodeProgrammer
👍9❤4
🖥 Importing Data from SQL Server to Excel with Multiple Sheets using Python
📝 Source Code: https://github.com/danis111/Importing-Data-from-SQL-Server-to-Excel-with-Multiple-Sheets-using-Python/tree/main
https://news.1rj.ru/str/CodeProgrammer
More reaction please 👌
📝 Source Code: https://github.com/danis111/Importing-Data-from-SQL-Server-to-Excel-with-Multiple-Sheets-using-Python/tree/main
https://news.1rj.ru/str/CodeProgrammer
More reaction please 👌
👍15❤🔥9❤5😍2
👨🎓Harvard CS50’s Artificial Intelligence with Python – Full University Course
This free course from Harvard University explores the concepts and algorithms behind modern artificial intelligence.
🎞 Video: https://www.youtube.com/watch?v=5NgNicANyqM
📌 Course resources: https://cs50.harvard.edu/ai/2020/
https://news.1rj.ru/str/CodeProgrammer
More reaction please 👌
This free course from Harvard University explores the concepts and algorithms behind modern artificial intelligence.
🎞 Video: https://www.youtube.com/watch?v=5NgNicANyqM
📌 Course resources: https://cs50.harvard.edu/ai/2020/
https://news.1rj.ru/str/CodeProgrammer
More reaction please 👌
❤15👍6❤🔥1
📚 9 must-have Python developer tools.
1. PyCharm IDE
2. Jupyter notebook
3. Keras
4. Pip Package
5. Python Anywhere
6. Scikit-Learn
7. Sphinx
8. Selenium
9. Sublime Text
https://news.1rj.ru/str/CodeProgrammer
More reaction please ⭐️💐⭐️
1. PyCharm IDE
2. Jupyter notebook
3. Keras
4. Pip Package
5. Python Anywhere
6. Scikit-Learn
7. Sphinx
8. Selenium
9. Sublime Text
https://news.1rj.ru/str/CodeProgrammer
More reaction please ⭐️💐⭐️
👍26❤15🤔4❤🔥1
⚡ Top 100+ Machine Learning Projects for 2023 [with Source Code]
In this article, you will find 100+ of the best machine learning projects and ideas that will be useful for both beginners and experienced professionals.
📌Projects: https://www.geeksforgeeks.org/machine-learning-projects/
https://news.1rj.ru/str/CodeProgrammer
More reaction please ⭐️💐⭐️
In this article, you will find 100+ of the best machine learning projects and ideas that will be useful for both beginners and experienced professionals.
📌Projects: https://www.geeksforgeeks.org/machine-learning-projects/
https://news.1rj.ru/str/CodeProgrammer
More reaction please ⭐️💐⭐️
👍16👏5🐳4❤🔥3❤2💯2
Daily python books
https://news.1rj.ru/str/DataScience4
Daily python books
https://news.1rj.ru/str/DataScience4
https://news.1rj.ru/str/DataScience4
Daily python books
https://news.1rj.ru/str/DataScience4
👍6
How to Train an Object Detection Model with Keras
https://machinelearningmastery.com/how-to-train-an-object-detection-model-with-keras/
https://news.1rj.ru/str/CodeProgrammer
More reaction please ⭐️💐⭐️
https://machinelearningmastery.com/how-to-train-an-object-detection-model-with-keras/
https://news.1rj.ru/str/CodeProgrammer
More reaction please ⭐️💐⭐️
❤9❤🔥4👍1
👱♂️ Creating Face Swaps with Python and OpenCV
https://news.1rj.ru/str/CodeProgrammer
More reaction please ⭐️💐⭐️
https://news.1rj.ru/str/CodeProgrammer
More reaction please ⭐️💐⭐️
❤13👍1
👱♂️ Creating Face Swaps with Python and OpenCV
Step 1: Face Detection
Step 2: Swapping Faces
https://news.1rj.ru/str/CodeProgrammer
More reaction please ⭐️💐⭐️
Step 1: Face Detection
import cv2
def detect_face(image_path):
# Load the face detection classifier
face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_default.xml')
# Read and convert the image to grayscale
image = cv2.imread(image_path)
gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
# Detect faces in the image
faces = face_cascade.detectMultiScale(gray_image, scaleFactor=1.1, minNeighbors=5)
# Assuming there's only one face in the image, return its coordinates
if len(faces) == 1:
return faces[0]
else:
return NoneStep 2: Swapping Faces
def main():
# Paths to the input images
image_path_1 = 'path_to_image1.jpg'
image_path_2 = 'path_to_image2.jpg'
# Detect the face in the second image
face_coords_2 = detect_face(image_path_2)
if face_coords_2 is None:
print("No face found in the second image.")
return
# Load and resize the source face
image_1 = cv2.imread(image_path_1)
face_width, face_height = face_coords_2[2], face_coords_2[3]
image_1_resized = cv2.resize(image_1, (face_width, face_height))
# Extract the target face region from the second image
image_2 = cv2.imread(image_path_2)
roi = image_2[face_coords_2[1]:face_coords_2[1] + face_height, face_coords_2[0]:face_coords_2[0] + face_width]
# Flip the target face horizontally
reflected_roi = cv2.flip(roi, 1)
# Blend the two faces together
alpha = 0.7
blended_image = cv2.addWeighted(image_1_resized, alpha, reflected_roi, 1 - alpha, 0)
# Replace the target face region with the blended image
image_2[face_coords_2[1]:face_coords_2[1] + face_height, face_coords_2[0]:face_coords_2[0] + face_width] = blended_image
# Display the result
cv2.imshow('Blended Image', image_2)
cv2.waitKey(0)
cv2.destroyAllWindows()
if name == "main":
main()https://news.1rj.ru/str/CodeProgrammer
More reaction please ⭐️💐⭐️
❤28👍8💯3
Your First Deep Learning Project in Python with Keras Step-by-Step
https://machinelearningmastery.com/tutorial-first-neural-network-python-keras/
https://news.1rj.ru/str/CodeProgrammer
More reaction please ⭐️💐⭐️
https://machinelearningmastery.com/tutorial-first-neural-network-python-keras/
https://news.1rj.ru/str/CodeProgrammer
More reaction please ⭐️💐⭐️
❤12👍5