Machine Learning with Python – Telegram
Machine Learning with Python
68.4K subscribers
1.3K photos
95 videos
170 files
957 links
Learn Machine Learning with hands-on Python tutorials, real-world code examples, and clear explanations for researchers and developers.

Admin: @HusseinSheikho || @Hussein_Sheikho
Download Telegram
Machine Learning with Python pinned «🔥 NEW YEAR 2026 – PREMIUM SCIENTIFIC PAPER WRITING OFFER 🔥 Q1-Ready | Journal-Targeted | Publication-Focused Serious researchers, PhD & MSc students, postdocs, universities, and funded startups only. To start 2026 strong, we’re offering a limited New Year…»
🚀Stanford just completed a must-watch for anyone serious about AI:

🎓 “𝗖𝗠𝗘 𝟮𝟵𝟱: 𝗧𝗿𝗮𝗻𝘀𝗳𝗼𝗿𝗺𝗲𝗿𝘀 & 𝗟𝗮𝗿𝗴𝗲 𝗟𝗮𝗻𝗴𝘂𝗮𝗴𝗲 𝗠𝗼𝗱𝗲𝗹𝘀” is now live entirely on YouTube and it’s pure gold.

If you’re building your AI career, stop scrolling.
This isn’t another surface-level overview. It’s the clearest, most structured intro to LLMs you could follow, straight from the Stanford Autumn 2025 curriculum.

📚 𝗧𝗼𝗽𝗶𝗰𝘀 𝗰𝗼𝘃𝗲𝗿𝗲𝗱 𝗶𝗻𝗰𝗹𝘂𝗱𝗲:
• How Transformers actually work (tokenization, attention, embeddings)
• Decoding strategies & MoEs
• LLM finetuning (LoRA, RLHF, supervised)
• Evaluation techniques (LLM-as-a-judge)
• Optimization tricks (RoPE, quantization, approximations)
• Reasoning & scaling
• Agentic workflows (RAG, tool calling)

🧠 My workflow: I usually take the trannoscripts, feed them into NotebookLM, and once I’ve done the lectures, I replay them during walks or commutes. That combo works wonders for retention.

🎥 Watch these now:

- Lecture 1: https://lnkd.in/dDER-qyp
- Lecture 2: https://lnkd.in/dk-tGUDm
- Lecture 3: https://lnkd.in/drAPdjJY
- Lecture 4: https://lnkd.in/e_RSgMz7
- Lecture 5: https://lnkd.in/eivMA9pe
- Lecture 6: https://lnkd.in/eYwwwMXn
- Lecture 7: https://lnkd.in/eKwkEDXV
- Lecture 8: https://lnkd.in/eEWvyfyK
- Lecture 9: https://lnkd.in/euiKRGaQ

🗓 Do yourself a favor for this 2026: block 2-3 hours per week / llectue and go through them.

If you’re in AI — whether building infra, agents, or apps — this is the foundational course you don’t want to miss.

Let’s level up.
https://news.1rj.ru/str/CodeProgrammer 😅
Please open Telegram to view this post
VIEW IN TELEGRAM
8👍1
Forwarded from Code With Python
Automatic translator in Python!

We translate a text in a few lines using deep-translator. It supports dozens of languages: from English and Russian to Japanese and Arabic.

Install the library:
pip install deep-translator


Example of use:
from deep_translator import GoogleTranslator

text = "Hello, how are you?"
result = GoogleTranslator(source="ru", target="en").translate(text)

print("Original:", text)
print("Translation:", result)


Mass translation of a list:
texts = ["Hello", "What's your name?", "See you later"]
for t in texts:
    print("→", GoogleTranslator(source="ru", target="es").translate(t))


🔥 We get a mini-Google Translate right in Python: you can embed it in a chatbot, use it in notes, or automate work with the API.

🚪 @DataScience4
Please open Telegram to view this post
VIEW IN TELEGRAM
14👍1🔥1
In scientific work, the most time is spent on reading articles, data, and reports.

On GitHub, there is a collection called Awesome AI for Science -»»» a catalog of AI tools for all stages of research.

Inside:

-» working with literature
-» data analysis
-» turning articles into posters
-» automating experiments
-» tools for biology, chemistry, physics, and other fields

GitHub: http://github.com/ai-boost/awesome-ai-for-science

The list includes Paper2Poster, MinerU, The AI Scientist, as well as articles, datasets, and frameworks.
In fact, this is a complete set of tools for AI support in scientific research.

👉 https://news.1rj.ru/str/CodeProgrammer
Please open Telegram to view this post
VIEW IN TELEGRAM
6👍1🎉1
Please open Telegram to view this post
VIEW IN TELEGRAM
14👍4
This GitHub repository is not a dump of tutorials.

Inside, there are 28 production-ready AI projects that can be used.

What's there:

Machine learning projects
→ Airbnb price forecasting
→ Air ticket cost calculator
→ Student performance tracker

AI for medicine
→ Chest disease detection
→ Heart disease prediction
→ Diabetes risk analysis

Generative AI applications
→ Live chatbot on Gemini
→ Medical assistant tool
→ Document analysis tool

Computer vision projects
→ Hand tracking system
→ Drug recognition app
→ OpenCV implementations

Data analysis dashboards
→ E-commerce analytics
→ Restaurant analytics
→ Cricket statistics tracker

And 10 more advanced projects coming soon:
→ Deepfake detection
→ Brain tumor classification
→ Driver drowsiness alert system

This is not just a collection of code files.
These are end-to-end working applications.

View the repository 😲
https://github.com/KalyanM45/AI-Project-Gallery

👉 @codeprogrammer

Like and Share
Please open Telegram to view this post
VIEW IN TELEGRAM
13👍2🎉1
transformer Q&A.pdf
1.3 MB
𝐇𝐞𝐫𝐞’𝐬 𝐚 𝐪𝐮𝐢𝐜𝐤 𝐛𝐫𝐞𝐚𝐤𝐝𝐨𝐰𝐧 𝐟𝐫𝐨𝐦 𝐭𝐡𝐞 𝐭𝐨𝐩 𝐓𝐫𝐚𝐧𝐬𝐟𝐨𝐫𝐦𝐞𝐫𝐬 𝐈𝐧𝐭𝐞𝐫𝐯𝐢𝐞𝐰 𝐐𝐮𝐞𝐬𝐭𝐢𝐨𝐧𝐬 🔥👇⁣⁣
⁣⁣
𝘞𝘩𝘢𝘵 𝘪𝘴 𝘢 𝘛𝘳𝘢𝘯𝘴𝘧𝘰𝘳𝘮𝘦𝘳 𝘢𝘯𝘥 𝘸𝘩𝘺 𝘸𝘢𝘴 𝘪𝘵 𝘪𝘯𝘵𝘳𝘰𝘥𝘶𝘤𝘦𝘥?⁣⁣
𝘐𝘵 𝘴𝘰𝘭𝘷𝘦𝘥 𝘵𝘩𝘦 𝘭𝘪𝘮𝘪𝘵𝘢𝘵𝘪𝘰𝘯𝘴 𝘰𝘧 𝘙𝘕𝘕𝘴 & 𝘓𝘚𝘛𝘔𝘴 𝘣𝘺 𝘶𝘴𝘪𝘯𝘨 𝘴𝘦𝘭𝘧-𝘢𝘵𝘵𝘦𝘯𝘵𝘪𝘰𝘯, 𝘦𝘯𝘢𝘣𝘭𝘪𝘯𝘨 𝘱𝘢𝘳𝘢𝘭𝘭𝘦𝘭 𝘱𝘳𝘰𝘤𝘦𝘴𝘴𝘪𝘯𝘨 𝘢𝘯𝘥 𝘤𝘢𝘱𝘵𝘶𝘳𝘪𝘯𝘨 𝘭𝘰𝘯𝘨-𝘳𝘢𝘯𝘨𝘦 𝘥𝘦𝘱𝘦𝘯𝘥𝘦𝘯𝘤𝘪𝘦𝘴 𝘭𝘪𝘬𝘦 𝘯𝘦𝘷𝘦𝘳 𝘣𝘦𝘧𝘰𝘳𝘦!⁣⁣
⁣⁣
𝘚𝘦𝘭𝘧-𝘈𝘵𝘵𝘦𝘯𝘵𝘪𝘰𝘯 – 𝘛𝘩𝘦 𝘮𝘢𝘨𝘪𝘤 𝘣𝘦𝘩𝘪𝘯𝘥 𝘪𝘵⁣⁣
𝘌𝘷𝘦𝘳𝘺 𝘸𝘰𝘳𝘥 𝘶𝘯𝘥𝘦𝘳𝘴𝘵𝘢𝘯𝘥𝘴 𝘪𝘵𝘴 𝘤𝘰𝘯𝘵𝘦𝘹𝘵 𝘪𝘯 𝘳𝘦𝘭𝘢𝘵𝘪𝘰𝘯 𝘵𝘰 𝘰𝘵𝘩𝘦𝘳𝘴—𝘮𝘢𝘬𝘪𝘯𝘨 𝘦𝘮𝘣𝘦𝘥𝘥𝘪𝘯𝘨𝘴 𝘴𝘮𝘢𝘳𝘵𝘦𝘳 𝘢𝘯𝘥 𝘮𝘰𝘥𝘦𝘭𝘴 𝘮𝘰𝘳𝘦 𝘤𝘰𝘯𝘵𝘦𝘹𝘵-𝘢𝘸𝘢𝘳𝘦.⁣⁣
⁣⁣
𝘔𝘶𝘭𝘵𝘪-𝘏𝘦𝘢𝘥 𝘈𝘵𝘵𝘦𝘯𝘵𝘪𝘰𝘯 – 𝘚𝘦𝘦𝘪𝘯𝘨 𝘧𝘳𝘰𝘮 𝘮𝘶𝘭𝘵𝘪𝘱𝘭𝘦 𝘢𝘯𝘨𝘭𝘦𝘴⁣⁣
𝘋𝘪𝘧𝘧𝘦𝘳𝘦𝘯𝘵 𝘢𝘵𝘵𝘦𝘯𝘵𝘪𝘰𝘯 𝘩𝘦𝘢𝘥𝘴 𝘧𝘰𝘤𝘶𝘴 𝘰𝘯 𝘥𝘪𝘧𝘧𝘦𝘳𝘦𝘯𝘵 𝘳𝘦𝘭𝘢𝘵𝘪𝘰𝘯𝘴𝘩𝘪𝘱𝘴 𝘪𝘯 𝘵𝘩𝘦 𝘥𝘢𝘵𝘢. 𝘐𝘵’𝘴 𝘭𝘪𝘬𝘦 𝘩𝘢𝘷𝘪𝘯𝘨 𝘮𝘶𝘭𝘵𝘪𝘱𝘭𝘦 𝘦𝘹𝘱𝘦𝘳𝘵𝘴 𝘢𝘯𝘢𝘭𝘺𝘻𝘦 𝘵𝘩𝘦 𝘴𝘢𝘮𝘦 𝘪𝘯𝘧𝘰𝘳𝘮𝘢𝘵𝘪𝘰𝘯!⁣⁣
⁣⁣
𝘗𝘰𝘴𝘪𝘵𝘪𝘰𝘯𝘢𝘭 𝘌𝘯𝘤𝘰𝘥𝘪𝘯𝘨 – 𝘛𝘦𝘢𝘤𝘩𝘪𝘯𝘨 𝘵𝘩𝘦 𝘮𝘰𝘥𝘦𝘭 𝘰𝘳𝘥𝘦𝘳 𝘮𝘢𝘵𝘵𝘦𝘳𝘴⁣⁣
𝘚𝘪𝘯𝘤𝘦 𝘛𝘳𝘢𝘯𝘴𝘧𝘰𝘳𝘮𝘦𝘳𝘴 𝘥𝘰𝘯’𝘵 𝘱𝘳𝘰𝘤𝘦𝘴𝘴 𝘥𝘢𝘵𝘢 𝘴𝘦𝘲𝘶𝘦𝘯𝘵𝘪𝘢𝘭𝘭𝘺, 𝘵𝘩𝘪𝘴 𝘵𝘳𝘪𝘤𝘬 𝘦𝘯𝘴𝘶𝘳𝘦𝘴 𝘵𝘩𝘦𝘺 “𝘬𝘯𝘰𝘸” 𝘵𝘩𝘦 𝘱𝘰𝘴𝘪𝘵𝘪𝘰𝘯 𝘰𝘧 𝘦𝘢𝘤𝘩 𝘵𝘰𝘬𝘦𝘯.⁣⁣
⁣⁣
𝘓𝘢𝘺𝘦𝘳 𝘕𝘰𝘳𝘮𝘢𝘭𝘪𝘻𝘢𝘵𝘪𝘰𝘯 – 𝘚𝘵𝘢𝘣𝘪𝘭𝘪𝘻𝘪𝘯𝘨 𝘵𝘩𝘦 𝘭𝘦𝘢𝘳𝘯𝘪𝘯𝘨 𝘱𝘳𝘰𝘤𝘦𝘴𝘴⁣⁣
𝘐𝘵 𝘴𝘱𝘦𝘦𝘥𝘴 𝘶𝘱 𝘵𝘳𝘢𝘪𝘯𝘪𝘯𝘨 𝘢𝘯𝘥 𝘢𝘷𝘰𝘪𝘥𝘴 𝘷𝘢𝘯𝘪𝘴𝘩𝘪𝘯𝘨 𝘨𝘳𝘢𝘥𝘪𝘦𝘯𝘵𝘴, 𝘭𝘦𝘵𝘵𝘪𝘯𝘨 𝘮𝘰𝘥𝘦𝘭𝘴 𝘨𝘰 𝘥𝘦𝘦𝘱𝘦𝘳 𝘢𝘯𝘥 𝘭𝘦𝘢𝘳𝘯 𝘣𝘦𝘵𝘵𝘦𝘳.⁣⁣

👉 @codeprogrammer

Like and Share 👍
Please open Telegram to view this post
VIEW IN TELEGRAM
6👍3👏1🎉1
Forwarded from Code With Python
A cheat sheet about functions and techniques in Python: shows useful built-in functions, working with iterators, strings, and collections, as well as popular tricks with unpacking, zip, enumerate, map, filter, and dictionaries

@DataScience4
8
Convert complex regular expressions into readable Python code with Pregex

Templates like [a-zA-Z0-9._%+-]+@[a-zA-Z0-9.-]+\.[a-zA-Z]{2,} look intimidating and are hard to read. It's challenging for a team without experience in regular expressions to understand and modify such validations.

Pregex converts regular expressions into clear Python code from denoscriptive components.

What you get:
• The code itself explains the intent, even without comments
• You can modify it without knowledge of regular expressions
• You can compose patterns for complex validation
• If necessary, you can export it back to a regular regex

The tool is open source. Installation: pip install pregex

Full article: https://bit.ly/3IWAE5O
Run this code: https://bit.ly/4hdQjKM

👉 @codeprogrammer
Please open Telegram to view this post
VIEW IN TELEGRAM
3👍1
Create a perfect resume without messing with templates.

You write content in YAML and generate a PDF.

The project is called RenderCV, and it's open-source
https://github.com/rendercv/rendercv


👉 https://news.1rj.ru/str/DataScienceN
Please open Telegram to view this post
VIEW IN TELEGRAM
9🔥1
Forwarded from Code With Python
Checking the reliability of a password with Python!

Sometimes you need to quickly check how secure a password is. Let's look at a simple example using regular expressions - a good opportunity to practice with re and conditional logic.

Import the module:
import re


Create a password check function:
def check_password_strength(password):
    length = len(password) >= 8
    upper = re.search(r"[A-Z]", password)
    lower = re.search(r"[a-z]", password)
    digit = re.search(r"\d", password)
    special = re.search(r"[@$!%*?&]", password)

    if all([length, upper, lower, digit, special]):
        return " Reliable password"
    else:
        return "⚠️ Weak password"


Check a few examples:
print(check_password_strength("Qwerty123"))
print(check_password_strength("Qw!8zYt@1"))


Output example:
⚠️ Weak password  
Reliable password


🔥 Example of how to check a string for compliance with several conditions using code - and practice with regular expressions.

🚪 @DataScience4
Please open Telegram to view this post
VIEW IN TELEGRAM
5