Machine Learning with Python – Telegram
Machine Learning with Python
68.5K subscribers
1.31K photos
100 videos
173 files
977 links
Learn Machine Learning with hands-on Python tutorials, real-world code examples, and clear explanations for researchers and developers.

Admin: @HusseinSheikho || @Hussein_Sheikho
Download Telegram
Forwarded from Machine Learning
Media is too big
VIEW IN TELEGRAM
The single most undervalued fact of linear algebra: matrices are graphs, and graphs are matrices.

Encoding matrices as graphs is a cheat code, making complex behavior simple to study.

https://news.1rj.ru/str/DataScienceM
4👍4
📈_𝐋𝐨𝐠𝐢𝐬𝐭𝐢𝐜_𝐑𝐞𝐠𝐫𝐞𝐬𝐬𝐢𝐨𝐧⁣⁣.pdf
10.5 MB
📈 𝐋𝐨𝐠𝐢𝐬𝐭𝐢𝐜 𝐑𝐞𝐠𝐫𝐞𝐬𝐬𝐢𝐨𝐧⁣⁣

Why Logistic Regression is not regression⁣⁣
How Sigmoid (Logistic) function works⁣⁣
Binary vs Multiclass Logistic Regression⁣⁣
Decision boundaries and probability interpretation⁣⁣
Where Logistic Regression beats complex models⁣⁣
⁣⁣
🎯 𝐓𝐨𝐩 𝟏𝟎 𝐈𝐧𝐭𝐞𝐫𝐯𝐢𝐞𝐰 𝐐𝐮𝐞𝐬𝐭𝐢𝐨𝐧𝐬 (𝐌𝐮𝐬𝐭-𝐊𝐧𝐨𝐰)⁣⁣
⁣⁣
1️⃣ 𝘞𝘩𝘢𝘵 𝘪𝘴 𝘓𝘰𝘨𝘪𝘴𝘵𝘪𝘤 𝘙𝘦𝘨𝘳𝘦𝘴𝘴𝘪𝘰𝘯?⁣⁣
2️⃣ 𝘞𝘩𝘺 𝘪𝘴 𝘓𝘰𝘨𝘪𝘴𝘵𝘪𝘤 𝘙𝘦𝘨𝘳𝘦𝘴𝘴𝘪𝘰𝘯 𝘶𝘴𝘦𝘥 𝘧𝘰𝘳 𝘤𝘭𝘢𝘴𝘴𝘪𝘧𝘪𝘤𝘢𝘵𝘪𝘰𝘯, 𝘯𝘰𝘵 𝘳𝘦𝘨𝘳𝘦𝘴𝘴𝘪𝘰𝘯?⁣⁣
3️⃣ 𝘞𝘩𝘢𝘵 𝘪𝘴 𝘵𝘩𝘦 𝘚𝘪𝘨𝘮𝘰𝘪𝘥 𝘧𝘶𝘯𝘤𝘵𝘪𝘰𝘯 𝘢𝘯𝘥 𝘸𝘩𝘺 𝘪𝘴 𝘪𝘵 𝘯𝘦𝘦𝘥𝘦𝘥?⁣⁣
4️⃣ 𝘞𝘩𝘢𝘵 𝘪𝘴 𝘓𝘰𝘨 𝘓𝘰𝘴𝘴 / 𝘊𝘳𝘰𝘴𝘴-𝘌𝘯𝘵𝘳𝘰𝘱𝘺 𝘓𝘰𝘴𝘴?⁣⁣
5️⃣ 𝘋𝘪𝘧𝘧𝘦𝘳𝘦𝘯𝘤𝘦 𝘣𝘦𝘵𝘸𝘦𝘦𝘯 𝘓𝘰𝘨𝘪𝘴𝘵𝘪𝘤 𝘙𝘦𝘨𝘳𝘦𝘴𝘴𝘪𝘰𝘯 𝘢𝘯𝘥 𝘓𝘪𝘯𝘦𝘢𝘳 𝘙𝘦𝘨𝘳𝘦𝘴𝘴𝘪𝘰𝘯?⁣⁣
6️⃣ 𝘞𝘩𝘢𝘵 𝘪𝘴 𝘢 𝘥𝘦𝘤𝘪𝘴𝘪𝘰𝘯 𝘣𝘰𝘶𝘯𝘥𝘢𝘳𝘺?⁣⁣
7️⃣ 𝘏𝘰𝘸 𝘥𝘰𝘦𝘴 𝘙𝘦𝘨𝘶𝘭𝘢𝘳𝘪𝘻𝘢𝘵𝘪𝘰𝘯 (𝘓1 𝘷𝘴 𝘓2) 𝘸𝘰𝘳𝘬 𝘪𝘯 𝘓𝘰𝘨𝘪𝘴𝘵𝘪𝘤 𝘙𝘦𝘨𝘳𝘦𝘴𝘴𝘪𝘰𝘯?⁣⁣
8️⃣ 𝘞𝘩𝘢𝘵 𝘪𝘴 𝘖𝘥𝘥𝘴 𝘙𝘢𝘵𝘪𝘰 𝘢𝘯𝘥 𝘩𝘰𝘸 𝘥𝘰 𝘺𝘰𝘶 𝘪𝘯𝘵𝘦𝘳𝘱𝘳𝘦𝘵 𝘤𝘰𝘦𝘧𝘧𝘪𝘤𝘪𝘦𝘯𝘵𝘴?⁣⁣
9️⃣ 𝘏𝘰𝘸 𝘥𝘰 𝘺𝘰𝘶 𝘩𝘢𝘯𝘥𝘭𝘦 𝘤𝘭𝘢𝘴𝘴 𝘪𝘮𝘣𝘢𝘭𝘢𝘯𝘤𝘦?⁣⁣
🔟 𝘞𝘩𝘦𝘯 𝘴𝘩𝘰𝘶𝘭𝘥 𝘺𝘰𝘶 𝘢𝘷𝘰𝘪𝘥 𝘓𝘰𝘨𝘪𝘴𝘵𝘪𝘤 𝘙𝘦𝘨𝘳𝘦𝘴𝘴𝘪𝘰𝘯?⁣⁣

https://news.1rj.ru/str/CodeProgrammer
Please open Telegram to view this post
VIEW IN TELEGRAM
6
👩‍💻 FREE 2026 IT Learning Kits Giveaway

🔥Whether you're preparing for #Cisco #AWS #PMP #Python #Excel #Google #Microsoft #AI or any other in-demand certification – SPOTO has got you covered!

🎁 Explore Our FREE Study Resources
·IT Certs E-book : https://bit.ly/3YvSMHL
·IT exams skill Test : https://bit.ly/4r4VHnd
·Python, ITIL, PMP, Excel, Cyber Security, cloud, SQL Courses : https://bit.ly/4qNWl8r
·Free AI online preparation material and support tools : https://bit.ly/4qKiKTN

🔗 Need IT Certs Exam Help? contact: wa.link/dm4kyz
📲 Join IT Study Group for insider tips & expert support:
https://chat.whatsapp.com/BEQ9WrfLnpg1SgzGQw69oM
5👍2
𝐊_𝐍𝐞𝐚𝐫𝐞𝐬𝐭_𝐍𝐞𝐢𝐠𝐡𝐛𝐨𝐫𝐬_𝐊𝐍𝐍⁣.pdf
2.4 MB
🧠 𝐊-𝐍𝐞𝐚𝐫𝐞𝐬𝐭 𝐍𝐞𝐢𝐠𝐡𝐛𝐨𝐫𝐬 (𝐊𝐍𝐍)⁣

🔹 𝐖𝐡𝐚𝐭 𝐈 𝐜𝐨𝐯𝐞𝐫𝐞𝐝 𝐭𝐨𝐝𝐚𝐲⁣
𝐖𝐡𝐚𝐭 𝐊𝐍𝐍 𝐢𝐬 𝐚𝐧𝐝 𝐡𝐨𝐰 𝐢𝐭 𝐰𝐨𝐫𝐤𝐬⁣
𝐃𝐢𝐟𝐟𝐞𝐫𝐞𝐧𝐜𝐞 𝐛𝐞𝐭𝐰𝐞𝐞𝐧 𝐊𝐍𝐍 𝐟𝐨𝐫 𝐂𝐥𝐚𝐬𝐬𝐢𝐟𝐢𝐜𝐚𝐭𝐢𝐨𝐧 𝐯𝐬 𝐑𝐞𝐠𝐫𝐞𝐬𝐬𝐢𝐨𝐧⁣
𝐑𝐨𝐥𝐞 𝐨𝐟 𝐊 (𝐡𝐲𝐩𝐞𝐫𝐩𝐚𝐫𝐚𝐦𝐞𝐭𝐞𝐫)⁣
𝐃𝐢𝐬𝐭𝐚𝐧𝐜𝐞 𝐦𝐞𝐭𝐫𝐢𝐜𝐬: 𝐄𝐮𝐜𝐥𝐢𝐝𝐞𝐚𝐧 𝐯𝐬 𝐌𝐚𝐧𝐡𝐚𝐭𝐭𝐚𝐧⁣
𝐖𝐡𝐲 𝐊𝐍𝐍 𝐢𝐬 𝐜𝐚𝐥𝐥𝐞𝐝 𝐚 𝐥𝐚𝐳𝐲 / 𝐢𝐧𝐬𝐭𝐚𝐧𝐜𝐞-𝐛𝐚𝐬𝐞𝐝 𝐥𝐞𝐚𝐫𝐧𝐞𝐫⁣

🎯 𝐓𝐨𝐩 𝟏𝟎 𝐈𝐧𝐭𝐞𝐫𝐯𝐢𝐞𝐰 𝐐𝐮𝐞𝐬𝐭𝐢𝐨𝐧𝐬 (𝐌𝐮𝐬𝐭-𝐊𝐧𝐨𝐰)⁣

1️⃣ 𝘞𝘩𝘢𝘵 𝘪𝘴 𝘒-𝘕𝘦𝘢𝘳𝘦𝘴𝘵 𝘕𝘦𝘪𝘨𝘩𝘣𝘰𝘳𝘴 (𝘒𝘕𝘕)?⁣
2️⃣ 𝘞𝘩𝘺 𝘪𝘴 𝘒𝘕𝘕 𝘤𝘢𝘭𝘭𝘦𝘥 𝘢 𝘭𝘢𝘻𝘺 𝘭𝘦𝘢𝘳𝘯𝘪𝘯𝘨 𝘢𝘭𝘨𝘰𝘳𝘪𝘵𝘩𝘮?⁣
3️⃣ 𝘋𝘪𝘧𝘧𝘦𝘳𝘦𝘯𝘤𝘦 𝘣𝘦𝘵𝘸𝘦𝘦𝘯 𝘒𝘕𝘕 𝘤𝘭𝘢𝘴𝘴𝘪𝘧𝘪𝘤𝘢𝘵𝘪𝘰𝘯 𝘢𝘯𝘥 𝘒𝘕𝘕 𝘳𝘦𝘨𝘳𝘦𝘴𝘴𝘪𝘰𝘯?⁣
4️⃣ 𝘏𝘰𝘸 𝘥𝘰 𝘺𝘰𝘶 𝘤𝘩𝘰𝘰𝘴𝘦 𝘵𝘩𝘦 𝘷𝘢𝘭𝘶𝘦 𝘰𝘧 𝘒?⁣
5️⃣ 𝘞𝘩𝘢𝘵 𝘩𝘢𝘱𝘱𝘦𝘯𝘴 𝘸𝘩𝘦𝘯 𝘒 𝘪𝘴 𝘵𝘰𝘰 𝘴𝘮𝘢𝘭𝘭 𝘰𝘳 𝘵𝘰𝘰 𝘭𝘢𝘳𝘨𝘦?⁣
6️⃣ 𝘞𝘩𝘢𝘵 𝘥𝘪𝘴𝘵𝘢𝘯𝘤𝘦 𝘮𝘦𝘵𝘳𝘪𝘤𝘴 𝘢𝘳𝘦 𝘤𝘰𝘮𝘮𝘰𝘯𝘭𝘺 𝘶𝘴𝘦𝘥 𝘪𝘯 𝘒𝘕𝘕?⁣
7️⃣ 𝘞𝘩𝘺 𝘥𝘰𝘦𝘴 𝘒𝘕𝘕 𝘱𝘦𝘳𝘧𝘰𝘳𝘮 𝘱𝘰𝘰𝘳𝘭𝘺 𝘰𝘯 𝘩𝘪𝘨𝘩-𝘥𝘪𝘮𝘦𝘯𝘴𝘪𝘰𝘯𝘢𝘭 𝘥𝘢𝘵𝘢?⁣
8️⃣ 𝘞𝘩𝘢𝘵 𝘪𝘴 𝘵𝘩𝘦 𝘵𝘪𝘮𝘦 𝘤𝘰𝘮𝘱𝘭𝘦𝘹𝘪𝘵𝘺 𝘰𝘧 𝘒𝘕𝘕?⁣
9️⃣ 𝘏𝘰𝘸 𝘥𝘰 𝘒𝘋-𝘛𝘳𝘦𝘦 𝘢𝘯𝘥 𝘉𝘢𝘭𝘭-𝘛𝘳𝘦𝘦 𝘪𝘮𝘱𝘳𝘰𝘷𝘦 𝘒𝘕𝘕 𝘱𝘦𝘳𝘧𝘰𝘳𝘮𝘢𝘯𝘤𝘦?⁣
🔟 𝘞𝘩𝘦𝘯 𝘴𝘩𝘰𝘶𝘭𝘥 𝘺𝘰𝘶 𝘢𝘷𝘰𝘪𝘥 𝘶𝘴𝘪𝘯𝘨 #𝘒𝘕𝘕?⁣

https://news.1rj.ru/str/CodeProgrammer ⭐️
Please open Telegram to view this post
VIEW IN TELEGRAM
8
Forwarded from Machine Learning
4 learning paradigms in machine learning, explained visually:

1. Transfer Learning
2. Fine-tuning
3. Multi-task Learning
4. Federated Learning

👉 @DataScienceM
Please open Telegram to view this post
VIEW IN TELEGRAM
8
These Google Colab-notebooks help to implement all machine learning algorithms from scratch 🤯

Repo: https://udlbook.github.io/udlbook/


👉 @codeprogrammer
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
7👍5🔥1
⚡️ All cheat sheets for programmers in one place.

There's a lot of useful stuff inside: short, clear tips on languages, technologies, and frameworks.

No registration required and it's free.

https://overapi.com/

#python #php #Database #DataAnalysis #MachineLearning #AI #DeepLearning #LLMS

https://news.1rj.ru/str/CodeProgrammer ⚡️
Please open Telegram to view this post
VIEW IN TELEGRAM
11
🚀 Working on automation projects and need a fast, easy way to extract data?

easybits lets you set up compliant data extraction pipelines in minutes – no complex setup, no maintenance.

Set up data extraction in 4 simple steps:
📄 Upload an example document
🎯 Map the fields to extract
⚙️ Get clean, structured JSON (integration-ready)
🔗 Plug it straight into your noscripts or workflows via API

Fully secure and easy to use (GDPR + EU AI Act compliant), and API-ready for Python projects.

👇 Try it for free 👇
https://tglink.io/b4a3f0adced9
3🔥1