Machine Learning with Python – Telegram
Machine Learning with Python
68.6K subscribers
1.32K photos
100 videos
173 files
984 links
Learn Machine Learning with hands-on Python tutorials, real-world code examples, and clear explanations for researchers and developers.

Admin: @HusseinSheikho || @Hussein_Sheikho
Download Telegram
🐵Meet Fotbo — the VPS with a monkey mascot and zero BS.


The deal: Fast NVMe storage, European servers, full control. No surprise bills, no corporate jargon, no waiting days for support.
The specs: NVMe SSD that actually makes a difference 🌍 Netherlands • Poland • Germany 💰 Starting at €4.80/month (yeah, really) 🔧 Do whatever you want — it's your server 📊 Outperforms AWS, DigitalOcean & Vultr in benchmarks
Perfect for: Training neural networks without selling your kidney. Running Jupyter 24/7. Testing that crazy idea at 3 AM. Deploying models that actually need to scale. Scraping data without rate limits ruining your day.


🎁 -35% OFF FIRST MONTH Coupon: MONKEY35
https://fotbo.com/


Built by devs who got tired of overpriced cloud providers. Also, there's a monkey 🐒
8
This media is not supported in your browser
VIEW IN TELEGRAM
YOLO Training Template

Manual data labeling has become significantly more convenient. Now the process looks like in the usual labeling systems - you just outline the object with a frame and a bounding box is immediately created.

The platform allows:

• to upload your own dataset
• to label manually or auto-label via DINOv3
• to enrich the data if desired
• to train a #YOLO model on your own data
• to run inference immediately
• to export to ONNX or NCNN, which ensures compatibility with edge hardware and smartphones

All of this is available for free and can already be tested on #GitHub.

Repo:
https://github.com/computer-vision-with-marco/yolo-training-template

👍 Top Channels on Telegram 🌟
Please open Telegram to view this post
VIEW IN TELEGRAM
9👍1🔥1
🤖 Machine Learning Tutorials Repository

1. Python
2
. Computer Vision: Techniques, algorithms
3
. NLP
4.
Matplotlib
5. NumPy
6. Pandas
7.
MLOps
8. LLMs
9.
PyTorch/TensorFlow

git clone https://github.com/patchy631/machine-learning

🔗 GitHub: https://github.com/patchy631/machine-learning/tree/main

⭐️ https://news.1rj.ru/str/DataScienceT
112👍1🔥1
Collection of books on machine learning and artificial intelligence in PDF format

Repo: https://github.com/Ramakm/AI-ML-Book-References

#MACHINELEARNING #PYTHON #DATASCIENCE #DATAANALYSIS #DeepLearning

👉 @codeprogrammer
14🎉2👍1
Best GitHub repositories to learn AI from scratch in 2026:


1. Andrej Karpathy
https://github.com/karpathy/nn-zero-to-hero

2. Hugging Face Transformers
https://github.com/huggingface/transformers

3. FastAI/fastbook
https://github.com/fastai/fastbook

4. Made-With-ML
https://github.com/GokuMohandas/Made-With-ML

5. ML System Design
https://github.com/chiphuyen/machine-learning-systems-design

6. Awesome Generative AI guide
https://github.com/aishwaryanr/awesome-generative-ai-guide

7. Dive into Deep Learning
https://github.com/d2l-ai/d2l-en

🪞 @codeprogrammer Like & Share
Please open Telegram to view this post
VIEW IN TELEGRAM
210👍2
Господи, похоже, это канал о самых конченных и отвратительных выходках отечественных горе-бизнесменов.

Если ты думал, что ниже Вайлдберрис, К&Б и Пятерочки падать уже некуда, то ты сильно заблуждался.

Подписан — значит вооружен!
6🔥1
🗂 Cheat Sheet on Beautiful Soup 4 (bs4) in Python: HTML/XML Parsing Made Easy and Simple

Beautiful Soup — a library for extracting data from HTML and XML files, ideal for web scraping.

🔹 Installation
pip install beautifulsoup4


🔹 Import
from bs4 import BeautifulSoup
import requests


🔹 Basic Parsing
html_doc = "<html><body><p class='text'>Hello, world!</p></body></html>"
soup = BeautifulSoup(html_doc, 'html.parser')  # or 'lxml', 'html5lib'
print(soup.p.text)  # Hello, world!


🔹 Element Search
# First found element
first_p = soup.find('p')

# Search by class or attribute
text_elem = soup.find('p', class_='text')
text_elem = soup.find('p', {'class': 'text'})

# All elements
all_p = soup.find_all('p')
all_text_class = soup.find_all(class_='text')


🔹 Working with Attributes and Text
a_tag = soup.find('a')
print(a_tag['href&#39])    # value of the href attribute
print(a_tag.get_text()) # text inside the tag
print(a_tag.text)       # alternative


🔹 Navigating the Tree
# Moving to parent, children, siblings
parent = soup.p.parent
children = soup.ul.children
next_sibling = soup.p.next_sibling

# Finding the previous/next element
prev_elem = soup.find_previous('p')
next_elem = soup.find_next('div')


🔹 Parsing a Real Page
response = requests.get('https://example.com')
soup = BeautifulSoup(response.text, 'html. parser')
noscript = soup.noscript.text
links = [a['href'] for a in soup.find_all('a', href=True)]


🔹 CSS Selectors
# More powerful and concise search
items = soup.select('div.content > p.text')
first_item = soup.select_one('a.button')


💡 Where it's useful:
🟢 Web scraping and data collection
🟢 Processing HTML/XML reports
🟢 Automating data extraction from websites
🟢 Preparing data for analysis and machine learning


👩‍💻 @CodeProgrammer
Please open Telegram to view this post
VIEW IN TELEGRAM
13👍1