Programming Courses | Courses | archita phukan | Love Babbar | Coding Ninja | Durgasoft | ChatGPT prompt AI Prompt – Telegram
Programming Courses | Courses | archita phukan | Love Babbar | Coding Ninja | Durgasoft | ChatGPT prompt AI Prompt
2.95K subscribers
577 photos
12 videos
1 file
135 links
Programming
Coding
AI Websites

📡Network of #TheStarkArmy©

📌Shop : https://news.1rj.ru/str/TheStarkArmyShop/25

☎️ Paid Ads : @ReachtoStarkBot

Ads policy : https://bit.ly/2BxoT2O
Download Telegram
⌨️ Event Emitters in JavaScript

Event emitters decouple components, enabling scalable, event-driven architectures.

📖 Ideal For:
- UI interactions (clicks, form submissions)
- APIs/HTTP servers (request/response handling)
- Real-time apps (chat, notifications)
- Modular systems (plugins, micro-services)


@CodingCoursePro
Shared with Love
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
10 Chrome Extensions Every Developer Should Use

JSON Viewer – Beautify and view JSON data instantly
Wappalyzer – Identify the tech stack of any website
Web Developer – Adds powerful dev tools to your browser
ColorZilla – Pick and copy any color from a webpage
React Developer Tools – Debug and inspect React components
Dark Reader – Enable dark mode on every site
Session Buddy – Manage tabs and sessions like a pro
WhatFont – Instantly identify fonts on websites
Lighthouse – Audit performance, SEO, and accessibility
AI Prompt Genius – Manage and save prompts for AI tools

@CodingCoursePro
Shared with Love
React with your favorite emoji if you found a gem in here!
Please open Telegram to view this post
VIEW IN TELEGRAM
🧿 Use cases of top programming languages
Please open Telegram to view this post
VIEW IN TELEGRAM
🥰1
⌨️ CSS: Print Friendly CSS

@CodingCoursePro
Shared with Love
Please open Telegram to view this post
VIEW IN TELEGRAM
👍1
Web Development Skills Every Beginner Should Master 🌐⚡️

1️⃣ Core Foundations

• HTML tags you use daily
• CSS layouts with Flexbox and Grid
• JavaScript basics like loops, events, and DOM updates
• Responsive design for mobile-first pages

2️⃣ Frontend Essentials

• React for building components
• Next.js for routing and server rendering
• Tailwind CSS for fast styling
• State management with Context or Redux Toolkit

3️⃣ Backend Building Blocks

• APIs with Express.js
• Authentication with JWT
• Database queries with SQL
• Basic caching to speed up apps

4️⃣ Database Skills

• MySQL or PostgreSQL for structured data
• MongoDB for document data
• Redis for fast key-value storage

5️⃣ Developer Workflow

• Git for version control
• GitHub Actions for automation
• Branching workflows for clean code reviews

6️⃣ Testing and Debugging

• Chrome DevTools for tracking issues
• Postman for API checks
• Jest for JavaScript testing
• Logs for spotting backend errors

7️⃣ Deployment

• Vercel for frontend projects
• Render or Railway for full stack apps
• Docker for consistent environments

8️⃣ Design and UX Basics

• Figma for mockups
• UI patterns for navigation and layout
• Accessibility checks for real users

💡 Start with one simple project. Ship it. Improve it.

@CodingCoursePro
Shared with Love
💬 Double Tap ❤️” for more
Please open Telegram to view this post
VIEW IN TELEGRAM
👍1
🔰 Improve your coding logic

@CodingCoursePro
Shared with Love
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
from diffusers import StableDiffusionImg2ImgPipeline
import torch
from PIL import Image
import io
from google.colab import files
import matplotlib.pyplot as plt
import time

# Load model function
def load_model():
    model_id = "nitrosocke/Ghibli-Diffusion"  # Correct model ID
    dtype = torch.float16 if torch.cuda.is_available() else torch.float32
    print("Loading model...")
    pipe = StableDiffusionImg2ImgPipeline.from_pretrained(model_id, torch_dtype=dtype)
    pipe.to("cuda" if torch.cuda.is_available() else "cpu")
    pipe.enable_attention_slicing()  # Optimize memory usage
    print("Model loaded!")
    return pipe

# Function to generate Ghibli-style image
def generate_ghibli_image(image, pipe, strength):
    image = image.convert("RGB")
    image = image.resize((512, 512))  # Ensure proper size
   
    prompt = "Ghibli-style anime painting, soft pastel colors, highly detailed, masterpiece"
   
    print("Generating image...")
    start_time = time.time()
    result = pipe(prompt=prompt, image=image, strength=strength).images[0]
    print(f"Image generated in {time.time() - start_time:.2f} seconds!")
    return result

# Check for GPU
gpu_info = "GPU is available!" if torch.cuda.is_available() else "Warning: GPU not available. Processing will be slow."
print(gpu_info)

# Load the model
pipe = load_model()

# Upload image section
print("Please upload your image file:")
uploaded = files.upload()

if uploaded:
    file_name = list(uploaded.keys())[0]
    image = Image.open(io.BytesIO(uploaded[file_name]))
   
    # Display original image
    plt.figure(figsize=(5, 5))
    plt.imshow(image)
    plt.noscript("Original Image")
    plt.axis('off')
    plt.show()
   
    # Ask for strength input with error handling
    while True:
        try:
            strength = float(input("Enter stylization strength (0.3-0.8, recommended 0.6): "))
            strength = max(0.3, min(0.8, strength))  # Clamp between 0.3 and 0.8
            break
        except ValueError:
            print("Invalid input. Please enter a number between 0.3 and 0.8.")
   
    # Generate and display the result
    result_img = generate_ghibli_image(image, pipe, strength)
   
    plt.figure(figsize=(5, 5))
    plt.imshow(result_img)
    plt.noscript("Ghibli Portrait")
    plt.axis('off')
    plt.show()
   
    # Save the output image and offer download
    output_filename = f"ghibli_portrait_{file_name}"
    result_img.save(output_filename)
    files.download(output_filename)
    print(f"Image saved as {output_filename} and download initiated!")
else:
    print("No file was uploaded. Please run the cell again and upload an image.")


🚀 How to Generate Ghibli Images Using your Python Code?

🍵 Even You can make your own API

🌟 Just open below link in Chrome https://colab.research.google.com/ (They provide platform to run python code.)
❤️ Click + New Notebook (Once click open window like below).
🥷 Put Above code in “Start coding or generate with ai” & put below code.
🌭 Once you add code and click on run icon. It’s take 2 second for run
🧿 Wait untill upload your inage box appears.
💮 After Appears Choose file.
😱 Wait 1 to 2 minute. Your image ready & download automatic.
🍒 Generate Unlimited Ghibli Images for Free 🤫.
from diffusers import StableDiffusionImg2ImgPipeline
import torch
from PIL import Image
import io
from google.colab import files
import matplotlib.pyplot as plt
import time

# Load model function
def load_model():
    model_id = "nitrosocke/Ghibli-Diffusion"  # Correct model ID
    dtype = torch.float16 if torch.cuda.is_available() else torch.float32
    print("Loading model...")
    pipe = StableDiffusionImg2ImgPipeline.from_pretrained(model_id, torch_dtype=dtype)
    pipe.to("cuda" if torch.cuda.is_available() else "cpu")
    pipe.enable_attention_slicing()  # Optimize memory usage
    print("Model loaded!")
    return pipe

# Function to generate Ghibli-style image
def generate_ghibli_image(image, pipe, strength):
    image = image.convert("RGB")
    image = image.resize((512, 512))  # Ensure proper size
   
    prompt = "Ghibli-style anime painting, soft pastel colors, highly detailed, masterpiece"
   
    print("Generating image...")
    start_time = time.time()
    result = pipe(prompt=prompt, image=image, strength=strength).images[0]
    print(f"Image generated in {time.time() - start_time:.2f} seconds!")
    return result

# Check for GPU
gpu_info = "GPU is available!" if torch.cuda.is_available() else "Warning: GPU not available. Processing will be slow."
print(gpu_info)

# Load the model
pipe = load_model()

# Upload image section
print("Please upload your image file:")
uploaded = files.upload()

if uploaded:
    file_name = list(uploaded.keys())[0]
    image = Image.open(io.BytesIO(uploaded[file_name]))
   
    # Display original image
    plt.figure(figsize=(5, 5))
    plt.imshow(image)
    plt.noscript("Original Image")
    plt.axis('off')
    plt.show()
   
    # Ask for strength input with error handling
    while True:
        try:
            strength = float(input("Enter stylization strength (0.3-0.8, recommended 0.6): "))
            strength = max(0.3, min(0.8, strength))  # Clamp between 0.3 and 0.8
            break
        except ValueError:
            print("Invalid input. Please enter a number between 0.3 and 0.8.")
   
    # Generate and display the result
    result_img = generate_ghibli_image(image, pipe, strength)
   
    plt.figure(figsize=(5, 5))
    plt.imshow(result_img)
    plt.noscript("Ghibli Portrait")
    plt.axis('off')
    plt.show()
   
    # Save the output image and offer download
    output_filename = f"ghibli_portrait_{file_name}"
    result_img.save(output_filename)
    files.download(output_filename)
    print(f"Image saved as {output_filename} and download initiated!")
else:
    print("No file was uploaded. Please run the cell again and upload an image.")


🚀 How to Generate Ghibli Images Using your Python Code?

🍵 Even You can make your own API

🌟 Just open below link in Chrome https://colab.research.google.com/ (They provide platform to run python code.)
❤️ Click + New Notebook (Once click open window like below).
🥷 Put Above code in “Start coding or generate with ai” & put below code.
🌭 Once you add code and click on run icon. It’s take 2 second for run
🧿 Wait untill upload your inage box appears.
💮 After Appears Choose file.
😱 Wait 1 to 2 minute. Your image ready & download automatic.

🍒 Generate Unlimited Ghibli Images for Free 🤫.

@CodingCoursePro
Shared with Love
Please open Telegram to view this post
VIEW IN TELEGRAM
2👍1