🎞 'Tips and Tricks for Machine Learning' a live presentation from #KaggleDays Paris by Kaggle Grandmaster Stanislav Semenov.
https://t.co/yOoVKPL0Z0 //
https://t.co/yOoVKPL0Z0 //
YouTube
Kaggle Days Paris - "Tips and tricks for Machine Learning"
Stanislav Semenov "Tips and tricks for Machine Learning" Stanislav Semenov formerly held Kaggle’s number one ranking, shared some of his tricks for competiti...
Join us for a Workshop on "Higher-Order Interaction Networks" at @OxUniMaths on Sept 9-11, 2019!
Visit https://t.co/dXnXUtylwO for more information and to register your interest.
Visit https://t.co/dXnXUtylwO for more information and to register your interest.
🔸 Workshop: Oscillations, Transients and Fluctuations in Complex Networks (OTFCN)
July 1–3, 2019
Copenhagen, Denmark
For more information on the workshop, see: https://t.co/LX8M9tG0Jx
Deadlines:
- abstract submission (talks/posters): April 14, 2019
- registration: May 1, 2019
July 1–3, 2019
Copenhagen, Denmark
For more information on the workshop, see: https://t.co/LX8M9tG0Jx
Deadlines:
- abstract submission (talks/posters): April 14, 2019
- registration: May 1, 2019
Forwarded from مدرسهی فیزیک
Media is too big
VIEW IN TELEGRAM
Forwarded from مدرسهی فیزیک
Media is too big
VIEW IN TELEGRAM
Forwarded from مدرسهی فیزیک
Media is too big
VIEW IN TELEGRAM
This algorithm browses Wikipedia to auto-generate textbooks https://t.co/bExALBY6u0
#DeepLearning #MachineLearning #AI #DataScience
#DeepLearning #MachineLearning #AI #DataScience
“Rich data are revealing that complex dependencies between the nodes of a network may not be captured by models based on pairwise interactions. Higher-order network models go beyond these limitations”
https://t.co/vYBRPpUIJ7
https://t.co/vYBRPpUIJ7
🔥 Machine learning and the physical sciences
🔗 https://arxiv.org/pdf/1903.10563.pdf
📌 ABSTRACT
Machine learning encompasses a broad range of algorithms and modeling tools used for a vast array of data processing tasks, which has entered most scientific disciplines in recent years. We review in a selective way the recent research on the interface between machine learning and physical sciences.This includes conceptual developments in machine learning (ML) motivated by physical insights, applications of machine learning techniques to several domains in physics, and cross-fertilization between the two fields. After giving basic notion of machine learning methods and principles, we describe examples of how statistical physics is used to understand methods in ML. We then move to describe applications of ML methods in particle physics and cosmology, quantum many body physics, quantum computing, and chemical and material physics. We also highlight research and development into novel computing architectures aimed at accelerating ML. In each of the sections we describe recent successes as well as domain-specific methodology and challenges.
Giuseppe Carleo, Ignacio Cirac, Kyle Cranmer, Laurent Daudet, Maria Schuld, Naftali Tishby, Leslie Vogt-Maranto, Lenka Zdeborová
🔗 https://arxiv.org/pdf/1903.10563.pdf
📌 ABSTRACT
Machine learning encompasses a broad range of algorithms and modeling tools used for a vast array of data processing tasks, which has entered most scientific disciplines in recent years. We review in a selective way the recent research on the interface between machine learning and physical sciences.This includes conceptual developments in machine learning (ML) motivated by physical insights, applications of machine learning techniques to several domains in physics, and cross-fertilization between the two fields. After giving basic notion of machine learning methods and principles, we describe examples of how statistical physics is used to understand methods in ML. We then move to describe applications of ML methods in particle physics and cosmology, quantum many body physics, quantum computing, and chemical and material physics. We also highlight research and development into novel computing architectures aimed at accelerating ML. In each of the sections we describe recent successes as well as domain-specific methodology and challenges.
کارسوق علمداده - IPM
دورهی کارسوقهای علم داده تمام ابزار مورد نیاز علم داده در علوم علیالخصوص فیزیک را پوشش میدهد. این دوره با مباحث پایه آغاز شده و شرکتکنندگان در پایان اطلاعات کافی و توانایی حل مسئله خواهند داشت. با توجه به اهمیت این ابزار، فرصت شغلی وسیعتری در انتظار شرکتکنندگان خواهد بود. شرکتکنندگان حضوری ملزم به انجام تمرینات خواهند بود و در پایان دوره گواهینامهی شرکت دریافت خواهند کرد.
ویدئوی کلاسها ضبط و در شبکههای عمومی منتشر خواهد شد و افرادی که به طور غیر حضوری در انجام تمرینات شرکت کنند نیز بنا به درخواست گواهی دریافت خواهند کرد.
برای هماهنگی شرکت حضوری به آقای علیرضا وفاییصدر ایمیل (vafaei.sadr@gmail.com) بزنید.
🔗 اطلاعات بیشتر در:
http://physics.ipm.ac.ir/~vafaei/
🔸 اگر در تهران نيستيد میتوانيد در كلاسهای غيرحضوری شركت كنيد!
دورهی کارسوقهای علم داده تمام ابزار مورد نیاز علم داده در علوم علیالخصوص فیزیک را پوشش میدهد. این دوره با مباحث پایه آغاز شده و شرکتکنندگان در پایان اطلاعات کافی و توانایی حل مسئله خواهند داشت. با توجه به اهمیت این ابزار، فرصت شغلی وسیعتری در انتظار شرکتکنندگان خواهد بود. شرکتکنندگان حضوری ملزم به انجام تمرینات خواهند بود و در پایان دوره گواهینامهی شرکت دریافت خواهند کرد.
ویدئوی کلاسها ضبط و در شبکههای عمومی منتشر خواهد شد و افرادی که به طور غیر حضوری در انجام تمرینات شرکت کنند نیز بنا به درخواست گواهی دریافت خواهند کرد.
برای هماهنگی شرکت حضوری به آقای علیرضا وفاییصدر ایمیل (vafaei.sadr@gmail.com) بزنید.
🔗 اطلاعات بیشتر در:
http://physics.ipm.ac.ir/~vafaei/
علیرضا وفاییصدر
محقق پسادکتری پژوهشکدهی فیزیک، پژوهشگاه دانشهای بنیادی
🔸 اگر در تهران نيستيد میتوانيد در كلاسهای غيرحضوری شركت كنيد!
🎞 We all intuitively understand what is alive and what is not. Equally intuitively we know that time flows forward and the past is distinct from the future. Yet casting these ideas into a predictive mathematical framework and applying it to understand the unique science of living things has been extraordinarily challenging. We now know that the appropriate language for exploring these questions is the mathematics of chance. In other contexts, such as investment strategies which account for fluctuating stock values, we have had success in using the rules of chance to make profitable predictions. Can we do the same to better understand the laws of life and time?
https://www.aparat.com/v/k4h7e
About the SpeakerIyer-Biswas and her team have reported predicative scaling laws governing the stochastic growth and division of cells, and have developed a theory that reveals the emergence of a scalable, cellular unit of time. Her current work involves extending these results to thermodynamics of organismal computation, time-dependent phenomena involving cellular decision-making, and laws that dictate complex biological and social phenomena.
Using rapid, iterative feedback between theory and experiments, SFI External Professor Srividya Iyer-Biswas (Purdue University) works to discover the basic physical laws that govern the probabilistic behavior of single cells, and that transcend details of specific biological systems. Her research uses a top-down physics approach, rather than more traditional approaches that focus on the cartography of genetic networks and on molecular details.
https://www.aparat.com/v/k4h7e
آپارات - سرویس اشتراک ویدیو
SFI Community Lecture - Srividya Iyer-Biswas
Laws of Life, Time and Chance
We all intuitively understand what is alive and what is not. Equally intuitively, we know that time flows forward and the past is distinct from the future. Yet,...
We all intuitively understand what is alive and what is not. Equally intuitively, we know that time flows forward and the past is distinct from the future. Yet,...
🎞 "Introduction to Empirical Dynamic Modeling": a very nice video from the Sugihara Lab
"This movie demonstrates the relationship between time series and dynamic attractors"
https://t.co/XsrzlSc8BW
"This movie demonstrates the relationship between time series and dynamic attractors"
https://t.co/XsrzlSc8BW
YouTube
Introduction to Empirical Dynamic Modeling
This movie demonstrates the relationship between time series and dynamic attractors (manifolds, M). from: "Detecting Causality in Complex Ecosystems" (Scienc...
🔥 Can the laws of physics untangle traffic jams, stock markets, and other #complexsystems?
https://t.co/UNdXXBvuVI
https://t.co/UNdXXBvuVI
phys.org
Can the laws of physics untangle traffic jams, stock markets, and other complex systems?
In 1998 former tech consultant Hank Eskin launched a campaign to track dollar bills. Through the "Where's George?" initiative, dollars were stamped with messages about the currency tracking project, and ...
Forwarded from انجمن فیزیک ایران
✅ محمد رضا رحیمی تبار در شپرینگر با کتابی در حوزه فیزیک سیستم های پیچیده
دکتر محمدرضا رحیمی تبار استاد دانشکده فیزیک دانشگاه صنعتی شریف کتابی را با عنوان " آنالیز و بازسازی داده محور از سیستم های دینامیکی پیچیده و غیرخطی" Analysis and Data-Based Reconstruction of Complex Nonlinear Dynamical Systems را با انتشارات معتبر و معروف شپرینگر به چاپ رسانده است.دکتر محمدرضا ...
📣 متن کامل را در Instant View ⚡️ (دکمه پایین صفحه) و یا در وبگاه انجمن فیزیک ایران بخوانید:
🚩http://www.psi.ir/news2_fa.asp?id=2775
⏪ وبگاه انجمن فیزیک ایران:
🌍 http://www.psi.ir
✅ به کانال خبرى انجمن فیزیک ايران بپيوندید:
👇👇🏽👇👇🏽👇👇🏽👇
http://t.me/psinews
دکتر محمدرضا رحیمی تبار استاد دانشکده فیزیک دانشگاه صنعتی شریف کتابی را با عنوان " آنالیز و بازسازی داده محور از سیستم های دینامیکی پیچیده و غیرخطی" Analysis and Data-Based Reconstruction of Complex Nonlinear Dynamical Systems را با انتشارات معتبر و معروف شپرینگر به چاپ رسانده است.دکتر محمدرضا ...
📣 متن کامل را در Instant View ⚡️ (دکمه پایین صفحه) و یا در وبگاه انجمن فیزیک ایران بخوانید:
🚩http://www.psi.ir/news2_fa.asp?id=2775
⏪ وبگاه انجمن فیزیک ایران:
🌍 http://www.psi.ir
✅ به کانال خبرى انجمن فیزیک ايران بپيوندید:
👇👇🏽👇👇🏽👇👇🏽👇
http://t.me/psinews
t.me
محمد رضا رحیمی تبار در شپرینگر با کتابی در حوزه فیزیک سیستم های پیچیده
🚘 "Berlin 8 a.m." - the newest #ComplexityExplorable on traffic dynamics, congestion, and phantom traffic jams.
https://t.co/2umN9BcjiP
https://t.co/2umN9BcjiP
www.complexity-explorables.org
Berlin 8:00 a.m.
How speed variation may trigger persistent traffic congestion
🔹 In "complexity economics", people are not purely rational or self-interested, but reason with limited information
https://t.co/BGNMXzo58y
https://t.co/BGNMXzo58y
The Economist
Simple interactions can have unpredictable consequences
How researchers are grappling with the fundamental complexity of economics