𝟭𝟬𝟬𝟬+ 𝗙𝗿𝗲𝗲 𝗖𝗲𝗿𝘁𝗶𝗳𝗶𝗲𝗱 𝗖𝗼𝘂𝗿𝘀𝗲𝘀 𝗯𝘆 𝗜𝗻𝗳𝗼𝘀𝘆𝘀 – 𝗟𝗲𝗮𝗿𝗻, 𝗚𝗿𝗼𝘄, 𝗦𝘂𝗰𝗰𝗲𝗲𝗱!😍
🚀 Looking to upgrade your skills without spending a rupee?💰
Here’s your golden opportunity to unlock 1,000+ certified online courses across technology, business, communication, leadership, soft skills, and much more — all absolutely FREE on Infosys Springboard!🔥
𝐋𝐢𝐧𝐤👇:-
https://pdlink.in/43UcmQ7
Save this blog, sign up, and start your upskilling journey today!✅️
🚀 Looking to upgrade your skills without spending a rupee?💰
Here’s your golden opportunity to unlock 1,000+ certified online courses across technology, business, communication, leadership, soft skills, and much more — all absolutely FREE on Infosys Springboard!🔥
𝐋𝐢𝐧𝐤👇:-
https://pdlink.in/43UcmQ7
Save this blog, sign up, and start your upskilling journey today!✅️
❤1
DSA (Data Structures and Algorithms) Essential Topics for Interviews
1️⃣ Arrays and Strings
Basic operations (insert, delete, update)
Two-pointer technique
Sliding window
Prefix sum
Kadane’s algorithm
Subarray problems
2️⃣ Linked List
Singly & Doubly Linked List
Reverse a linked list
Detect loop (Floyd’s Cycle)
Merge two sorted lists
Intersection of linked lists
3️⃣ Stack & Queue
Stack using array or linked list
Queue and Circular Queue
Monotonic Stack/Queue
LRU Cache (LinkedHashMap/Deque)
Infix to Postfix conversion
4️⃣ Hashing
HashMap, HashSet
Frequency counting
Two Sum problem
Group Anagrams
Longest Consecutive Sequence
5️⃣ Recursion & Backtracking
Base cases and recursive calls
Subsets, permutations
N-Queens problem
Sudoku solver
Word search
6️⃣ Trees & Binary Trees
Traversals (Inorder, Preorder, Postorder)
Height and Diameter
Balanced Binary Tree
Lowest Common Ancestor (LCA)
Serialize & Deserialize Tree
7️⃣ Binary Search Trees (BST)
Search, Insert, Delete
Validate BST
Kth smallest/largest element
Convert BST to DLL
8️⃣ Heaps & Priority Queues
Min Heap / Max Heap
Heapify
Top K elements
Merge K sorted lists
Median in a stream
9️⃣ Graphs
Representations (adjacency list/matrix)
DFS, BFS
Cycle detection (directed & undirected)
Topological Sort
Dijkstra’s & Bellman-Ford algorithm
Union-Find (Disjoint Set)
10️⃣ Dynamic Programming (DP)
0/1 Knapsack
Longest Common Subsequence
Matrix Chain Multiplication
DP on subsequences
Memoization vs Tabulation
11️⃣ Greedy Algorithms
Activity selection
Huffman coding
Fractional knapsack
Job scheduling
12️⃣ Tries
Insert and search a word
Word search
Auto-complete feature
13️⃣ Bit Manipulation
XOR, AND, OR basics
Check if power of 2
Single Number problem
Count set bits
Coding Interview Resources: https://whatsapp.com/channel/0029VammZijATRSlLxywEC3X
ENJOY LEARNING 👍👍
1️⃣ Arrays and Strings
Basic operations (insert, delete, update)
Two-pointer technique
Sliding window
Prefix sum
Kadane’s algorithm
Subarray problems
2️⃣ Linked List
Singly & Doubly Linked List
Reverse a linked list
Detect loop (Floyd’s Cycle)
Merge two sorted lists
Intersection of linked lists
3️⃣ Stack & Queue
Stack using array or linked list
Queue and Circular Queue
Monotonic Stack/Queue
LRU Cache (LinkedHashMap/Deque)
Infix to Postfix conversion
4️⃣ Hashing
HashMap, HashSet
Frequency counting
Two Sum problem
Group Anagrams
Longest Consecutive Sequence
5️⃣ Recursion & Backtracking
Base cases and recursive calls
Subsets, permutations
N-Queens problem
Sudoku solver
Word search
6️⃣ Trees & Binary Trees
Traversals (Inorder, Preorder, Postorder)
Height and Diameter
Balanced Binary Tree
Lowest Common Ancestor (LCA)
Serialize & Deserialize Tree
7️⃣ Binary Search Trees (BST)
Search, Insert, Delete
Validate BST
Kth smallest/largest element
Convert BST to DLL
8️⃣ Heaps & Priority Queues
Min Heap / Max Heap
Heapify
Top K elements
Merge K sorted lists
Median in a stream
9️⃣ Graphs
Representations (adjacency list/matrix)
DFS, BFS
Cycle detection (directed & undirected)
Topological Sort
Dijkstra’s & Bellman-Ford algorithm
Union-Find (Disjoint Set)
10️⃣ Dynamic Programming (DP)
0/1 Knapsack
Longest Common Subsequence
Matrix Chain Multiplication
DP on subsequences
Memoization vs Tabulation
11️⃣ Greedy Algorithms
Activity selection
Huffman coding
Fractional knapsack
Job scheduling
12️⃣ Tries
Insert and search a word
Word search
Auto-complete feature
13️⃣ Bit Manipulation
XOR, AND, OR basics
Check if power of 2
Single Number problem
Count set bits
Coding Interview Resources: https://whatsapp.com/channel/0029VammZijATRSlLxywEC3X
ENJOY LEARNING 👍👍
❤1
𝗙𝗥𝗘𝗘 𝗢𝗻𝗹𝗶𝗻𝗲 𝗔𝗜 𝗠𝗮𝘀𝘁𝗲𝗿𝗰𝗹𝗮𝘀𝘀 𝗕𝘆 𝗠𝗶𝗰𝗿𝗼𝘀𝗼𝗳𝘁’𝘀 𝗦𝗲𝗻𝗶𝗼𝗿 𝗗𝗮𝘁𝗮 𝗦𝗰𝗶𝗲𝗻𝘁𝗶𝘀𝘁😍
Become an AI-Powered Engineer In 2025
𝗛𝗶𝗴𝗵𝗹𝗶𝗴𝗵𝘁𝘀:-
- Build Real-World Agentic AI Systems
- Led by a Microsoft AI Specialist
- Live Q&A Sessions
𝗘𝗹𝗶𝗴𝗶𝗯𝗶𝗹𝗶𝘁𝘆:- Experienced Professionals
𝗥𝗲𝗴𝗶𝘀𝘁𝗲𝗿 𝗙𝗼𝗿 𝗙𝗥𝗘𝗘👇:-
https://pdlink.in/4n0gkPW
Date & Time:- 18 June 2025,7 PM IST
🏃♂️Limited Slots – Register Now!
Become an AI-Powered Engineer In 2025
𝗛𝗶𝗴𝗵𝗹𝗶𝗴𝗵𝘁𝘀:-
- Build Real-World Agentic AI Systems
- Led by a Microsoft AI Specialist
- Live Q&A Sessions
𝗘𝗹𝗶𝗴𝗶𝗯𝗶𝗹𝗶𝘁𝘆:- Experienced Professionals
𝗥𝗲𝗴𝗶𝘀𝘁𝗲𝗿 𝗙𝗼𝗿 𝗙𝗥𝗘𝗘👇:-
https://pdlink.in/4n0gkPW
Date & Time:- 18 June 2025,7 PM IST
🏃♂️Limited Slots – Register Now!
📊 Data Science Essentials: What Every Data Enthusiast Should Know!
1️⃣ Understand Your Data
Always start with data exploration. Check for missing values, outliers, and overall distribution to avoid misleading insights.
2️⃣ Data Cleaning Matters
Noisy data leads to inaccurate predictions. Standardize formats, remove duplicates, and handle missing data effectively.
3️⃣ Use Denoscriptive & Inferential Statistics
Mean, median, mode, variance, standard deviation, correlation, hypothesis testing—these form the backbone of data interpretation.
4️⃣ Master Data Visualization
Bar charts, histograms, scatter plots, and heatmaps make insights more accessible and actionable.
5️⃣ Learn SQL for Efficient Data Extraction
Write optimized queries (
6️⃣ Build Strong Programming Skills
Python (Pandas, NumPy, Scikit-learn) and R are essential for data manipulation and analysis.
7️⃣ Understand Machine Learning Basics
Know key algorithms—linear regression, decision trees, random forests, and clustering—to develop predictive models.
8️⃣ Learn Dashboarding & Storytelling
Power BI and Tableau help convert raw data into actionable insights for stakeholders.
🔥 Pro Tip: Always cross-check your results with different techniques to ensure accuracy!
Data Science Learning Series: https://whatsapp.com/channel/0029Va8v3eo1NCrQfGMseL2D
DOUBLE TAP ❤️ IF YOU FOUND THIS HELPFUL!
1️⃣ Understand Your Data
Always start with data exploration. Check for missing values, outliers, and overall distribution to avoid misleading insights.
2️⃣ Data Cleaning Matters
Noisy data leads to inaccurate predictions. Standardize formats, remove duplicates, and handle missing data effectively.
3️⃣ Use Denoscriptive & Inferential Statistics
Mean, median, mode, variance, standard deviation, correlation, hypothesis testing—these form the backbone of data interpretation.
4️⃣ Master Data Visualization
Bar charts, histograms, scatter plots, and heatmaps make insights more accessible and actionable.
5️⃣ Learn SQL for Efficient Data Extraction
Write optimized queries (
SELECT, JOIN, GROUP BY, WHERE) to retrieve relevant data from databases.6️⃣ Build Strong Programming Skills
Python (Pandas, NumPy, Scikit-learn) and R are essential for data manipulation and analysis.
7️⃣ Understand Machine Learning Basics
Know key algorithms—linear regression, decision trees, random forests, and clustering—to develop predictive models.
8️⃣ Learn Dashboarding & Storytelling
Power BI and Tableau help convert raw data into actionable insights for stakeholders.
🔥 Pro Tip: Always cross-check your results with different techniques to ensure accuracy!
Data Science Learning Series: https://whatsapp.com/channel/0029Va8v3eo1NCrQfGMseL2D
DOUBLE TAP ❤️ IF YOU FOUND THIS HELPFUL!
❤1
Creating a data science and machine learning project involves several steps, from defining the problem to deploying the model. Here is a general outline of how you can create a data science and ML project:
1. Define the Problem: Start by clearly defining the problem you want to solve. Understand the business context, the goals of the project, and what insights or predictions you aim to derive from the data.
2. Collect Data: Gather relevant data that will help you address the problem. This could involve collecting data from various sources, such as databases, APIs, CSV files, or web scraping.
3. Data Preprocessing: Clean and preprocess the data to make it suitable for analysis and modeling. This may involve handling missing values, encoding categorical variables, scaling features, and other data cleaning tasks.
4. Exploratory Data Analysis (EDA): Perform exploratory data analysis to understand the data better. Visualize the data, identify patterns, correlations, and outliers that may impact your analysis.
5. Feature Engineering: Create new features or transform existing features to improve the performance of your machine learning model. Feature engineering is crucial for building a successful ML model.
6. Model Selection: Choose the appropriate machine learning algorithm based on the problem you are trying to solve (classification, regression, clustering, etc.). Experiment with different models and hyperparameters to find the best-performing one.
7. Model Training: Split your data into training and testing sets and train your machine learning model on the training data. Evaluate the model's performance on the testing data using appropriate metrics.
8. Model Evaluation: Evaluate the performance of your model using metrics like accuracy, precision, recall, F1-score, ROC-AUC, etc. Make sure to analyze the results and iterate on your model if needed.
9. Deployment: Once you have a satisfactory model, deploy it into production. This could involve creating an API for real-time predictions, integrating it into a web application, or any other method of making your model accessible.
10. Monitoring and Maintenance: Monitor the performance of your deployed model and ensure that it continues to perform well over time. Update the model as needed based on new data or changes in the problem domain.
1. Define the Problem: Start by clearly defining the problem you want to solve. Understand the business context, the goals of the project, and what insights or predictions you aim to derive from the data.
2. Collect Data: Gather relevant data that will help you address the problem. This could involve collecting data from various sources, such as databases, APIs, CSV files, or web scraping.
3. Data Preprocessing: Clean and preprocess the data to make it suitable for analysis and modeling. This may involve handling missing values, encoding categorical variables, scaling features, and other data cleaning tasks.
4. Exploratory Data Analysis (EDA): Perform exploratory data analysis to understand the data better. Visualize the data, identify patterns, correlations, and outliers that may impact your analysis.
5. Feature Engineering: Create new features or transform existing features to improve the performance of your machine learning model. Feature engineering is crucial for building a successful ML model.
6. Model Selection: Choose the appropriate machine learning algorithm based on the problem you are trying to solve (classification, regression, clustering, etc.). Experiment with different models and hyperparameters to find the best-performing one.
7. Model Training: Split your data into training and testing sets and train your machine learning model on the training data. Evaluate the model's performance on the testing data using appropriate metrics.
8. Model Evaluation: Evaluate the performance of your model using metrics like accuracy, precision, recall, F1-score, ROC-AUC, etc. Make sure to analyze the results and iterate on your model if needed.
9. Deployment: Once you have a satisfactory model, deploy it into production. This could involve creating an API for real-time predictions, integrating it into a web application, or any other method of making your model accessible.
10. Monitoring and Maintenance: Monitor the performance of your deployed model and ensure that it continues to perform well over time. Update the model as needed based on new data or changes in the problem domain.
❤1
Which programming language should I use on interview?
Companies usually let you choose, in which case you should use your most comfortable language. If you know a bunch of languages, prefer one that lets you express more with fewer characters and fewer lines of code, like Python or Ruby. It keeps your whiteboard cleaner.
Try to stick with the same language for the whole interview, but sometimes you might want to switch languages for a question. E.g., processing a file line by line will be far easier in Python than in C++.
Sometimes, though, your interviewer will do this thing where they have a pet question that’s, for example, C-specific. If you list C on your resume, they’ll ask it.
So keep that in mind! If you’re not confident with a language, make that clear on your resume. Put your less-strong languages under a header like ‘Working Knowledge.’
Companies usually let you choose, in which case you should use your most comfortable language. If you know a bunch of languages, prefer one that lets you express more with fewer characters and fewer lines of code, like Python or Ruby. It keeps your whiteboard cleaner.
Try to stick with the same language for the whole interview, but sometimes you might want to switch languages for a question. E.g., processing a file line by line will be far easier in Python than in C++.
Sometimes, though, your interviewer will do this thing where they have a pet question that’s, for example, C-specific. If you list C on your resume, they’ll ask it.
So keep that in mind! If you’re not confident with a language, make that clear on your resume. Put your less-strong languages under a header like ‘Working Knowledge.’
❤2
Machine Learning Algorithm:
1. Linear Regression:
- Imagine drawing a straight line on a graph to show the relationship between two things, like how the height of a plant might relate to the amount of sunlight it gets.
2. Decision Trees:
- Think of a game where you have to answer yes or no questions to find an object. It's like a flowchart helping you decide what the object is based on your answers.
3. Random Forest:
- Picture a group of friends making decisions together. Random Forest is like combining the opinions of many friends to make a more reliable decision.
4. Support Vector Machines (SVM):
- Imagine drawing a line to separate different types of things, like putting all red balls on one side and blue balls on the other, with the line in between them.
5. k-Nearest Neighbors (kNN):
- Pretend you have a collection of toys, and you want to find out which toys are similar to a new one. kNN is like asking your friends which toys are closest in looks to the new one.
6. Naive Bayes:
- Think of a detective trying to solve a mystery. Naive Bayes is like the detective making guesses based on the probability of certain clues leading to the culprit.
7. K-Means Clustering:
- Imagine sorting your toys into different groups based on their similarities, like putting all the cars in one group and all the dolls in another.
8. Hierarchical Clustering:
- Picture organizing your toys into groups, and then those groups into bigger groups. It's like creating a family tree for your toys based on their similarities.
9. Principal Component Analysis (PCA):
- Suppose you have many different measurements for your toys, and PCA helps you find the most important ones to understand and compare them easily.
10. Neural Networks (Deep Learning):
- Think of a robot brain with lots of interconnected parts. Each part helps the robot understand different aspects of things, like recognizing shapes or colors.
11. Gradient Boosting algorithms:
- Imagine you are trying to reach the top of a hill, and each time you take a step, you learn from the mistakes of the previous step to get closer to the summit. XGBoost and LightGBM are like smart ways of learning from those steps.
Share with credits: https://whatsapp.com/channel/0029Va8v3eo1NCrQfGMseL2D
ENJOY LEARNING 👍👍
1. Linear Regression:
- Imagine drawing a straight line on a graph to show the relationship between two things, like how the height of a plant might relate to the amount of sunlight it gets.
2. Decision Trees:
- Think of a game where you have to answer yes or no questions to find an object. It's like a flowchart helping you decide what the object is based on your answers.
3. Random Forest:
- Picture a group of friends making decisions together. Random Forest is like combining the opinions of many friends to make a more reliable decision.
4. Support Vector Machines (SVM):
- Imagine drawing a line to separate different types of things, like putting all red balls on one side and blue balls on the other, with the line in between them.
5. k-Nearest Neighbors (kNN):
- Pretend you have a collection of toys, and you want to find out which toys are similar to a new one. kNN is like asking your friends which toys are closest in looks to the new one.
6. Naive Bayes:
- Think of a detective trying to solve a mystery. Naive Bayes is like the detective making guesses based on the probability of certain clues leading to the culprit.
7. K-Means Clustering:
- Imagine sorting your toys into different groups based on their similarities, like putting all the cars in one group and all the dolls in another.
8. Hierarchical Clustering:
- Picture organizing your toys into groups, and then those groups into bigger groups. It's like creating a family tree for your toys based on their similarities.
9. Principal Component Analysis (PCA):
- Suppose you have many different measurements for your toys, and PCA helps you find the most important ones to understand and compare them easily.
10. Neural Networks (Deep Learning):
- Think of a robot brain with lots of interconnected parts. Each part helps the robot understand different aspects of things, like recognizing shapes or colors.
11. Gradient Boosting algorithms:
- Imagine you are trying to reach the top of a hill, and each time you take a step, you learn from the mistakes of the previous step to get closer to the summit. XGBoost and LightGBM are like smart ways of learning from those steps.
Share with credits: https://whatsapp.com/channel/0029Va8v3eo1NCrQfGMseL2D
ENJOY LEARNING 👍👍
❤2
Complete Roadmap to learn Machine Learning and Artificial Intelligence
👇👇
Week 1-2: Introduction to Machine Learning
- Learn the basics of Python programming language (if you are not already familiar with it)
- Understand the fundamentals of Machine Learning concepts such as supervised learning, unsupervised learning, and reinforcement learning
- Study linear algebra and calculus basics
- Complete online courses like Andrew Ng's Machine Learning course on Coursera
Week 3-4: Deep Learning Fundamentals
- Dive into neural networks and deep learning
- Learn about different types of neural networks like Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs)
- Implement deep learning models using frameworks like TensorFlow or PyTorch
- Complete online courses like Deep Learning Specialization on Coursera
Week 5-6: Natural Language Processing (NLP) and Computer Vision
- Explore NLP techniques such as tokenization, word embeddings, and sentiment analysis
- Dive into computer vision concepts like image classification, object detection, and image segmentation
- Work on projects involving NLP and Computer Vision applications
Week 7-8: Reinforcement Learning and AI Applications
- Learn about Reinforcement Learning algorithms like Q-learning and Deep Q Networks
- Explore AI applications in fields like healthcare, finance, and autonomous vehicles
- Work on a final project that combines different aspects of Machine Learning and AI
Additional Tips:
- Practice coding regularly to strengthen your programming skills
- Join online communities like Kaggle or GitHub to collaborate with other learners
- Read research papers and articles to stay updated on the latest advancements in the field
Pro Tip: Roadmap won't help unless you start working on it consistently. Start working on projects as early as possible.
2 months are good as a starting point to get grasp the basics of ML & AI but mastering it is very difficult as AI keeps evolving every day.
Best Resources to learn ML & AI 👇
Learn Python for Free
Prompt Engineering Course
Prompt Engineering Guide
Data Science Course
Google Cloud Generative AI Path
Unlock the power of Generative AI Models
Machine Learning with Python Free Course
Machine Learning Free Book
Deep Learning Nanodegree Program with Real-world Projects
AI, Machine Learning and Deep Learning
Join @free4unow_backup for more free courses
ENJOY LEARNING👍👍
👇👇
Week 1-2: Introduction to Machine Learning
- Learn the basics of Python programming language (if you are not already familiar with it)
- Understand the fundamentals of Machine Learning concepts such as supervised learning, unsupervised learning, and reinforcement learning
- Study linear algebra and calculus basics
- Complete online courses like Andrew Ng's Machine Learning course on Coursera
Week 3-4: Deep Learning Fundamentals
- Dive into neural networks and deep learning
- Learn about different types of neural networks like Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs)
- Implement deep learning models using frameworks like TensorFlow or PyTorch
- Complete online courses like Deep Learning Specialization on Coursera
Week 5-6: Natural Language Processing (NLP) and Computer Vision
- Explore NLP techniques such as tokenization, word embeddings, and sentiment analysis
- Dive into computer vision concepts like image classification, object detection, and image segmentation
- Work on projects involving NLP and Computer Vision applications
Week 7-8: Reinforcement Learning and AI Applications
- Learn about Reinforcement Learning algorithms like Q-learning and Deep Q Networks
- Explore AI applications in fields like healthcare, finance, and autonomous vehicles
- Work on a final project that combines different aspects of Machine Learning and AI
Additional Tips:
- Practice coding regularly to strengthen your programming skills
- Join online communities like Kaggle or GitHub to collaborate with other learners
- Read research papers and articles to stay updated on the latest advancements in the field
Pro Tip: Roadmap won't help unless you start working on it consistently. Start working on projects as early as possible.
2 months are good as a starting point to get grasp the basics of ML & AI but mastering it is very difficult as AI keeps evolving every day.
Best Resources to learn ML & AI 👇
Learn Python for Free
Prompt Engineering Course
Prompt Engineering Guide
Data Science Course
Google Cloud Generative AI Path
Unlock the power of Generative AI Models
Machine Learning with Python Free Course
Machine Learning Free Book
Deep Learning Nanodegree Program with Real-world Projects
AI, Machine Learning and Deep Learning
Join @free4unow_backup for more free courses
ENJOY LEARNING👍👍
❤2
An Artificial Neuron Network (ANN), popularly known as Neural Network is a computational model based on the structure and functions of biological neural networks. It is like an artificial human nervous system for receiving, processing, and transmitting information in terms of Computer Science.
Basically, there are 3 different layers in a neural network :
Input Layer (All the inputs are fed in the model through this layer)
Hidden Layers (There can be more than one hidden layers which are used for processing the inputs received from the input layers)
Output Layer (The data after processing is made available at the output layer)
Graph data can be used with a lot of learning tasks contain a lot rich relation data among elements. For example, modeling physics system, predicting protein interface, and classifying diseases require that a model learns from graph inputs. Graph reasoning models can also be used for learning from non-structural data like texts and images and reasoning on extracted structures.
Basically, there are 3 different layers in a neural network :
Input Layer (All the inputs are fed in the model through this layer)
Hidden Layers (There can be more than one hidden layers which are used for processing the inputs received from the input layers)
Output Layer (The data after processing is made available at the output layer)
Graph data can be used with a lot of learning tasks contain a lot rich relation data among elements. For example, modeling physics system, predicting protein interface, and classifying diseases require that a model learns from graph inputs. Graph reasoning models can also be used for learning from non-structural data like texts and images and reasoning on extracted structures.
❤2
🖥 Top Programming Languages to learn in 2025 - [Part 1] 🖥
1. JavaScript
- learnjavanoscript.online
- https://news.1rj.ru/str/javanoscript_courses/1001
- learn-js.org
2. Java
- learnjavaonline.org
- javatpoint.com
3. C#
- learncs.org
- w3schools.com
4. TypeScript
- Typenoscriptlang.org
- learntypenoscript.dev
5. Rust
- rust-lang.org
- exercism.org
1. JavaScript
- learnjavanoscript.online
- https://news.1rj.ru/str/javanoscript_courses/1001
- learn-js.org
2. Java
- learnjavaonline.org
- javatpoint.com
3. C#
- learncs.org
- w3schools.com
4. TypeScript
- Typenoscriptlang.org
- learntypenoscript.dev
5. Rust
- rust-lang.org
- exercism.org
❤1
JavaScript (JS) roadmap:
1. Basic Fundamentals:
- Variables, data types, and operators.
- Control structures like loops and conditionals.
- Functions and scope.
2. DOM Manipulation:
- Access and modify HTML and CSS using JavaScript.
- Event handling.
3. Asynchronous Programming:
- Promises and async/await for handling asynchronous operations.
4. ES6 and Modern JavaScript:
- Arrow functions, template literals, and destructuring.
- Modules for code organization.
- Classes for object-oriented programming.
5. Popular Libraries and Frameworks:
- Learn libraries like jQuery or frameworks like React, Angular, or Vue depending on your project needs.
6. Package Management:
- Tools like npm or yarn for managing dependencies.
7. Build Tools:
- Webpack, Babel, and other tools for bundling and transpiling.
8. API Interaction:
- Fetch or Axios for making API requests.
9. State Management (For Frameworks):
- Redux for React, Vuex for Vue, etc.
10. Testing:
- Learn testing frameworks like Jest.
11. Version Control:
- Git for code versioning and collaboration.
12. Continuous Integration (CI) and Deployment:
- Travis CI, Jenkins, or others for automating testing and deployment.
13. Server-Side JavaScript (Optional):
- Node.js for server-side development.
14. Advanced Topics (Optional):
- WebSockets, WebRTC, Progressive Web Apps (PWAs), and more.
This roadmap covers the foundational knowledge and key steps in a JavaScript developer's journey. You can explore more deeply into areas that align with your specific goals and projects.
1. Basic Fundamentals:
- Variables, data types, and operators.
- Control structures like loops and conditionals.
- Functions and scope.
2. DOM Manipulation:
- Access and modify HTML and CSS using JavaScript.
- Event handling.
3. Asynchronous Programming:
- Promises and async/await for handling asynchronous operations.
4. ES6 and Modern JavaScript:
- Arrow functions, template literals, and destructuring.
- Modules for code organization.
- Classes for object-oriented programming.
5. Popular Libraries and Frameworks:
- Learn libraries like jQuery or frameworks like React, Angular, or Vue depending on your project needs.
6. Package Management:
- Tools like npm or yarn for managing dependencies.
7. Build Tools:
- Webpack, Babel, and other tools for bundling and transpiling.
8. API Interaction:
- Fetch or Axios for making API requests.
9. State Management (For Frameworks):
- Redux for React, Vuex for Vue, etc.
10. Testing:
- Learn testing frameworks like Jest.
11. Version Control:
- Git for code versioning and collaboration.
12. Continuous Integration (CI) and Deployment:
- Travis CI, Jenkins, or others for automating testing and deployment.
13. Server-Side JavaScript (Optional):
- Node.js for server-side development.
14. Advanced Topics (Optional):
- WebSockets, WebRTC, Progressive Web Apps (PWAs), and more.
This roadmap covers the foundational knowledge and key steps in a JavaScript developer's journey. You can explore more deeply into areas that align with your specific goals and projects.
❤1
HTML Tags List.pdf
115.1 KB
🔰 Free HTML Tag List 📝📚
React ❤️ for more like this
Well done guys, will share the cloud opportunity next week 😍
React ❤️ for more like this
Well done guys, will share the cloud opportunity next week 😍
❤1
𝐈𝐦𝐩𝐨𝐫𝐭𝐢𝐧𝐠 𝐍𝐞𝐜𝐞𝐬𝐬𝐚𝐫𝐲 𝐋𝐢𝐛𝐫𝐚𝐫𝐢𝐞𝐬:
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
𝐋𝐨𝐚𝐝𝐢𝐧𝐠 𝐭𝐡𝐞 𝐃𝐚𝐭𝐚𝐬𝐞𝐭:
df = pd.read_csv('your_dataset.csv')
𝐈𝐧𝐢𝐭𝐢𝐚𝐥 𝐃𝐚𝐭𝐚 𝐈𝐧𝐬𝐩𝐞𝐜𝐭𝐢𝐨𝐧:
1- View the first few rows:
df.head()
2- Summary of the dataset:
df.info()
3- Statistical summary:
df.describe()
𝐇𝐚𝐧𝐝𝐥𝐢𝐧𝐠 𝐌𝐢𝐬𝐬𝐢𝐧𝐠 𝐕𝐚𝐥𝐮𝐞𝐬:
1- Identify missing values:
df.isnull().sum()
2- Visualize missing values:
sns.heatmap(df.isnull(), cbar=False, cmap='viridis')
plt.show()
𝐃𝐚𝐭𝐚 𝐕𝐢𝐬𝐮𝐚𝐥𝐢𝐳𝐚𝐭𝐢𝐨𝐧:
1- Histograms:
df.hist(bins=30, figsize=(20, 15))
plt.show()
2 - Box plots:
plt.figure(figsize=(10, 6))
sns.boxplot(data=df)
plt.xticks(rotation=90)
plt.show()
3- Pair plots:
sns.pairplot(df)
plt.show()
4- Correlation matrix and heatmap:
correlation_matrix = df.corr()
plt.figure(figsize=(12, 8))
sns.heatmap(correlation_matrix, annot=True, cmap='coolwarm')
plt.show()
𝐂𝐚𝐭𝐞𝐠𝐨𝐫𝐢𝐜𝐚𝐥 𝐃𝐚𝐭𝐚 𝐀𝐧𝐚𝐥𝐲𝐬𝐢𝐬:
Count plots for categorical features:
plt.figure(figsize=(10, 6))
sns.countplot(x='categorical_column', data=df)
plt.show()
Python Interview Q&A: https://whatsapp.com/channel/0029Vau5fZECsU9HJFLacm2a
Like for more ❤️
ENJOY LEARNING 👍👍
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
𝐋𝐨𝐚𝐝𝐢𝐧𝐠 𝐭𝐡𝐞 𝐃𝐚𝐭𝐚𝐬𝐞𝐭:
df = pd.read_csv('your_dataset.csv')
𝐈𝐧𝐢𝐭𝐢𝐚𝐥 𝐃𝐚𝐭𝐚 𝐈𝐧𝐬𝐩𝐞𝐜𝐭𝐢𝐨𝐧:
1- View the first few rows:
df.head()
2- Summary of the dataset:
df.info()
3- Statistical summary:
df.describe()
𝐇𝐚𝐧𝐝𝐥𝐢𝐧𝐠 𝐌𝐢𝐬𝐬𝐢𝐧𝐠 𝐕𝐚𝐥𝐮𝐞𝐬:
1- Identify missing values:
df.isnull().sum()
2- Visualize missing values:
sns.heatmap(df.isnull(), cbar=False, cmap='viridis')
plt.show()
𝐃𝐚𝐭𝐚 𝐕𝐢𝐬𝐮𝐚𝐥𝐢𝐳𝐚𝐭𝐢𝐨𝐧:
1- Histograms:
df.hist(bins=30, figsize=(20, 15))
plt.show()
2 - Box plots:
plt.figure(figsize=(10, 6))
sns.boxplot(data=df)
plt.xticks(rotation=90)
plt.show()
3- Pair plots:
sns.pairplot(df)
plt.show()
4- Correlation matrix and heatmap:
correlation_matrix = df.corr()
plt.figure(figsize=(12, 8))
sns.heatmap(correlation_matrix, annot=True, cmap='coolwarm')
plt.show()
𝐂𝐚𝐭𝐞𝐠𝐨𝐫𝐢𝐜𝐚𝐥 𝐃𝐚𝐭𝐚 𝐀𝐧𝐚𝐥𝐲𝐬𝐢𝐬:
Count plots for categorical features:
plt.figure(figsize=(10, 6))
sns.countplot(x='categorical_column', data=df)
plt.show()
Python Interview Q&A: https://whatsapp.com/channel/0029Vau5fZECsU9HJFLacm2a
Like for more ❤️
ENJOY LEARNING 👍👍
❤2
Data Analytics Interview Questions
Q1: Describe a situation where you had to clean a messy dataset. What steps did you take?
Ans: I encountered a dataset with missing values, duplicates, and inconsistent formats. I used Python's Pandas library to identify and handle missing values, standardized data formats using regular expressions, and removed duplicates. I also validated the cleaned data against known benchmarks to ensure accuracy.
Q2: How do you handle outliers in a dataset?
Ans: I start by visualizing the data using box plots or scatter plots to identify potential outliers. Then, depending on the nature of the data and the problem context, I might cap the outliers, transform the data, or even remove them if they're due to errors.
Q3: How would you use data to suggest optimal pricing strategies to Airbnb hosts?
Ans: I'd analyze factors like location, property type, amenities, local events, and historical booking rates. Using regression analysis, I'd model the relationship between these factors and pricing to suggest an optimal price range. Additionally, analyzing competitor pricing in the area can provide insights into market rates.
Q4: Describe a situation where you used data to improve the user experience on the Airbnb platform.
Ans: While analyzing user feedback and platform interaction data, I noticed that users often had difficulty navigating the booking process. Based on this, I suggested streamlining the booking steps and providing clearer instructions. A/B testing confirmed that these changes led to a higher conversion rate and improved user feedback.
Q1: Describe a situation where you had to clean a messy dataset. What steps did you take?
Ans: I encountered a dataset with missing values, duplicates, and inconsistent formats. I used Python's Pandas library to identify and handle missing values, standardized data formats using regular expressions, and removed duplicates. I also validated the cleaned data against known benchmarks to ensure accuracy.
Q2: How do you handle outliers in a dataset?
Ans: I start by visualizing the data using box plots or scatter plots to identify potential outliers. Then, depending on the nature of the data and the problem context, I might cap the outliers, transform the data, or even remove them if they're due to errors.
Q3: How would you use data to suggest optimal pricing strategies to Airbnb hosts?
Ans: I'd analyze factors like location, property type, amenities, local events, and historical booking rates. Using regression analysis, I'd model the relationship between these factors and pricing to suggest an optimal price range. Additionally, analyzing competitor pricing in the area can provide insights into market rates.
Q4: Describe a situation where you used data to improve the user experience on the Airbnb platform.
Ans: While analyzing user feedback and platform interaction data, I noticed that users often had difficulty navigating the booking process. Based on this, I suggested streamlining the booking steps and providing clearer instructions. A/B testing confirmed that these changes led to a higher conversion rate and improved user feedback.
❤3
𝟏𝟎𝟎+ 𝐅𝐑𝐄𝐄 𝐂𝐞𝐫𝐭𝐢𝐟𝐢𝐜𝐚𝐭𝐢𝐨𝐧 𝐂𝐨𝐮𝐫𝐬𝐞𝐬 😍
- Data Analytics
- BigData
- Artificial Intelligence
- Cloud Computing
- Data Science
- Machine Learning
- Cyber Security
𝐋𝐢𝐧𝐤 👇:-
https://pdlink.in/4dJ27Ta
Enroll For FREE & Get Certified 🎓
- Data Analytics
- BigData
- Artificial Intelligence
- Cloud Computing
- Data Science
- Machine Learning
- Cyber Security
𝐋𝐢𝐧𝐤 👇:-
https://pdlink.in/4dJ27Ta
Enroll For FREE & Get Certified 🎓
✅ Learn New Skills FREE 🔰
1. Web Development ➝
◀️ https://news.1rj.ru/str/webdevcoursefree
2. CSS ➝
◀️ http://css-tricks.com
3. JavaScript ➝
◀️ http://t.me/javanoscript_courses
4. React ➝
◀️ http://react-tutorial.app
5. Data Engineering ➝
◀️ https://news.1rj.ru/str/sql_engineer
6. Data Science ➝
◀️ https://news.1rj.ru/str/datasciencefun
7. Python ➝
◀️ http://pythontutorial.net
8. SQL ➝
◀️ https://news.1rj.ru/str/sqlanalyst
9. Git and GitHub ➝
◀️ http://GitFluence.com
10. Blockchain ➝
◀️ https://news.1rj.ru/str/Bitcoin_Crypto_Web
11. Mongo DB ➝
◀️ http://mongodb.com
12. Node JS ➝
◀️ http://nodejsera.com
13. English Speaking ➝
◀️ https://news.1rj.ru/str/englishlearnerspro
14. C#➝
◀️ https://learn.microsoft.com/en-us/training/paths/get-started-c-sharp-part-1/
15. Excel➝
◀️ https://news.1rj.ru/str/excel_analyst
16. Generative AI➝
◀️ https://news.1rj.ru/str/generativeai_gpt
17. Java
◀️ https://news.1rj.ru/str/Java_Programming_Notes
18. Artificial Intelligence
◀️ https://news.1rj.ru/str/machinelearning_deeplearning
19. Data Structure & Algorithms
◀️ https://news.1rj.ru/str/dsabooks
20. Backend Development
◀️ https://imp.i115008.net/rn2nyy
21. Python for AI
◀️ https://deeplearning.ai/short-courses/ai-python-for-beginners/
Join @free4unow_backup for more free courses
Like for more ❤️
ENJOY LEARNING👍👍
1. Web Development ➝
◀️ https://news.1rj.ru/str/webdevcoursefree
2. CSS ➝
◀️ http://css-tricks.com
3. JavaScript ➝
◀️ http://t.me/javanoscript_courses
4. React ➝
◀️ http://react-tutorial.app
5. Data Engineering ➝
◀️ https://news.1rj.ru/str/sql_engineer
6. Data Science ➝
◀️ https://news.1rj.ru/str/datasciencefun
7. Python ➝
◀️ http://pythontutorial.net
8. SQL ➝
◀️ https://news.1rj.ru/str/sqlanalyst
9. Git and GitHub ➝
◀️ http://GitFluence.com
10. Blockchain ➝
◀️ https://news.1rj.ru/str/Bitcoin_Crypto_Web
11. Mongo DB ➝
◀️ http://mongodb.com
12. Node JS ➝
◀️ http://nodejsera.com
13. English Speaking ➝
◀️ https://news.1rj.ru/str/englishlearnerspro
14. C#➝
◀️ https://learn.microsoft.com/en-us/training/paths/get-started-c-sharp-part-1/
15. Excel➝
◀️ https://news.1rj.ru/str/excel_analyst
16. Generative AI➝
◀️ https://news.1rj.ru/str/generativeai_gpt
17. Java
◀️ https://news.1rj.ru/str/Java_Programming_Notes
18. Artificial Intelligence
◀️ https://news.1rj.ru/str/machinelearning_deeplearning
19. Data Structure & Algorithms
◀️ https://news.1rj.ru/str/dsabooks
20. Backend Development
◀️ https://imp.i115008.net/rn2nyy
21. Python for AI
◀️ https://deeplearning.ai/short-courses/ai-python-for-beginners/
Join @free4unow_backup for more free courses
Like for more ❤️
ENJOY LEARNING👍👍
❤1
Q1: How would you analyze data to understand user connection patterns on a professional network?
Ans: I'd use graph databases like Neo4j for social network analysis. By analyzing connection patterns, I can identify influencers or isolated communities.
Q2: Describe a challenging data visualization you created to represent user engagement metrics.
Ans: I visualized multi-dimensional data showing user engagement across features, regions, and time using tools like D3.js, creating an interactive dashboard with drill-down capabilities.
Q3: How would you identify and target passive job seekers on LinkedIn?
Ans: I'd analyze user behavior patterns, like increased profile updates, frequent visits to job postings, or engagement with career-related content, to identify potential passive job seekers.
Q4: How do you measure the effectiveness of a new feature launched on LinkedIn?
Ans: I'd set up A/B tests, comparing user engagement metrics between those who have access to the new feature and a control group. I'd then analyze metrics like time spent, feature usage frequency, and overall platform engagement to measure effectiveness.
Ans: I'd use graph databases like Neo4j for social network analysis. By analyzing connection patterns, I can identify influencers or isolated communities.
Q2: Describe a challenging data visualization you created to represent user engagement metrics.
Ans: I visualized multi-dimensional data showing user engagement across features, regions, and time using tools like D3.js, creating an interactive dashboard with drill-down capabilities.
Q3: How would you identify and target passive job seekers on LinkedIn?
Ans: I'd analyze user behavior patterns, like increased profile updates, frequent visits to job postings, or engagement with career-related content, to identify potential passive job seekers.
Q4: How do you measure the effectiveness of a new feature launched on LinkedIn?
Ans: I'd set up A/B tests, comparing user engagement metrics between those who have access to the new feature and a control group. I'd then analyze metrics like time spent, feature usage frequency, and overall platform engagement to measure effectiveness.
❤1
📊 Data Analyst Roadmap (2025)
Master the Skills That Top Companies Are Hiring For!
📍 1. Learn Excel / Google Sheets
Basic formulas & formatting
VLOOKUP, Pivot Tables, Charts
Data cleaning & conditional formatting
📍 2. Master SQL
SELECT, WHERE, ORDER BY
JOINs (INNER, LEFT, RIGHT)
GROUP BY, HAVING, LIMIT
Subqueries, CTEs, Window Functions
📍 3. Learn Data Visualization Tools
Power BI / Tableau (choose one)
Charts, filters, slicers
Dashboards & storytelling
📍 4. Get Comfortable with Statistics
Mean, Median, Mode, Std Dev
Probability basics
A/B Testing, Hypothesis Testing
Correlation & Regression
📍 5. Learn Python for Data Analysis (Optional but Powerful)
Pandas & NumPy for data handling
Seaborn, Matplotlib for visuals
Jupyter Notebooks for analysis
📍 6. Data Cleaning & Wrangling
Handle missing values
Fix data types, remove duplicates
Text processing & date formatting
📍 7. Understand Business Metrics
KPIs: Revenue, Churn, CAC, LTV
Think like a business analyst
Deliver actionable insights
📍 8. Communication & Storytelling
Present insights with clarity
Simplify complex data
Speak the language of stakeholders
📍 9. Version Control (Git & GitHub)
Track your projects
Build a data portfolio
Collaborate with the community
📍 10. Interview & Resume Preparation
Excel, SQL, case-based questions
Mock interviews + real projects
Resume with measurable achievements
✨ React ❤️ for more
Master the Skills That Top Companies Are Hiring For!
📍 1. Learn Excel / Google Sheets
Basic formulas & formatting
VLOOKUP, Pivot Tables, Charts
Data cleaning & conditional formatting
📍 2. Master SQL
SELECT, WHERE, ORDER BY
JOINs (INNER, LEFT, RIGHT)
GROUP BY, HAVING, LIMIT
Subqueries, CTEs, Window Functions
📍 3. Learn Data Visualization Tools
Power BI / Tableau (choose one)
Charts, filters, slicers
Dashboards & storytelling
📍 4. Get Comfortable with Statistics
Mean, Median, Mode, Std Dev
Probability basics
A/B Testing, Hypothesis Testing
Correlation & Regression
📍 5. Learn Python for Data Analysis (Optional but Powerful)
Pandas & NumPy for data handling
Seaborn, Matplotlib for visuals
Jupyter Notebooks for analysis
📍 6. Data Cleaning & Wrangling
Handle missing values
Fix data types, remove duplicates
Text processing & date formatting
📍 7. Understand Business Metrics
KPIs: Revenue, Churn, CAC, LTV
Think like a business analyst
Deliver actionable insights
📍 8. Communication & Storytelling
Present insights with clarity
Simplify complex data
Speak the language of stakeholders
📍 9. Version Control (Git & GitHub)
Track your projects
Build a data portfolio
Collaborate with the community
📍 10. Interview & Resume Preparation
Excel, SQL, case-based questions
Mock interviews + real projects
Resume with measurable achievements
✨ React ❤️ for more
❤1
If you want to Excel in Data Science and become an expert, master these essential concepts:
Core Data Science Skills:
• Python for Data Science – Pandas, NumPy, Matplotlib, Seaborn
• SQL for Data Extraction – SELECT, JOIN, GROUP BY, CTEs, Window Functions
• Data Cleaning & Preprocessing – Handling missing data, outliers, duplicates
• Exploratory Data Analysis (EDA) – Visualizing data trends
Machine Learning (ML):
• Supervised Learning – Linear Regression, Decision Trees, Random Forest
• Unsupervised Learning – Clustering, PCA, Anomaly Detection
• Model Evaluation – Cross-validation, Confusion Matrix, ROC-AUC
• Hyperparameter Tuning – Grid Search, Random Search
Deep Learning (DL):
• Neural Networks – TensorFlow, PyTorch, Keras
• CNNs & RNNs – Image & sequential data processing
• Transformers & LLMs – GPT, BERT, Stable Diffusion
Big Data & Cloud Computing:
• Hadoop & Spark – Handling large datasets
• AWS, GCP, Azure – Cloud-based data science solutions
• MLOps – Deploy models using Flask, FastAPI, Docker
Statistics & Mathematics for Data Science:
• Probability & Hypothesis Testing – P-values, T-tests, Chi-square
• Linear Algebra & Calculus – Matrices, Vectors, Derivatives
• Time Series Analysis – ARIMA, Prophet, LSTMs
Real-World Applications:
• Recommendation Systems – Personalized AI suggestions
• NLP (Natural Language Processing) – Sentiment Analysis, Chatbots
• AI-Powered Business Insights – Data-driven decision-making
React ❤️ for more
Core Data Science Skills:
• Python for Data Science – Pandas, NumPy, Matplotlib, Seaborn
• SQL for Data Extraction – SELECT, JOIN, GROUP BY, CTEs, Window Functions
• Data Cleaning & Preprocessing – Handling missing data, outliers, duplicates
• Exploratory Data Analysis (EDA) – Visualizing data trends
Machine Learning (ML):
• Supervised Learning – Linear Regression, Decision Trees, Random Forest
• Unsupervised Learning – Clustering, PCA, Anomaly Detection
• Model Evaluation – Cross-validation, Confusion Matrix, ROC-AUC
• Hyperparameter Tuning – Grid Search, Random Search
Deep Learning (DL):
• Neural Networks – TensorFlow, PyTorch, Keras
• CNNs & RNNs – Image & sequential data processing
• Transformers & LLMs – GPT, BERT, Stable Diffusion
Big Data & Cloud Computing:
• Hadoop & Spark – Handling large datasets
• AWS, GCP, Azure – Cloud-based data science solutions
• MLOps – Deploy models using Flask, FastAPI, Docker
Statistics & Mathematics for Data Science:
• Probability & Hypothesis Testing – P-values, T-tests, Chi-square
• Linear Algebra & Calculus – Matrices, Vectors, Derivatives
• Time Series Analysis – ARIMA, Prophet, LSTMs
Real-World Applications:
• Recommendation Systems – Personalized AI suggestions
• NLP (Natural Language Processing) – Sentiment Analysis, Chatbots
• AI-Powered Business Insights – Data-driven decision-making
React ❤️ for more
❤1
Forwarded from SQL Programming Resources
𝟰 𝗕𝗲𝘀𝘁 𝗙𝗿𝗲𝗲 𝗦𝗤𝗟 𝗥𝗲𝘀𝗼𝘂𝗿𝗰𝗲𝘀 𝘁𝗼 𝗟𝗲𝗮𝗿𝗻 𝗗𝗮𝘁𝗮 𝗔𝗻𝗮𝗹𝘆𝘁𝗶𝗰𝘀😍
Want to break into Data Analytics?💫
It all starts with SQL — the language every data analyst needs to master. Whether you’re analyzing trends, pulling business reports, or cleaning datasets, SQL is at the heart of it all👨💻📌
𝐋𝐢𝐧𝐤👇:-
https://pdlink.in/44oj5Ds
Perfect for students, freshers, job seekers, or anyone transitioning into tech✅️
Want to break into Data Analytics?💫
It all starts with SQL — the language every data analyst needs to master. Whether you’re analyzing trends, pulling business reports, or cleaning datasets, SQL is at the heart of it all👨💻📌
𝐋𝐢𝐧𝐤👇:-
https://pdlink.in/44oj5Ds
Perfect for students, freshers, job seekers, or anyone transitioning into tech✅️
Future-Proof Skills for Data Analysts in 2025 & Beyond
1️⃣ AI-Powered Analytics 🤖 Leverage AI and AutoML tools like ChatGPT, DataRobot, and H2O.ai to automate insights and decision-making.
2️⃣ Generative AI for Data Analysis 🧠 Use AI for generating SQL queries, writing Python noscripts, and automating data storytelling.
3️⃣ Real-Time Data Processing ⚡ Learn streaming technologies like Apache Kafka and Apache Flink for real-time analytics.
4️⃣ DataOps & MLOps 🔄 Understand how to deploy and maintain machine learning models and analytical workflows in production environments.
5️⃣ Knowledge of Graph Databases 📊 Work with Neo4j and Amazon Neptune to analyze relationships in complex datasets.
6️⃣ Advanced Data Privacy & Ethics 🔐 Stay updated on GDPR, CCPA, and AI ethics to ensure responsible data handling.
7️⃣ No-Code & Low-Code Analytics 🛠️ Use platforms like Alteryx, Knime, and Google AutoML for rapid prototyping and automation.
8️⃣ API & Web Scraping Skills 🌍 Extract real-time data using APIs and web scraping tools like BeautifulSoup and Selenium.
9️⃣ Cross-Disciplinary Collaboration 🤝 Work with product managers, engineers, and business leaders to drive data-driven strategies.
🔟 Continuous Learning & Adaptability 🚀 Stay ahead by learning new technologies, attending conferences, and networking with industry experts.
Like for detailed explanation ❤️
Share with credits: https://news.1rj.ru/str/sqlspecialist
Hope it helps :)
1️⃣ AI-Powered Analytics 🤖 Leverage AI and AutoML tools like ChatGPT, DataRobot, and H2O.ai to automate insights and decision-making.
2️⃣ Generative AI for Data Analysis 🧠 Use AI for generating SQL queries, writing Python noscripts, and automating data storytelling.
3️⃣ Real-Time Data Processing ⚡ Learn streaming technologies like Apache Kafka and Apache Flink for real-time analytics.
4️⃣ DataOps & MLOps 🔄 Understand how to deploy and maintain machine learning models and analytical workflows in production environments.
5️⃣ Knowledge of Graph Databases 📊 Work with Neo4j and Amazon Neptune to analyze relationships in complex datasets.
6️⃣ Advanced Data Privacy & Ethics 🔐 Stay updated on GDPR, CCPA, and AI ethics to ensure responsible data handling.
7️⃣ No-Code & Low-Code Analytics 🛠️ Use platforms like Alteryx, Knime, and Google AutoML for rapid prototyping and automation.
8️⃣ API & Web Scraping Skills 🌍 Extract real-time data using APIs and web scraping tools like BeautifulSoup and Selenium.
9️⃣ Cross-Disciplinary Collaboration 🤝 Work with product managers, engineers, and business leaders to drive data-driven strategies.
🔟 Continuous Learning & Adaptability 🚀 Stay ahead by learning new technologies, attending conferences, and networking with industry experts.
Like for detailed explanation ❤️
Share with credits: https://news.1rj.ru/str/sqlspecialist
Hope it helps :)
❤1