7 Essential Data Science Techniques to Master 👇
Machine Learning for Predictive Modeling
Machine learning is the backbone of predictive analytics. Techniques like linear regression, decision trees, and random forests can help forecast outcomes based on historical data. Whether you're predicting customer churn, stock prices, or sales trends, understanding these models is key to making data-driven predictions.
Feature Engineering to Improve Model Performance
Raw data is rarely ready for analysis. Feature engineering involves creating new variables from your existing data that can improve the performance of your machine learning models. For example, you might transform timestamps into time features (hour, day, month) or create aggregated metrics like moving averages.
Clustering for Data Segmentation
Unsupervised learning techniques like K-Means or DBSCAN are great for grouping similar data points together without predefined labels. This is perfect for tasks like customer segmentation, market basket analysis, or anomaly detection, where patterns are hidden in your data that you need to uncover.
Time Series Forecasting
Predicting future events based on historical data is one of the most common tasks in data science. Time series forecasting methods like ARIMA, Exponential Smoothing, or Facebook Prophet allow you to capture seasonal trends, cycles, and long-term patterns in time-dependent data.
Natural Language Processing (NLP)
NLP techniques are used to analyze and extract insights from text data. Key applications include sentiment analysis, topic modeling, and named entity recognition (NER). NLP is particularly useful for analyzing customer feedback, reviews, or social media data.
Dimensionality Reduction with PCA
When working with high-dimensional data, reducing the number of variables without losing important information can improve the performance of machine learning models. Principal Component Analysis (PCA) is a popular technique to achieve this by projecting the data into a lower-dimensional space that captures the most variance.
Anomaly Detection for Identifying Outliers
Detecting unusual patterns or anomalies in data is essential for tasks like fraud detection, quality control, and system monitoring. Techniques like Isolation Forest, One-Class SVM, and Autoencoders are commonly used in data science to detect outliers in both supervised and unsupervised contexts.
Join our WhatsApp channel: https://whatsapp.com/channel/0029Va8v3eo1NCrQfGMseL2D
Machine Learning for Predictive Modeling
Machine learning is the backbone of predictive analytics. Techniques like linear regression, decision trees, and random forests can help forecast outcomes based on historical data. Whether you're predicting customer churn, stock prices, or sales trends, understanding these models is key to making data-driven predictions.
Feature Engineering to Improve Model Performance
Raw data is rarely ready for analysis. Feature engineering involves creating new variables from your existing data that can improve the performance of your machine learning models. For example, you might transform timestamps into time features (hour, day, month) or create aggregated metrics like moving averages.
Clustering for Data Segmentation
Unsupervised learning techniques like K-Means or DBSCAN are great for grouping similar data points together without predefined labels. This is perfect for tasks like customer segmentation, market basket analysis, or anomaly detection, where patterns are hidden in your data that you need to uncover.
Time Series Forecasting
Predicting future events based on historical data is one of the most common tasks in data science. Time series forecasting methods like ARIMA, Exponential Smoothing, or Facebook Prophet allow you to capture seasonal trends, cycles, and long-term patterns in time-dependent data.
Natural Language Processing (NLP)
NLP techniques are used to analyze and extract insights from text data. Key applications include sentiment analysis, topic modeling, and named entity recognition (NER). NLP is particularly useful for analyzing customer feedback, reviews, or social media data.
Dimensionality Reduction with PCA
When working with high-dimensional data, reducing the number of variables without losing important information can improve the performance of machine learning models. Principal Component Analysis (PCA) is a popular technique to achieve this by projecting the data into a lower-dimensional space that captures the most variance.
Anomaly Detection for Identifying Outliers
Detecting unusual patterns or anomalies in data is essential for tasks like fraud detection, quality control, and system monitoring. Techniques like Isolation Forest, One-Class SVM, and Autoencoders are commonly used in data science to detect outliers in both supervised and unsupervised contexts.
Join our WhatsApp channel: https://whatsapp.com/channel/0029Va8v3eo1NCrQfGMseL2D
❤3
𝗙𝗿𝗲𝗲 𝗠𝗶𝗰𝗿𝗼𝘀𝗼𝗳𝘁 & 𝗟𝗶𝗻𝗸𝗲𝗱𝗜𝗻 𝗔𝗜 𝗖𝗲𝗿𝘁𝗶𝗳𝗶𝗰𝗮𝘁𝗶𝗼𝗻 𝘁𝗼 𝗟𝗮𝗻𝗱 𝗧𝗼𝗽 𝗝𝗼𝗯𝘀 𝗶𝗻 𝟮𝟬𝟮𝟱😍
🎯 Want to Land High-Paying AI Jobs in 2025?
Start your journey with this FREE Generative AI course offered by Microsoft and LinkedIn🧑🎓✨️
𝐋𝐢𝐧𝐤👇:-
https://pdlink.in/4jY0cwB
This certification will boost your resume📄✅️
🎯 Want to Land High-Paying AI Jobs in 2025?
Start your journey with this FREE Generative AI course offered by Microsoft and LinkedIn🧑🎓✨️
𝐋𝐢𝐧𝐤👇:-
https://pdlink.in/4jY0cwB
This certification will boost your resume📄✅️
❤1
React.js 30 Days Roadmap & Free Learning Resource 📍👇
👨🏻💻Days 1-7: Introduction and Fundamentals
📍Day 1: Introduction to React.js
What is React.js?
Setting up a development environment
Creating a basic React app
📍Day 2: JSX and Components
Understanding JSX
Creating functional components
Using props to pass data
📍Day 3: State and Lifecycle
Component state
Lifecycle methods (componentDidMount, componentDidUpdate, etc.)
Updating and rendering based on state changes
📍Day 4: Handling Events
Adding event handlers
Updating state with events
Conditional rendering
📍Day 5: Lists and Keys
Rendering lists of components
Adding unique keys to components
Handling list updates efficiently
📍Day 6: Forms and Controlled Components
Creating forms in React
Handling form input and validation
Controlled components
📍Day 7: Conditional Rendering
Conditional rendering with if statements
Using the && operator and ternary operator
Conditional rendering with logical AND (&&) and logical OR (||)
👨🏻💻Days 8-14: Advanced React Concepts
📍Day 8: Styling in React
Inline styles in React
Using CSS classes and libraries
CSS-in-JS solutions
📍Day 9: React Router
Setting up React Router
Navigating between routes
Passing data through routes
📍Day 10: Context API and State Management
Introduction to the Context API
Creating and consuming context
Global state management with context
📍Day 11: Redux for State Management
What is Redux?
Actions, reducers, and the store
Integrating Redux into a React application
📍Day 12: React Hooks (useState, useEffect, etc.)
Introduction to React Hooks
useState, useEffect, and other commonly used hooks
Refactoring class components to functional components with hooks
📍Day 13: Error Handling and Debugging
Error boundaries
Debugging React applications
Error handling best practices
📍Day 14: Building and Optimizing for Production
Production builds and optimizations
Code splitting
Performance best practices
👨🏻💻Days 15-21: Working with External Data and APIs
📍Day 15: Fetching Data from an API
Making API requests in React
Handling API responses
Async/await in React
📍Day 16: Forms and Form Libraries
Working with form libraries like Formik or React Hook Form
Form validation and error handling
📍Day 17: Authentication and User Sessions
Implementing user authentication
Handling user sessions and tokens
Securing routes
📍Day 18: State Management with Redux Toolkit
Introduction to Redux Toolkit
Creating slices
Simplified Redux configuration
📍Day 19: Routing in Depth
Nested routing with React Router
Route guards and authentication
Advanced route configuration
📍Day 20: Performance Optimization
Memoization and useMemo
React.memo for optimizing components
Virtualization and large lists
📍Day 21: Real-time Data with WebSockets
WebSockets for real-time communication
Implementing chat or notifications
👨🏻💻Days 22-30: Building and Deployment
📍Day 22: Building a Full-Stack App
Integrating React with a backend (e.g., Node.js, Express, or a serverless platform)
Implementing RESTful or GraphQL APIs
📍Day 23: Testing in React
Testing React components using tools like Jest and React Testing Library
Writing unit tests and integration tests
📍Day 24: Deployment and Hosting
Preparing your React app for production
Deploying to platforms like Netlify, Vercel, or AWS
📍Day 25-30: Final Project
*_Plan, design, and build a complete React project of your choice, incorporating various concepts and tools you've learned during the previous days.
Web Development Best Resources: https://topmate.io/coding/930165
ENJOY LEARNING 👍👍
👨🏻💻Days 1-7: Introduction and Fundamentals
📍Day 1: Introduction to React.js
What is React.js?
Setting up a development environment
Creating a basic React app
📍Day 2: JSX and Components
Understanding JSX
Creating functional components
Using props to pass data
📍Day 3: State and Lifecycle
Component state
Lifecycle methods (componentDidMount, componentDidUpdate, etc.)
Updating and rendering based on state changes
📍Day 4: Handling Events
Adding event handlers
Updating state with events
Conditional rendering
📍Day 5: Lists and Keys
Rendering lists of components
Adding unique keys to components
Handling list updates efficiently
📍Day 6: Forms and Controlled Components
Creating forms in React
Handling form input and validation
Controlled components
📍Day 7: Conditional Rendering
Conditional rendering with if statements
Using the && operator and ternary operator
Conditional rendering with logical AND (&&) and logical OR (||)
👨🏻💻Days 8-14: Advanced React Concepts
📍Day 8: Styling in React
Inline styles in React
Using CSS classes and libraries
CSS-in-JS solutions
📍Day 9: React Router
Setting up React Router
Navigating between routes
Passing data through routes
📍Day 10: Context API and State Management
Introduction to the Context API
Creating and consuming context
Global state management with context
📍Day 11: Redux for State Management
What is Redux?
Actions, reducers, and the store
Integrating Redux into a React application
📍Day 12: React Hooks (useState, useEffect, etc.)
Introduction to React Hooks
useState, useEffect, and other commonly used hooks
Refactoring class components to functional components with hooks
📍Day 13: Error Handling and Debugging
Error boundaries
Debugging React applications
Error handling best practices
📍Day 14: Building and Optimizing for Production
Production builds and optimizations
Code splitting
Performance best practices
👨🏻💻Days 15-21: Working with External Data and APIs
📍Day 15: Fetching Data from an API
Making API requests in React
Handling API responses
Async/await in React
📍Day 16: Forms and Form Libraries
Working with form libraries like Formik or React Hook Form
Form validation and error handling
📍Day 17: Authentication and User Sessions
Implementing user authentication
Handling user sessions and tokens
Securing routes
📍Day 18: State Management with Redux Toolkit
Introduction to Redux Toolkit
Creating slices
Simplified Redux configuration
📍Day 19: Routing in Depth
Nested routing with React Router
Route guards and authentication
Advanced route configuration
📍Day 20: Performance Optimization
Memoization and useMemo
React.memo for optimizing components
Virtualization and large lists
📍Day 21: Real-time Data with WebSockets
WebSockets for real-time communication
Implementing chat or notifications
👨🏻💻Days 22-30: Building and Deployment
📍Day 22: Building a Full-Stack App
Integrating React with a backend (e.g., Node.js, Express, or a serverless platform)
Implementing RESTful or GraphQL APIs
📍Day 23: Testing in React
Testing React components using tools like Jest and React Testing Library
Writing unit tests and integration tests
📍Day 24: Deployment and Hosting
Preparing your React app for production
Deploying to platforms like Netlify, Vercel, or AWS
📍Day 25-30: Final Project
*_Plan, design, and build a complete React project of your choice, incorporating various concepts and tools you've learned during the previous days.
Web Development Best Resources: https://topmate.io/coding/930165
ENJOY LEARNING 👍👍
❤2
Here's a concise cheat sheet to help you get started with Python for Data Analytics. This guide covers essential libraries and functions that you'll frequently use.
1. Python Basics
- Variables:
- Data Types:
- Integers:
- Control Structures:
-
- Loops:
- While loop:
2. Importing Libraries
- NumPy:
- Pandas:
- Matplotlib:
- Seaborn:
3. NumPy for Numerical Data
- Creating Arrays:
- Array Operations:
- Reshaping Arrays:
- Indexing and Slicing:
4. Pandas for Data Manipulation
- Creating DataFrames:
- Reading Data:
- Basic Operations:
- Selecting Columns:
- Filtering Data:
- Handling Missing Data:
- GroupBy:
5. Data Visualization
- Matplotlib:
- Seaborn:
6. Common Data Operations
- Merging DataFrames:
- Pivot Table:
- Applying Functions:
7. Basic Statistics
- Denoscriptive Stats:
- Correlation:
This cheat sheet should give you a solid foundation in Python for data analytics. As you get more comfortable, you can delve deeper into each library's documentation for more advanced features.
I have curated the best resources to learn Python 👇👇
https://whatsapp.com/channel/0029VaiM08SDuMRaGKd9Wv0L
Hope you'll like it
Like this post if you need more resources like this 👍❤️
1. Python Basics
- Variables:
x = 10 y = "Hello"
- Data Types:
- Integers:
x = 10
- Floats: y = 3.14
- Strings: name = "Alice"
- Lists: my_list = [1, 2, 3]
- Dictionaries: my_dict = {"key": "value"}
- Tuples: my_tuple = (1, 2, 3)
- Control Structures:
-
if, elif, else statements- Loops:
for i in range(5):
print(i)
- While loop:
while x < 5:
print(x)
x += 1
2. Importing Libraries
- NumPy:
import numpy as np
- Pandas:
import pandas as pd
- Matplotlib:
import matplotlib.pyplot as plt
- Seaborn:
import seaborn as sns
3. NumPy for Numerical Data
- Creating Arrays:
arr = np.array([1, 2, 3, 4])
- Array Operations:
arr.sum()
arr.mean()
- Reshaping Arrays:
arr.reshape((2, 2))
- Indexing and Slicing:
arr[0:2] # First two elements
4. Pandas for Data Manipulation
- Creating DataFrames:
df = pd.DataFrame({
'col1': [1, 2, 3],
'col2': ['A', 'B', 'C']
})
- Reading Data:
df = pd.read_csv('file.csv')
- Basic Operations:
df.head() # First 5 rows
df.describe() # Summary statistics
df.info() # DataFrame info
- Selecting Columns:
df['col1']
df[['col1', 'col2']]
- Filtering Data:
df[df['col1'] > 2]
- Handling Missing Data:
df.dropna() # Drop missing values
df.fillna(0) # Replace missing values
- GroupBy:
df.groupby('col2').mean()
5. Data Visualization
- Matplotlib:
plt.plot(df['col1'], df['col2'])
plt.xlabel('X-axis')
plt.ylabel('Y-axis')
plt.noscript('Title')
plt.show()
- Seaborn:
sns.histplot(df['col1'])
sns.boxplot(x='col1', y='col2', data=df)
6. Common Data Operations
- Merging DataFrames:
pd.merge(df1, df2, on='key')
- Pivot Table:
df.pivot_table(index='col1', columns='col2', values='col3')
- Applying Functions:
df['col1'].apply(lambda x: x*2)
7. Basic Statistics
- Denoscriptive Stats:
df['col1'].mean()
df['col1'].median()
df['col1'].std()
- Correlation:
df.corr()
This cheat sheet should give you a solid foundation in Python for data analytics. As you get more comfortable, you can delve deeper into each library's documentation for more advanced features.
I have curated the best resources to learn Python 👇👇
https://whatsapp.com/channel/0029VaiM08SDuMRaGKd9Wv0L
Hope you'll like it
Like this post if you need more resources like this 👍❤️
❤1
Forwarded from Power BI & Tableau Resources
𝐋𝐞𝐚𝐫𝐧 𝐃𝐢𝐫𝐞𝐜𝐭𝐥𝐲 𝐟𝐫𝐨𝐦 𝐌𝐢𝐜𝐫𝐨𝐬𝐨𝐟𝐭: 𝐉𝐨𝐢𝐧 𝐅𝐫𝐞𝐞 𝐖𝐨𝐫𝐤𝐬𝐡𝐨𝐩𝐬 & 𝐓𝐞𝐜𝐡 𝐄𝐯𝐞𝐧𝐭𝐬 𝐯𝐢𝐚 𝐌𝐢𝐜𝐫𝐨𝐬𝐨𝐟𝐭 𝐑𝐞𝐚𝐜𝐭𝐨𝐫😍
💻 Want to learn directly from Microsoft — absolutely FREE?💥
Whether you’re a student, job seeker, or tech enthusiast, Microsoft Reactor is your go-to hub for high-quality, interactive learning experiences🧑💻✨️
𝐋𝐢𝐧𝐤👇:-
https://pdlink.in/3SYfyW1
All in one place✅️
💻 Want to learn directly from Microsoft — absolutely FREE?💥
Whether you’re a student, job seeker, or tech enthusiast, Microsoft Reactor is your go-to hub for high-quality, interactive learning experiences🧑💻✨️
𝐋𝐢𝐧𝐤👇:-
https://pdlink.in/3SYfyW1
All in one place✅️
❤1
Are you looking to become a machine learning engineer? The algorithm brought you to the right place! 📌
I created a free and comprehensive roadmap. Let's go through this thread and explore what you need to know to become an expert machine learning engineer:
Math & Statistics
Just like most other data roles, machine learning engineering starts with strong foundations from math, precisely linear algebra, probability and statistics.
Here are the probability units you will need to focus on:
Basic probability concepts statistics
Inferential statistics
Regression analysis
Experimental design and A/B testing Bayesian statistics
Calculus
Linear algebra
Python:
You can choose Python, R, Julia, or any other language, but Python is the most versatile and flexible language for machine learning.
Variables, data types, and basic operations
Control flow statements (e.g., if-else, loops)
Functions and modules
Error handling and exceptions
Basic data structures (e.g., lists, dictionaries, tuples)
Object-oriented programming concepts
Basic work with APIs
Detailed data structures and algorithmic thinking
Machine Learning Prerequisites:
Exploratory Data Analysis (EDA) with NumPy and Pandas
Basic data visualization techniques to visualize the variables and features.
Feature extraction
Feature engineering
Different types of encoding data
Machine Learning Fundamentals
Using scikit-learn library in combination with other Python libraries for:
Supervised Learning: (Linear Regression, K-Nearest Neighbors, Decision Trees)
Unsupervised Learning: (K-Means Clustering, Principal Component Analysis, Hierarchical Clustering)
Reinforcement Learning: (Q-Learning, Deep Q Network, Policy Gradients)
Solving two types of problems:
Regression
Classification
Neural Networks:
Neural networks are like computer brains that learn from examples, made up of layers of "neurons" that handle data. They learn without explicit instructions.
Types of Neural Networks:
Feedforward Neural Networks: Simplest form, with straight connections and no loops.
Convolutional Neural Networks (CNNs): Great for images, learning visual patterns.
Recurrent Neural Networks (RNNs): Good for sequences like text or time series, because they remember past information.
In Python, it’s the best to use TensorFlow and Keras libraries, as well as PyTorch, for deeper and more complex neural network systems.
Deep Learning:
Deep learning is a subset of machine learning in artificial intelligence (AI) that has networks capable of learning unsupervised from data that is unstructured or unlabeled.
Convolutional Neural Networks (CNNs)
Recurrent Neural Networks (RNNs)
Long Short-Term Memory Networks (LSTMs)
Generative Adversarial Networks (GANs)
Autoencoders
Deep Belief Networks (DBNs)
Transformer Models
Machine Learning Project Deployment
Machine learning engineers should also be able to dive into MLOps and project deployment. Here are the things that you should be familiar or skilled at:
Version Control for Data and Models
Automated Testing and Continuous Integration (CI)
Continuous Delivery and Deployment (CD)
Monitoring and Logging
Experiment Tracking and Management
Feature Stores
Data Pipeline and Workflow Orchestration
Infrastructure as Code (IaC)
Model Serving and APIs
Best Data Science & Machine Learning Resources: https://topmate.io/coding/914624
Credits: https://news.1rj.ru/str/datasciencefun
Like if you need similar content 😄👍
Hope this helps you 😊
I created a free and comprehensive roadmap. Let's go through this thread and explore what you need to know to become an expert machine learning engineer:
Math & Statistics
Just like most other data roles, machine learning engineering starts with strong foundations from math, precisely linear algebra, probability and statistics.
Here are the probability units you will need to focus on:
Basic probability concepts statistics
Inferential statistics
Regression analysis
Experimental design and A/B testing Bayesian statistics
Calculus
Linear algebra
Python:
You can choose Python, R, Julia, or any other language, but Python is the most versatile and flexible language for machine learning.
Variables, data types, and basic operations
Control flow statements (e.g., if-else, loops)
Functions and modules
Error handling and exceptions
Basic data structures (e.g., lists, dictionaries, tuples)
Object-oriented programming concepts
Basic work with APIs
Detailed data structures and algorithmic thinking
Machine Learning Prerequisites:
Exploratory Data Analysis (EDA) with NumPy and Pandas
Basic data visualization techniques to visualize the variables and features.
Feature extraction
Feature engineering
Different types of encoding data
Machine Learning Fundamentals
Using scikit-learn library in combination with other Python libraries for:
Supervised Learning: (Linear Regression, K-Nearest Neighbors, Decision Trees)
Unsupervised Learning: (K-Means Clustering, Principal Component Analysis, Hierarchical Clustering)
Reinforcement Learning: (Q-Learning, Deep Q Network, Policy Gradients)
Solving two types of problems:
Regression
Classification
Neural Networks:
Neural networks are like computer brains that learn from examples, made up of layers of "neurons" that handle data. They learn without explicit instructions.
Types of Neural Networks:
Feedforward Neural Networks: Simplest form, with straight connections and no loops.
Convolutional Neural Networks (CNNs): Great for images, learning visual patterns.
Recurrent Neural Networks (RNNs): Good for sequences like text or time series, because they remember past information.
In Python, it’s the best to use TensorFlow and Keras libraries, as well as PyTorch, for deeper and more complex neural network systems.
Deep Learning:
Deep learning is a subset of machine learning in artificial intelligence (AI) that has networks capable of learning unsupervised from data that is unstructured or unlabeled.
Convolutional Neural Networks (CNNs)
Recurrent Neural Networks (RNNs)
Long Short-Term Memory Networks (LSTMs)
Generative Adversarial Networks (GANs)
Autoencoders
Deep Belief Networks (DBNs)
Transformer Models
Machine Learning Project Deployment
Machine learning engineers should also be able to dive into MLOps and project deployment. Here are the things that you should be familiar or skilled at:
Version Control for Data and Models
Automated Testing and Continuous Integration (CI)
Continuous Delivery and Deployment (CD)
Monitoring and Logging
Experiment Tracking and Management
Feature Stores
Data Pipeline and Workflow Orchestration
Infrastructure as Code (IaC)
Model Serving and APIs
Best Data Science & Machine Learning Resources: https://topmate.io/coding/914624
Credits: https://news.1rj.ru/str/datasciencefun
Like if you need similar content 😄👍
Hope this helps you 😊
❤1
SQL best practices:
✔ Use EXISTS in place of IN wherever possible
✔ Use table aliases with columns when you are joining multiple tables
✔ Use GROUP BY instead of DISTINCT.
✔ Add useful comments wherever you write complex logic and avoid too many comments.
✔ Use joins instead of subqueries when possible for better performance.
✔ Use WHERE instead of HAVING to define filters on non-aggregate fields
✔ Avoid wildcards at beginning of predicates (something like '%abc' will cause full table scan to get the results)
✔ Considering cardinality within GROUP BY can make it faster (try to consider unique column first in group by list)
✔ Write SQL keywords in capital letters.
✔ Never use select *, always mention list of columns in select clause.
✔ Create CTEs instead of multiple sub queries , it will make your query easy to read.
✔ Join tables using JOIN keywords instead of writing join condition in where clause for better readability.
✔ Never use order by in sub queries , It will unnecessary increase runtime.
✔ If you know there are no duplicates in 2 tables, use UNION ALL instead of UNION for better performance
✔ Always start WHERE clause with 1 = 1.This has the advantage of easily commenting out conditions during debugging a query.
✔ Taking care of NULL values before using equality or comparisons operators. Applying window functions. Filtering the query before joining and having clause.
✔ Make sure the JOIN conditions among two table Join are either keys or Indexed attribute.
Hope it helps :)
✔ Use EXISTS in place of IN wherever possible
✔ Use table aliases with columns when you are joining multiple tables
✔ Use GROUP BY instead of DISTINCT.
✔ Add useful comments wherever you write complex logic and avoid too many comments.
✔ Use joins instead of subqueries when possible for better performance.
✔ Use WHERE instead of HAVING to define filters on non-aggregate fields
✔ Avoid wildcards at beginning of predicates (something like '%abc' will cause full table scan to get the results)
✔ Considering cardinality within GROUP BY can make it faster (try to consider unique column first in group by list)
✔ Write SQL keywords in capital letters.
✔ Never use select *, always mention list of columns in select clause.
✔ Create CTEs instead of multiple sub queries , it will make your query easy to read.
✔ Join tables using JOIN keywords instead of writing join condition in where clause for better readability.
✔ Never use order by in sub queries , It will unnecessary increase runtime.
✔ If you know there are no duplicates in 2 tables, use UNION ALL instead of UNION for better performance
✔ Always start WHERE clause with 1 = 1.This has the advantage of easily commenting out conditions during debugging a query.
✔ Taking care of NULL values before using equality or comparisons operators. Applying window functions. Filtering the query before joining and having clause.
✔ Make sure the JOIN conditions among two table Join are either keys or Indexed attribute.
Hope it helps :)
❤2👍2
𝗧𝗼𝗽 𝟱 𝗧𝗲𝗰𝗵𝗻𝗼𝗹𝗼𝗴𝗶𝗲𝘀 𝗧𝗼 𝗠𝗮𝘀𝘁𝗲𝗿 𝗜𝗻 𝟮𝟬𝟮𝟱 | 𝗘𝗻𝗿𝗼𝗹𝗹 𝗙𝗼𝗿 𝗙𝗥𝗘𝗘 😍
Acquire industry-relevant skills to grow in your career and stand out to prospective employers.
𝗔𝗜 & 𝗠𝗟 :- https://pdlink.in/3U3eZuq
𝗗𝗮𝘁𝗮 𝗔𝗻𝗮𝗹𝘆𝘁𝗶𝗰𝘀 :- https://pdlink.in/4lp7hXQ
𝗖𝗹𝗼𝘂𝗱 𝗖𝗼𝗺𝗽𝘂𝘁𝗶𝗻𝗴 :- https://pdlink.in/3GtNJlO
𝗖𝘆𝗯𝗲𝗿 𝗦𝗲𝗰𝘂𝗿𝗶𝘁𝘆 :- https://pdlink.in/4nHBuTh
𝗙𝘂𝗹𝗹𝘀𝘁𝗮𝗰𝗸 :- https://pdlink.in/3ImMFAB
Enroll For FREE & Get Certified 🎓
Acquire industry-relevant skills to grow in your career and stand out to prospective employers.
𝗔𝗜 & 𝗠𝗟 :- https://pdlink.in/3U3eZuq
𝗗𝗮𝘁𝗮 𝗔𝗻𝗮𝗹𝘆𝘁𝗶𝗰𝘀 :- https://pdlink.in/4lp7hXQ
𝗖𝗹𝗼𝘂𝗱 𝗖𝗼𝗺𝗽𝘂𝘁𝗶𝗻𝗴 :- https://pdlink.in/3GtNJlO
𝗖𝘆𝗯𝗲𝗿 𝗦𝗲𝗰𝘂𝗿𝗶𝘁𝘆 :- https://pdlink.in/4nHBuTh
𝗙𝘂𝗹𝗹𝘀𝘁𝗮𝗰𝗸 :- https://pdlink.in/3ImMFAB
Enroll For FREE & Get Certified 🎓
❤1
Complete Roadmap to learn SQL in 2025 👇👇
1. Basic Concepts
- Understand databases and SQL.
- Learn data types (INT, VARCHAR, DATE, etc.).
2. Basic Queries
- SELECT: Retrieve data.
- WHERE: Filter results.
- ORDER BY: Sort results.
- LIMIT: Restrict results.
3. Aggregate Functions
- COUNT, SUM, AVG, MAX, MIN.
- Use GROUP BY to group results.
4. Joins
- INNER JOIN: Combine rows from two tables based on a condition.
- LEFT JOIN: Include all rows from the left table.
- RIGHT JOIN: Include all rows from the right table.
- FULL OUTER JOIN: Include all rows from both tables.
5. Subqueries
- Use nested queries for complex data retrieval.
6. Data Manipulation
- INSERT: Add new records.
- UPDATE: Modify existing records.
- DELETE: Remove records.
7. Schema Management
- CREATE TABLE: Define new tables.
- ALTER TABLE: Modify existing tables.
- DROP TABLE: Remove tables.
8. Indexes
- Understand how to create and use indexes to optimize queries.
9. Views
- Create and manage views for simplified data access.
10. Transactions
- Learn about COMMIT and ROLLBACK for data integrity.
11. Advanced Topics
- Stored Procedures: Automate complex tasks.
- Triggers: Execute actions automatically based on events.
- Normalization: Understand database design principles.
12. Practice
- Use platforms like LeetCode, HackerRank, or learnsql for hands-on practice.
Here are some free resources to learn & practice SQL 👇👇
SQL For Data Analysis: https://news.1rj.ru/str/sqlanalyst
For Practice- https://stratascratch.com/?via=free
SQL Learning Series: https://news.1rj.ru/str/sqlspecialist/567
Top 10 SQL Projects with Datasets: https://news.1rj.ru/str/DataPortfolio/16
Join for more free resources: https://news.1rj.ru/str/free4unow_backup
ENJOY LEARNING 👍👍
1. Basic Concepts
- Understand databases and SQL.
- Learn data types (INT, VARCHAR, DATE, etc.).
2. Basic Queries
- SELECT: Retrieve data.
- WHERE: Filter results.
- ORDER BY: Sort results.
- LIMIT: Restrict results.
3. Aggregate Functions
- COUNT, SUM, AVG, MAX, MIN.
- Use GROUP BY to group results.
4. Joins
- INNER JOIN: Combine rows from two tables based on a condition.
- LEFT JOIN: Include all rows from the left table.
- RIGHT JOIN: Include all rows from the right table.
- FULL OUTER JOIN: Include all rows from both tables.
5. Subqueries
- Use nested queries for complex data retrieval.
6. Data Manipulation
- INSERT: Add new records.
- UPDATE: Modify existing records.
- DELETE: Remove records.
7. Schema Management
- CREATE TABLE: Define new tables.
- ALTER TABLE: Modify existing tables.
- DROP TABLE: Remove tables.
8. Indexes
- Understand how to create and use indexes to optimize queries.
9. Views
- Create and manage views for simplified data access.
10. Transactions
- Learn about COMMIT and ROLLBACK for data integrity.
11. Advanced Topics
- Stored Procedures: Automate complex tasks.
- Triggers: Execute actions automatically based on events.
- Normalization: Understand database design principles.
12. Practice
- Use platforms like LeetCode, HackerRank, or learnsql for hands-on practice.
Here are some free resources to learn & practice SQL 👇👇
SQL For Data Analysis: https://news.1rj.ru/str/sqlanalyst
For Practice- https://stratascratch.com/?via=free
SQL Learning Series: https://news.1rj.ru/str/sqlspecialist/567
Top 10 SQL Projects with Datasets: https://news.1rj.ru/str/DataPortfolio/16
Join for more free resources: https://news.1rj.ru/str/free4unow_backup
ENJOY LEARNING 👍👍
❤1👍1
𝟯 𝗙𝗿𝗲𝗲 𝗚𝗶𝘁𝗛𝘂𝗯 𝗖𝗼𝘂𝗿𝘀𝗲𝘀 𝘁𝗼 𝗠𝗮𝘀𝘁𝗲𝗿 𝗣𝘆𝘁𝗵𝗼𝗻 𝗳𝗼𝗿 𝗗𝗮𝘁𝗮 𝗔𝗻𝗮𝗹𝘆𝘁𝗶𝗰𝘀 𝗶𝗻 𝟮𝟬𝟮𝟱😍
Want to master Python for Data Analytics without spending a single rupee?💰✨️
You don’t need expensive bootcamps or paid certifications to get started. Thanks to the open-source community, there are incredible free GitHub repositories that cover everything you need🧑💻📌
𝐋𝐢𝐧𝐤👇:-
https://pdlink.in/47hf59F
Don’t just study theory—start coding, analyzing, and building today. Your portfolio (and future self) will thank you✅️
Want to master Python for Data Analytics without spending a single rupee?💰✨️
You don’t need expensive bootcamps or paid certifications to get started. Thanks to the open-source community, there are incredible free GitHub repositories that cover everything you need🧑💻📌
𝐋𝐢𝐧𝐤👇:-
https://pdlink.in/47hf59F
Don’t just study theory—start coding, analyzing, and building today. Your portfolio (and future self) will thank you✅️
❤1
Complete DSA Roadmap
|-- Basic_Data_Structures
| |-- Arrays
| |-- Strings
| |-- Linked_Lists
| |-- Stacks
| └─ Queues
|
|-- Advanced_Data_Structures
| |-- Trees
| | |-- Binary_Trees
| | |-- Binary_Search_Trees
| | |-- AVL_Trees
| | └─ B-Trees
| |
| |-- Graphs
| | |-- Graph_Representation
| | | |- Adjacency_Matrix
| | | └ Adjacency_List
| | |
| | |-- Depth-First_Search
| | |-- Breadth-First_Search
| | |-- Shortest_Path_Algorithms
| | | |- Dijkstra's_Algorithm
| | | └ Bellman-Ford_Algorithm
| | |
| | └─ Minimum_Spanning_Tree
| | |- Prim's_Algorithm
| | └ Kruskal's_Algorithm
| |
| |-- Heaps
| | |-- Min_Heap
| | |-- Max_Heap
| | └─ Heap_Sort
| |
| |-- Hash_Tables
| |-- Disjoint_Set_Union
| |-- Trie
| |-- Segment_Tree
| └─ Fenwick_Tree
|
|-- Algorithmic_Paradigms
| |-- Brute_Force
| |-- Divide_and_Conquer
| |-- Greedy_Algorithms
| |-- Dynamic_Programming
| |-- Backtracking
| |-- Sliding_Window_Technique
| |-- Two_Pointer_Technique
| └─ Divide_and_Conquer_Optimization
| |-- Merge_Sort_Tree
| └─ Persistent_Segment_Tree
|
|-- Searching_Algorithms
| |-- Linear_Search
| |-- Binary_Search
| |-- Depth-First_Search
| └─ Breadth-First_Search
|
|-- Sorting_Algorithms
| |-- Bubble_Sort
| |-- Selection_Sort
| |-- Insertion_Sort
| |-- Merge_Sort
| |-- Quick_Sort
| └─ Heap_Sort
|
|-- Graph_Algorithms
| |-- Depth-First_Search
| |-- Breadth-First_Search
| |-- Topological_Sort
| |-- Strongly_Connected_Components
| └─ Articulation_Points_and_Bridges
|
|-- Dynamic_Programming
| |-- Introduction_to_DP
| |-- Fibonacci_Series_using_DP
| |-- Longest_Common_Subsequence
| |-- Longest_Increasing_Subsequence
| |-- Knapsack_Problem
| |-- Matrix_Chain_Multiplication
| └─ Dynamic_Programming_on_Trees
|
|-- Mathematical_and_Bit_Manipulation_Algorithms
| |-- Prime_Numbers_and_Sieve_of_Eratosthenes
| |-- Greatest_Common_Divisor
| |-- Least_Common_Multiple
| |-- Modular_Arithmetic
| └─ Bit_Manipulation_Tricks
|
|-- Advanced_Topics
| |-- Trie-based_Algorithms
| | |-- Auto-completion
| | └─ Spell_Checker
| |
| |-- Suffix_Trees_and_Arrays
| |-- Computational_Geometry
| |-- Number_Theory
| | |-- Euler's_Totient_Function
| | └─ Mobius_Function
| |
| └─ String_Algorithms
| |-- KMP_Algorithm
| └─ Rabin-Karp_Algorithm
|
|-- OnlinePlatforms
| |-- LeetCode
| |-- HackerRank
|-- Basic_Data_Structures
| |-- Arrays
| |-- Strings
| |-- Linked_Lists
| |-- Stacks
| └─ Queues
|
|-- Advanced_Data_Structures
| |-- Trees
| | |-- Binary_Trees
| | |-- Binary_Search_Trees
| | |-- AVL_Trees
| | └─ B-Trees
| |
| |-- Graphs
| | |-- Graph_Representation
| | | |- Adjacency_Matrix
| | | └ Adjacency_List
| | |
| | |-- Depth-First_Search
| | |-- Breadth-First_Search
| | |-- Shortest_Path_Algorithms
| | | |- Dijkstra's_Algorithm
| | | └ Bellman-Ford_Algorithm
| | |
| | └─ Minimum_Spanning_Tree
| | |- Prim's_Algorithm
| | └ Kruskal's_Algorithm
| |
| |-- Heaps
| | |-- Min_Heap
| | |-- Max_Heap
| | └─ Heap_Sort
| |
| |-- Hash_Tables
| |-- Disjoint_Set_Union
| |-- Trie
| |-- Segment_Tree
| └─ Fenwick_Tree
|
|-- Algorithmic_Paradigms
| |-- Brute_Force
| |-- Divide_and_Conquer
| |-- Greedy_Algorithms
| |-- Dynamic_Programming
| |-- Backtracking
| |-- Sliding_Window_Technique
| |-- Two_Pointer_Technique
| └─ Divide_and_Conquer_Optimization
| |-- Merge_Sort_Tree
| └─ Persistent_Segment_Tree
|
|-- Searching_Algorithms
| |-- Linear_Search
| |-- Binary_Search
| |-- Depth-First_Search
| └─ Breadth-First_Search
|
|-- Sorting_Algorithms
| |-- Bubble_Sort
| |-- Selection_Sort
| |-- Insertion_Sort
| |-- Merge_Sort
| |-- Quick_Sort
| └─ Heap_Sort
|
|-- Graph_Algorithms
| |-- Depth-First_Search
| |-- Breadth-First_Search
| |-- Topological_Sort
| |-- Strongly_Connected_Components
| └─ Articulation_Points_and_Bridges
|
|-- Dynamic_Programming
| |-- Introduction_to_DP
| |-- Fibonacci_Series_using_DP
| |-- Longest_Common_Subsequence
| |-- Longest_Increasing_Subsequence
| |-- Knapsack_Problem
| |-- Matrix_Chain_Multiplication
| └─ Dynamic_Programming_on_Trees
|
|-- Mathematical_and_Bit_Manipulation_Algorithms
| |-- Prime_Numbers_and_Sieve_of_Eratosthenes
| |-- Greatest_Common_Divisor
| |-- Least_Common_Multiple
| |-- Modular_Arithmetic
| └─ Bit_Manipulation_Tricks
|
|-- Advanced_Topics
| |-- Trie-based_Algorithms
| | |-- Auto-completion
| | └─ Spell_Checker
| |
| |-- Suffix_Trees_and_Arrays
| |-- Computational_Geometry
| |-- Number_Theory
| | |-- Euler's_Totient_Function
| | └─ Mobius_Function
| |
| └─ String_Algorithms
| |-- KMP_Algorithm
| └─ Rabin-Karp_Algorithm
|
|-- OnlinePlatforms
| |-- LeetCode
| |-- HackerRank
❤1
🔥 Recent Data Analyst Interview Q&A at Deloitte 🔥
Question:
👉 Write an SQL query to extract the third highest salary from an employee table with columns EID and ESalary.
Solution:
Explanation of the Query:
1️⃣ Step 1: Create a Subquery
The subquery ranks all salaries in descending order using DENSE_RANK().
2️⃣ Step 2: Rank the Salaries
Assigns ranks: 1 for the highest salary, 2 for the second-highest, and so on.
3️⃣ Step 3: Assign an Alias
The subquery is given an alias (ranked_salaries) to use in the main query.
4️⃣ Step 4: Filter for the Third Highest Salary
The WHERE clause filters the results to include only the salary with rank 3.
5️⃣ Step 5: Display the Third Highest Salary
The main query selects and displays the third-highest salary.
By following these steps, you can easily extract the third-highest salary from the table.
#DataAnalyst #SQL #InterviewTips
Question:
👉 Write an SQL query to extract the third highest salary from an employee table with columns EID and ESalary.
Solution:
SELECT ESalary
FROM (
SELECT ESalary,
DENSE_RANK() OVER (ORDER BY ESalary DESC) AS salary_rank
FROM employee
) AS ranked_salaries
WHERE salary_rank = 3;
Explanation of the Query:
1️⃣ Step 1: Create a Subquery
The subquery ranks all salaries in descending order using DENSE_RANK().
2️⃣ Step 2: Rank the Salaries
Assigns ranks: 1 for the highest salary, 2 for the second-highest, and so on.
3️⃣ Step 3: Assign an Alias
The subquery is given an alias (ranked_salaries) to use in the main query.
4️⃣ Step 4: Filter for the Third Highest Salary
The WHERE clause filters the results to include only the salary with rank 3.
5️⃣ Step 5: Display the Third Highest Salary
The main query selects and displays the third-highest salary.
By following these steps, you can easily extract the third-highest salary from the table.
#DataAnalyst #SQL #InterviewTips
❤2
Here's a concise cheat sheet to help you get started with Python for Data Analytics. This guide covers essential libraries and functions that you'll frequently use.
1. Python Basics
- Variables:
- Data Types:
- Integers:
- Control Structures:
-
- Loops:
- While loop:
2. Importing Libraries
- NumPy:
- Pandas:
- Matplotlib:
- Seaborn:
3. NumPy for Numerical Data
- Creating Arrays:
- Array Operations:
- Reshaping Arrays:
- Indexing and Slicing:
4. Pandas for Data Manipulation
- Creating DataFrames:
- Reading Data:
- Basic Operations:
- Selecting Columns:
- Filtering Data:
- Handling Missing Data:
- GroupBy:
5. Data Visualization
- Matplotlib:
- Seaborn:
6. Common Data Operations
- Merging DataFrames:
- Pivot Table:
- Applying Functions:
7. Basic Statistics
- Denoscriptive Stats:
- Correlation:
This cheat sheet should give you a solid foundation in Python for data analytics. As you get more comfortable, you can delve deeper into each library's documentation for more advanced features.
I have curated the best resources to learn Python 👇👇
https://whatsapp.com/channel/0029VaiM08SDuMRaGKd9Wv0L
Hope you'll like it
Like this post if you need more resources like this 👍❤️
1. Python Basics
- Variables:
x = 10 y = "Hello"
- Data Types:
- Integers:
x = 10
- Floats: y = 3.14
- Strings: name = "Alice"
- Lists: my_list = [1, 2, 3]
- Dictionaries: my_dict = {"key": "value"}
- Tuples: my_tuple = (1, 2, 3)
- Control Structures:
-
if, elif, else statements- Loops:
for i in range(5):
print(i)
- While loop:
while x < 5:
print(x)
x += 1
2. Importing Libraries
- NumPy:
import numpy as np
- Pandas:
import pandas as pd
- Matplotlib:
import matplotlib.pyplot as plt
- Seaborn:
import seaborn as sns
3. NumPy for Numerical Data
- Creating Arrays:
arr = np.array([1, 2, 3, 4])
- Array Operations:
arr.sum()
arr.mean()
- Reshaping Arrays:
arr.reshape((2, 2))
- Indexing and Slicing:
arr[0:2] # First two elements
4. Pandas for Data Manipulation
- Creating DataFrames:
df = pd.DataFrame({
'col1': [1, 2, 3],
'col2': ['A', 'B', 'C']
})
- Reading Data:
df = pd.read_csv('file.csv')
- Basic Operations:
df.head() # First 5 rows
df.describe() # Summary statistics
df.info() # DataFrame info
- Selecting Columns:
df['col1']
df[['col1', 'col2']]
- Filtering Data:
df[df['col1'] > 2]
- Handling Missing Data:
df.dropna() # Drop missing values
df.fillna(0) # Replace missing values
- GroupBy:
df.groupby('col2').mean()
5. Data Visualization
- Matplotlib:
plt.plot(df['col1'], df['col2'])
plt.xlabel('X-axis')
plt.ylabel('Y-axis')
plt.noscript('Title')
plt.show()
- Seaborn:
sns.histplot(df['col1'])
sns.boxplot(x='col1', y='col2', data=df)
6. Common Data Operations
- Merging DataFrames:
pd.merge(df1, df2, on='key')
- Pivot Table:
df.pivot_table(index='col1', columns='col2', values='col3')
- Applying Functions:
df['col1'].apply(lambda x: x*2)
7. Basic Statistics
- Denoscriptive Stats:
df['col1'].mean()
df['col1'].median()
df['col1'].std()
- Correlation:
df.corr()
This cheat sheet should give you a solid foundation in Python for data analytics. As you get more comfortable, you can delve deeper into each library's documentation for more advanced features.
I have curated the best resources to learn Python 👇👇
https://whatsapp.com/channel/0029VaiM08SDuMRaGKd9Wv0L
Hope you'll like it
Like this post if you need more resources like this 👍❤️
❤1
𝟭𝟬𝟬% 𝗙𝗥𝗘𝗘 𝗗𝗮𝘁𝗮 𝗔𝗻𝗮𝗹𝘆𝘁𝗶𝗰𝘀 𝗖𝗲𝗿𝘁𝗶𝗳𝗶𝗰𝗮𝘁𝗶𝗼𝗻 😍
Master in-demand skills like Excel, SQL, Power BI & Data Visualization with 100% FREE Certification 💯
✅ Industry-Relevant Curriculum
✅ No Cost – Lifetime Free Access
✅ Boost Your Resume & Job Readiness
Perfect for Students, Freshers & Career Switchers!
𝐋𝐢𝐧𝐤 👇:-
https://pdlink.in/4lp7hXQ
🎓 Enroll Now & Get Certified
Master in-demand skills like Excel, SQL, Power BI & Data Visualization with 100% FREE Certification 💯
✅ Industry-Relevant Curriculum
✅ No Cost – Lifetime Free Access
✅ Boost Your Resume & Job Readiness
Perfect for Students, Freshers & Career Switchers!
𝐋𝐢𝐧𝐤 👇:-
https://pdlink.in/4lp7hXQ
🎓 Enroll Now & Get Certified
❤1
𝗧𝗼𝗽 𝗣𝘆𝘁𝗵𝗼𝗻 𝗜𝗻𝘁𝗲𝗿𝘃𝗶𝗲𝘄 𝗤𝘂𝗲𝘀𝘁𝗶𝗼𝗻𝘀 𝗔𝘀𝗸𝗲𝗱 𝗯𝘆 𝗠𝗡𝗖𝘀😍
If you can answer these Python questions, you’re already ahead of 90% of candidates.🧑💻✨️
These aren’t your average textbook questions. These are real interview questions asked in top MNCs — designed to test how deeply you understand Python.📊📍
𝐋𝐢𝐧𝐤👇:-
https://pdlink.in/4mu4oVx
This is the smart way to prepare✅️
If you can answer these Python questions, you’re already ahead of 90% of candidates.🧑💻✨️
These aren’t your average textbook questions. These are real interview questions asked in top MNCs — designed to test how deeply you understand Python.📊📍
𝐋𝐢𝐧𝐤👇:-
https://pdlink.in/4mu4oVx
This is the smart way to prepare✅️
❤1
✅ Learn New Skills FREE 🔰
1. Web Development ➝
◀️ https://news.1rj.ru/str/webdevcoursefree
2. CSS ➝
◀️ http://css-tricks.com
3. JavaScript ➝
◀️ http://t.me/javanoscript_courses
4. React ➝
◀️ http://react-tutorial.app
5. Data Engineering ➝
◀️ https://news.1rj.ru/str/sql_engineer
6. Data Science ➝
◀️ https://news.1rj.ru/str/datasciencefun
7. Python ➝
◀️ http://pythontutorial.net
8. SQL ➝
◀️ https://news.1rj.ru/str/sqlanalyst
9. Git and GitHub ➝
◀️ http://GitFluence.com
10. Blockchain ➝
◀️ https://news.1rj.ru/str/Bitcoin_Crypto_Web
11. Mongo DB ➝
◀️ http://mongodb.com
12. Node JS ➝
◀️ http://nodejsera.com
13. English Speaking ➝
◀️ https://news.1rj.ru/str/englishlearnerspro
14. C#➝
◀️ https://learn.microsoft.com/en-us/training/paths/get-started-c-sharp-part-1/
15. Excel➝
◀️ https://news.1rj.ru/str/excel_analyst
16. Generative AI➝
◀️ https://news.1rj.ru/str/generativeai_gpt
17. Java
◀️ https://news.1rj.ru/str/Java_Programming_Notes
18. Artificial Intelligence
◀️ https://news.1rj.ru/str/machinelearning_deeplearning
19. Data Structure & Algorithms
◀️ https://news.1rj.ru/str/dsabooks
20. Backend Development
◀️ https://imp.i115008.net/rn2nyy
21. Python for AI
◀️ https://deeplearning.ai/short-courses/ai-python-for-beginners/
Join @free4unow_backup for more free courses
Like for more ❤️
ENJOY LEARNING👍👍
1. Web Development ➝
◀️ https://news.1rj.ru/str/webdevcoursefree
2. CSS ➝
◀️ http://css-tricks.com
3. JavaScript ➝
◀️ http://t.me/javanoscript_courses
4. React ➝
◀️ http://react-tutorial.app
5. Data Engineering ➝
◀️ https://news.1rj.ru/str/sql_engineer
6. Data Science ➝
◀️ https://news.1rj.ru/str/datasciencefun
7. Python ➝
◀️ http://pythontutorial.net
8. SQL ➝
◀️ https://news.1rj.ru/str/sqlanalyst
9. Git and GitHub ➝
◀️ http://GitFluence.com
10. Blockchain ➝
◀️ https://news.1rj.ru/str/Bitcoin_Crypto_Web
11. Mongo DB ➝
◀️ http://mongodb.com
12. Node JS ➝
◀️ http://nodejsera.com
13. English Speaking ➝
◀️ https://news.1rj.ru/str/englishlearnerspro
14. C#➝
◀️ https://learn.microsoft.com/en-us/training/paths/get-started-c-sharp-part-1/
15. Excel➝
◀️ https://news.1rj.ru/str/excel_analyst
16. Generative AI➝
◀️ https://news.1rj.ru/str/generativeai_gpt
17. Java
◀️ https://news.1rj.ru/str/Java_Programming_Notes
18. Artificial Intelligence
◀️ https://news.1rj.ru/str/machinelearning_deeplearning
19. Data Structure & Algorithms
◀️ https://news.1rj.ru/str/dsabooks
20. Backend Development
◀️ https://imp.i115008.net/rn2nyy
21. Python for AI
◀️ https://deeplearning.ai/short-courses/ai-python-for-beginners/
Join @free4unow_backup for more free courses
Like for more ❤️
ENJOY LEARNING👍👍
❤1
📱 25 YouTube Channels to Learn Programming for FREE 💻🚀
✅ freeCodeCamp
✅ The Net Ninja
✅ Traversy Media
✅ Programming with Mosh
✅ Fireship
✅ Amigoscode
✅ CS50 by Harvard
✅ CodeWithHarry
✅ Tech with Tim
✅ Academind
✅ Web Dev Simplified
✅ The Odin Project
✅ JavaScript Mastery
✅ Derek Banas
✅ Bro Code
✅ Simplilearn
✅ Codevolution
✅ Hussein Nasser
✅ Dev Ed
✅ Sonny Sangha
✅ Telusko
✅ Caleb Curry
✅ Python Engineer
✅ Clever Programmer
✅ GeeksforGeeks
🔥 React “❤️” if you found this helpful!
✅ freeCodeCamp
✅ The Net Ninja
✅ Traversy Media
✅ Programming with Mosh
✅ Fireship
✅ Amigoscode
✅ CS50 by Harvard
✅ CodeWithHarry
✅ Tech with Tim
✅ Academind
✅ Web Dev Simplified
✅ The Odin Project
✅ JavaScript Mastery
✅ Derek Banas
✅ Bro Code
✅ Simplilearn
✅ Codevolution
✅ Hussein Nasser
✅ Dev Ed
✅ Sonny Sangha
✅ Telusko
✅ Caleb Curry
✅ Python Engineer
✅ Clever Programmer
✅ GeeksforGeeks
🔥 React “❤️” if you found this helpful!
❤7🥰1
When to Use Which Programming Language?
C ➝ OS Development, Embedded Systems, Game Engines
C++ ➝ Game Dev, High-Performance Apps, Finance
Java ➝ Enterprise Apps, Android, Backend
C# ➝ Unity Games, Windows Apps
Python ➝ AI/ML, Data, Automation, Web Dev
JavaScript ➝ Frontend, Full-Stack, Web Games
Golang ➝ Cloud Services, APIs, Networking
Swift ➝ iOS/macOS Apps
Kotlin ➝ Android, Backend
PHP ➝ Web Dev (WordPress, Laravel)
Ruby ➝ Web Dev (Rails), Prototypes
Rust ➝ System Apps, Blockchain, HPC
Lua ➝ Game Scripting (Roblox, WoW)
R ➝ Stats, Data Science, Bioinformatics
SQL ➝ Data Analysis, DB Management
TypeScript ➝ Scalable Web Apps
Node.js ➝ Backend, Real-Time Apps
React ➝ Modern Web UIs
Vue ➝ Lightweight SPAs
Django ➝ AI/ML Backend, Web Dev
Laravel ➝ Full-Stack PHP
Blazor ➝ Web with .NET
Spring Boot ➝ Microservices, Java Enterprise
Ruby on Rails ➝ MVPs, Startups
HTML/CSS ➝ UI/UX, Web Design
Git ➝ Version Control
Linux ➝ Server, Security, DevOps
DevOps ➝ Infra Automation, CI/CD
CI/CD ➝ Testing + Deployment
Docker ➝ Containerization
Kubernetes ➝ Cloud Orchestration
Microservices ➝ Scalable Backends
Selenium ➝ Web Testing
Playwright ➝ Modern Web Automation
Credits: https://whatsapp.com/channel/0029VahiFZQ4o7qN54LTzB17
ENJOY LEARNING 👍👍
C ➝ OS Development, Embedded Systems, Game Engines
C++ ➝ Game Dev, High-Performance Apps, Finance
Java ➝ Enterprise Apps, Android, Backend
C# ➝ Unity Games, Windows Apps
Python ➝ AI/ML, Data, Automation, Web Dev
JavaScript ➝ Frontend, Full-Stack, Web Games
Golang ➝ Cloud Services, APIs, Networking
Swift ➝ iOS/macOS Apps
Kotlin ➝ Android, Backend
PHP ➝ Web Dev (WordPress, Laravel)
Ruby ➝ Web Dev (Rails), Prototypes
Rust ➝ System Apps, Blockchain, HPC
Lua ➝ Game Scripting (Roblox, WoW)
R ➝ Stats, Data Science, Bioinformatics
SQL ➝ Data Analysis, DB Management
TypeScript ➝ Scalable Web Apps
Node.js ➝ Backend, Real-Time Apps
React ➝ Modern Web UIs
Vue ➝ Lightweight SPAs
Django ➝ AI/ML Backend, Web Dev
Laravel ➝ Full-Stack PHP
Blazor ➝ Web with .NET
Spring Boot ➝ Microservices, Java Enterprise
Ruby on Rails ➝ MVPs, Startups
HTML/CSS ➝ UI/UX, Web Design
Git ➝ Version Control
Linux ➝ Server, Security, DevOps
DevOps ➝ Infra Automation, CI/CD
CI/CD ➝ Testing + Deployment
Docker ➝ Containerization
Kubernetes ➝ Cloud Orchestration
Microservices ➝ Scalable Backends
Selenium ➝ Web Testing
Playwright ➝ Modern Web Automation
Credits: https://whatsapp.com/channel/0029VahiFZQ4o7qN54LTzB17
ENJOY LEARNING 👍👍
❤2
𝗔𝗜 𝗙𝗥𝗘𝗘 𝗖𝗲𝗿𝘁𝗶𝗳𝗶𝗰𝗮𝘁𝗶𝗼𝗻 𝗖𝗼𝘂𝗿𝘀𝗲𝘀 🚀
AI is the future now & highly in demand
💼 Learn in-demand AI skills
📚 Beginner-friendly — No experience needed
✅ Get Certified & Boost Your Career
🎯 100% Free – Limited Time!
🔗 𝗘𝗻𝗿𝗼𝗹𝗹 𝗙𝗼𝗿 𝗙𝗥𝗘𝗘 𝗡𝗼𝘄 👇:-
https://pdlink.in/3U3eZuq
📌 Enroll today & start your AI journey!
AI is the future now & highly in demand
💼 Learn in-demand AI skills
📚 Beginner-friendly — No experience needed
✅ Get Certified & Boost Your Career
🎯 100% Free – Limited Time!
🔗 𝗘𝗻𝗿𝗼𝗹𝗹 𝗙𝗼𝗿 𝗙𝗥𝗘𝗘 𝗡𝗼𝘄 👇:-
https://pdlink.in/3U3eZuq
📌 Enroll today & start your AI journey!
❤4