Artificial Intelligence & ChatGPT Prompts – Telegram
Artificial Intelligence & ChatGPT Prompts
41.5K subscribers
673 photos
5 videos
319 files
567 links
🔓Unlock Your Coding Potential with ChatGPT
🚀 Your Ultimate Guide to Ace Coding Interviews!
💻 Coding tips, practice questions, and expert advice to land your dream tech job.


For Promotions: @love_data
Download Telegram
𝟯 𝗙𝗿𝗲𝗲 𝗚𝗶𝘁𝗛𝘂𝗯 𝗖𝗼𝘂𝗿𝘀𝗲𝘀 𝘁𝗼 𝗠𝗮𝘀𝘁𝗲𝗿 𝗣𝘆𝘁𝗵𝗼𝗻 𝗳𝗼𝗿 𝗗𝗮𝘁𝗮 𝗔𝗻𝗮𝗹𝘆𝘁𝗶𝗰𝘀 𝗶𝗻 𝟮𝟬𝟮𝟱😍

Want to master Python for Data Analytics without spending a single rupee?💰✨️

You don’t need expensive bootcamps or paid certifications to get started. Thanks to the open-source community, there are incredible free GitHub repositories that cover everything you need🧑‍💻📌

𝐋𝐢𝐧𝐤👇:-

https://pdlink.in/47hf59F

Don’t just study theory—start coding, analyzing, and building today. Your portfolio (and future self) will thank you✅️
1
Complete DSA Roadmap

|-- Basic_Data_Structures
| |-- Arrays
| |-- Strings
| |-- Linked_Lists
| |-- Stacks
| └─ Queues
|
|-- Advanced_Data_Structures
| |-- Trees
| | |-- Binary_Trees
| | |-- Binary_Search_Trees
| | |-- AVL_Trees
| | └─ B-Trees
| |
| |-- Graphs
| | |-- Graph_Representation
| | | |- Adjacency_Matrix
| | | └ Adjacency_List
| | |
| | |-- Depth-First_Search
| | |-- Breadth-First_Search
| | |-- Shortest_Path_Algorithms
| | | |- Dijkstra's_Algorithm
| | | └ Bellman-Ford_Algorithm
| | |
| | └─ Minimum_Spanning_Tree
| | |- Prim's_Algorithm
| | └ Kruskal's_Algorithm
| |
| |-- Heaps
| | |-- Min_Heap
| | |-- Max_Heap
| | └─ Heap_Sort
| |
| |-- Hash_Tables
| |-- Disjoint_Set_Union
| |-- Trie
| |-- Segment_Tree
| └─ Fenwick_Tree
|
|-- Algorithmic_Paradigms
| |-- Brute_Force
| |-- Divide_and_Conquer
| |-- Greedy_Algorithms
| |-- Dynamic_Programming
| |-- Backtracking
| |-- Sliding_Window_Technique
| |-- Two_Pointer_Technique
| └─ Divide_and_Conquer_Optimization
| |-- Merge_Sort_Tree
| └─ Persistent_Segment_Tree
|
|-- Searching_Algorithms
| |-- Linear_Search
| |-- Binary_Search
| |-- Depth-First_Search
| └─ Breadth-First_Search
|
|-- Sorting_Algorithms
| |-- Bubble_Sort
| |-- Selection_Sort
| |-- Insertion_Sort
| |-- Merge_Sort
| |-- Quick_Sort
| └─ Heap_Sort
|
|-- Graph_Algorithms
| |-- Depth-First_Search
| |-- Breadth-First_Search
| |-- Topological_Sort
| |-- Strongly_Connected_Components
| └─ Articulation_Points_and_Bridges
|
|-- Dynamic_Programming
| |-- Introduction_to_DP
| |-- Fibonacci_Series_using_DP
| |-- Longest_Common_Subsequence
| |-- Longest_Increasing_Subsequence
| |-- Knapsack_Problem
| |-- Matrix_Chain_Multiplication
| └─ Dynamic_Programming_on_Trees
|
|-- Mathematical_and_Bit_Manipulation_Algorithms
| |-- Prime_Numbers_and_Sieve_of_Eratosthenes
| |-- Greatest_Common_Divisor
| |-- Least_Common_Multiple
| |-- Modular_Arithmetic
| └─ Bit_Manipulation_Tricks
|
|-- Advanced_Topics
| |-- Trie-based_Algorithms
| | |-- Auto-completion
| | └─ Spell_Checker
| |
| |-- Suffix_Trees_and_Arrays
| |-- Computational_Geometry
| |-- Number_Theory
| | |-- Euler's_Totient_Function
| | └─ Mobius_Function
| |
| └─ String_Algorithms
| |-- KMP_Algorithm
| └─ Rabin-Karp_Algorithm
|
|-- OnlinePlatforms
| |-- LeetCode
| |-- HackerRank
1
🔥 Recent Data Analyst Interview Q&A at Deloitte 🔥

Question:
👉 Write an SQL query to extract the third highest salary from an employee table with columns EID and ESalary.

Solution:
SELECT ESalary  
FROM (
SELECT ESalary,
DENSE_RANK() OVER (ORDER BY ESalary DESC) AS salary_rank
FROM employee
) AS ranked_salaries
WHERE salary_rank = 3;

Explanation of the Query:

1️⃣ Step 1: Create a Subquery

The subquery ranks all salaries in descending order using DENSE_RANK().

2️⃣ Step 2: Rank the Salaries

Assigns ranks: 1 for the highest salary, 2 for the second-highest, and so on.

3️⃣ Step 3: Assign an Alias

The subquery is given an alias (ranked_salaries) to use in the main query.

4️⃣ Step 4: Filter for the Third Highest Salary

The WHERE clause filters the results to include only the salary with rank 3.

5️⃣ Step 5: Display the Third Highest Salary

The main query selects and displays the third-highest salary.

By following these steps, you can easily extract the third-highest salary from the table.



#DataAnalyst #SQL #InterviewTips
2
Here's a concise cheat sheet to help you get started with Python for Data Analytics. This guide covers essential libraries and functions that you'll frequently use.


1. Python Basics
- Variables:
x = 10
y = "Hello"

- Data Types:
  - Integers: x = 10
  - Floats: y = 3.14
  - Strings: name = "Alice"
  - Lists: my_list = [1, 2, 3]
  - Dictionaries: my_dict = {"key": "value"}
  - Tuples: my_tuple = (1, 2, 3)

- Control Structures:
  - if, elif, else statements
  - Loops: 
  
    for i in range(5):
        print(i)
   

  - While loop:
  
    while x < 5:
        print(x)
        x += 1
   

2. Importing Libraries

- NumPy:
  import numpy as np
 

- Pandas:
  import pandas as pd
 

- Matplotlib:
  import matplotlib.pyplot as plt
 

- Seaborn:
  import seaborn as sns
 

3. NumPy for Numerical Data

- Creating Arrays:
  arr = np.array([1, 2, 3, 4])
 

- Array Operations:
  arr.sum()
  arr.mean()
 

- Reshaping Arrays:
  arr.reshape((2, 2))
 

- Indexing and Slicing:
  arr[0:2]  # First two elements
 

4. Pandas for Data Manipulation

- Creating DataFrames:
  df = pd.DataFrame({
      'col1': [1, 2, 3],
      'col2': ['A', 'B', 'C']
  })
 

- Reading Data:
  df = pd.read_csv('file.csv')
 

- Basic Operations:
  df.head()          # First 5 rows
  df.describe()      # Summary statistics
  df.info()          # DataFrame info
 

- Selecting Columns:
  df['col1']
  df[['col1', 'col2']]
 

- Filtering Data:
  df[df['col1'] > 2]
 

- Handling Missing Data:
  df.dropna()        # Drop missing values
  df.fillna(0)       # Replace missing values
 

- GroupBy:
  df.groupby('col2').mean()
 

5. Data Visualization

- Matplotlib:
  plt.plot(df['col1'], df['col2'])
  plt.xlabel('X-axis')
  plt.ylabel('Y-axis')
  plt.noscript('Title')
  plt.show()
 

- Seaborn:
  sns.histplot(df['col1'])
  sns.boxplot(x='col1', y='col2', data=df)
 

6. Common Data Operations

- Merging DataFrames:
  pd.merge(df1, df2, on='key')
 

- Pivot Table:
  df.pivot_table(index='col1', columns='col2', values='col3')
 

- Applying Functions:
  df['col1'].apply(lambda x: x*2)
 

7. Basic Statistics

- Denoscriptive Stats:
  df['col1'].mean()
  df['col1'].median()
  df['col1'].std()
 

- Correlation:
  df.corr()
 

This cheat sheet should give you a solid foundation in Python for data analytics. As you get more comfortable, you can delve deeper into each library's documentation for more advanced features.

I have curated the best resources to learn Python 👇👇
https://whatsapp.com/channel/0029VaiM08SDuMRaGKd9Wv0L

Hope you'll like it

Like this post if you need more resources like this 👍❤️
1
𝟭𝟬𝟬% 𝗙𝗥𝗘𝗘 𝗗𝗮𝘁𝗮 𝗔𝗻𝗮𝗹𝘆𝘁𝗶𝗰𝘀 𝗖𝗲𝗿𝘁𝗶𝗳𝗶𝗰𝗮𝘁𝗶𝗼𝗻 😍

Master in-demand skills like Excel, SQL, Power BI & Data Visualization with 100% FREE Certification 💯

Industry-Relevant Curriculum
No Cost – Lifetime Free Access
Boost Your Resume & Job Readiness

Perfect for Students, Freshers & Career Switchers!

𝐋𝐢𝐧𝐤 👇:- 
 
https://pdlink.in/4lp7hXQ
 
🎓 Enroll Now & Get Certified
1
𝗧𝗼𝗽 𝗣𝘆𝘁𝗵𝗼𝗻 𝗜𝗻𝘁𝗲𝗿𝘃𝗶𝗲𝘄 𝗤𝘂𝗲𝘀𝘁𝗶𝗼𝗻𝘀 𝗔𝘀𝗸𝗲𝗱 𝗯𝘆 𝗠𝗡𝗖𝘀😍

If you can answer these Python questions, you’re already ahead of 90% of candidates.🧑‍💻✨️

These aren’t your average textbook questions. These are real interview questions asked in top MNCs — designed to test how deeply you understand Python.📊📍

𝐋𝐢𝐧𝐤👇:-

https://pdlink.in/4mu4oVx

This is the smart way to prepare✅️
1
Learn New Skills FREE 🔰

1. Web Development ➝
◀️ https://news.1rj.ru/str/webdevcoursefree

2. CSS ➝
◀️ http://css-tricks.com

3. JavaScript ➝
◀️ http://t.me/javanoscript_courses

4. React ➝
◀️ http://react-tutorial.app

5. Data Engineering ➝
◀️ https://news.1rj.ru/str/sql_engineer

6. Data Science  ➝
◀️ https://news.1rj.ru/str/datasciencefun

7. Python ➝
◀️ http://pythontutorial.net

8. SQL ➝
◀️  https://news.1rj.ru/str/sqlanalyst

9. Git and GitHub ➝
◀️ http://GitFluence.com

10. Blockchain ➝
◀️ https://news.1rj.ru/str/Bitcoin_Crypto_Web

11. Mongo DB ➝
◀️ http://mongodb.com

12. Node JS ➝
◀️ http://nodejsera.com

13. English Speaking ➝
◀️ https://news.1rj.ru/str/englishlearnerspro

14. C#➝
◀️ https://learn.microsoft.com/en-us/training/paths/get-started-c-sharp-part-1/

15. Excel➝
◀️ https://news.1rj.ru/str/excel_analyst

16. Generative AI➝
◀️ https://news.1rj.ru/str/generativeai_gpt

17. Java
◀️ https://news.1rj.ru/str/Java_Programming_Notes

18. Artificial Intelligence
◀️ https://news.1rj.ru/str/machinelearning_deeplearning

19. Data Structure & Algorithms
◀️ https://news.1rj.ru/str/dsabooks

20. Backend Development
◀️ https://imp.i115008.net/rn2nyy

21. Python for AI
◀️ https://deeplearning.ai/short-courses/ai-python-for-beginners/

Join @free4unow_backup for more free courses

Like for more ❤️

ENJOY LEARNING👍👍
1
📱 25 YouTube Channels to Learn Programming for FREE 💻🚀

freeCodeCamp
The Net Ninja
Traversy Media
Programming with Mosh
Fireship
Amigoscode
CS50 by Harvard
CodeWithHarry
Tech with Tim
Academind
Web Dev Simplified
The Odin Project
JavaScript Mastery
Derek Banas
Bro Code
Simplilearn
Codevolution
Hussein Nasser
Dev Ed
Sonny Sangha
Telusko
Caleb Curry
Python Engineer
Clever Programmer
GeeksforGeeks

🔥 React “❤️” if you found this helpful!
7🥰1
When to Use Which Programming Language?

C ➝ OS Development, Embedded Systems, Game Engines
C++ ➝ Game Dev, High-Performance Apps, Finance
Java ➝ Enterprise Apps, Android, Backend
C# ➝ Unity Games, Windows Apps
Python ➝ AI/ML, Data, Automation, Web Dev
JavaScript ➝ Frontend, Full-Stack, Web Games
Golang ➝ Cloud Services, APIs, Networking
Swift ➝ iOS/macOS Apps
Kotlin ➝ Android, Backend
PHP ➝ Web Dev (WordPress, Laravel)
Ruby ➝ Web Dev (Rails), Prototypes
Rust ➝ System Apps, Blockchain, HPC
Lua ➝ Game Scripting (Roblox, WoW)
R ➝ Stats, Data Science, Bioinformatics
SQL ➝ Data Analysis, DB Management
TypeScript ➝ Scalable Web Apps
Node.js ➝ Backend, Real-Time Apps
React ➝ Modern Web UIs
Vue ➝ Lightweight SPAs
Django ➝ AI/ML Backend, Web Dev
Laravel ➝ Full-Stack PHP
Blazor ➝ Web with .NET
Spring Boot ➝ Microservices, Java Enterprise
Ruby on Rails ➝ MVPs, Startups
HTML/CSS ➝ UI/UX, Web Design
Git ➝ Version Control
Linux ➝ Server, Security, DevOps
DevOps ➝ Infra Automation, CI/CD
CI/CD ➝ Testing + Deployment
Docker ➝ Containerization
Kubernetes ➝ Cloud Orchestration
Microservices ➝ Scalable Backends
Selenium ➝ Web Testing
Playwright ➝ Modern Web Automation

Credits: https://whatsapp.com/channel/0029VahiFZQ4o7qN54LTzB17

ENJOY LEARNING 👍👍
2
𝗔𝗜 𝗙𝗥𝗘𝗘 𝗖𝗲𝗿𝘁𝗶𝗳𝗶𝗰𝗮𝘁𝗶𝗼𝗻 𝗖𝗼𝘂𝗿𝘀𝗲𝘀 🚀

AI is the future now & highly in demand 

💼 Learn in-demand AI skills
📚 Beginner-friendly — No experience needed
Get Certified & Boost Your Career
🎯 100% Free – Limited Time!

🔗 𝗘𝗻𝗿𝗼𝗹𝗹 𝗙𝗼𝗿 𝗙𝗥𝗘𝗘 𝗡𝗼𝘄 👇:-

https://pdlink.in/3U3eZuq

📌 Enroll today & start your AI journey!
4
TOP 10 SQL Concepts for Job Interview

1. Aggregate Functions (SUM/AVG)
2. Group By and Order By
3. JOINs (Inner/Left/Right)
4. Union and Union All
5. Date and Time processing
6. String processing
7. Window Functions (Partition by)
8. Subquery
9. View and Index
10. Common Table Expression (CTE)


TOP 10 Statistics Concepts for Job Interview

1. Sampling
2. Experiments (A/B tests)
3. Denoscriptive Statistics
4. p-value
5. Probability Distributions
6. t-test
7. ANOVA
8. Correlation
9. Linear Regression
10. Logistics Regression


TOP 10 Python Concepts for Job Interview

1. Reading data from file/table
2. Writing data to file/table
3. Data Types
4. Function
5. Data Preprocessing (numpy/pandas)
6. Data Visualisation (Matplotlib/seaborn/bokeh)
7. Machine Learning (sklearn)
8. Deep Learning (Tensorflow/Keras/PyTorch)
9. Distributed Processing (PySpark)
10. Functional and Object Oriented Programming
1
One day or Day one. You decide.

Data Science edition.

𝗢𝗻𝗲 𝗗𝗮𝘆 : I will learn SQL.
𝗗𝗮𝘆 𝗢𝗻𝗲: Download mySQL Workbench.

𝗢𝗻𝗲 𝗗𝗮𝘆: I will build my projects for my portfolio.
𝗗𝗮𝘆 𝗢𝗻𝗲: Look on Kaggle for a dataset to work on.

𝗢𝗻𝗲 𝗗𝗮𝘆: I will master statistics.
𝗗𝗮𝘆 𝗢𝗻𝗲: Start the free Khan Academy Statistics and Probability course.

𝗢𝗻𝗲 𝗗𝗮𝘆: I will learn to tell stories with data.
𝗗𝗮𝘆 𝗢𝗻𝗲: Install Tableau Public and create my first chart.

𝗢𝗻𝗲 𝗗𝗮𝘆: I will become a Data Scientist.
𝗗𝗮𝘆 𝗢𝗻𝗲: Update my resume and apply to some Data Science job postings.
1
Breaking into Data Analytics doesn’t need to be complicated.

If you’re just starting out,

Here’s how to simplify your approach:

Avoid:
🚫 Jumping into advanced tools like Hadoop or Spark before mastering the basics.
🚫 Focusing only on tools, not on business problem-solving.
🚫 Collecting certificates instead of solving real problems.
🚫 Thinking you need to know everything from SQL to machine learning right away.

Instead:
Start with Excel, SQL, and one visualization tool (like Power BI or Tableau).
Learn how to clean, explore, and interpret data to solve business questions.
Understand core concepts like KPIs, dashboards, and business metrics.
Pick real datasets and analyze them with clear goals and insights.
Build a portfolio that shows you can translate data into decisions.

React ❤️ for more
1
🚀 Become an Agentic AI Builder — Free 12‑Week Certification by Ready Tensor

Ready Tensor’s Agentic AI Developer Certification is a free, project first 12‑week program designed to help you build and deploy real-world agentic AI systems. You'll complete three portfolio-ready projects using tools like LangChain, LangGraph, and vector databases, while deploying production-ready agents with FastAPI or Streamlit.

The course focuses on developing autonomous AI agents that can plan, reason, use memory, and act safely in complex environments. Certification is earned not by watching lectures, but by building — each project is reviewed against rigorous standards.

You can start anytime, and new cohorts begin monthly. Ideal for developers and engineers ready to go beyond chat prompts and start building true agentic systems.

👉 Apply now: https://www.readytensor.ai/agentic-ai-cert/
1
📊 𝗗𝗮𝘁𝗮 𝗔𝗻𝗮𝗹𝘆𝘁𝗶𝗰𝘀 𝗙𝗥𝗘𝗘 𝗗𝗲𝗺𝗼 𝗠𝗮𝘀𝘁𝗲𝗿𝗰𝗹𝗮𝘀𝘀 𝗶𝗻 𝗛𝘆𝗱𝗲𝗿𝗮𝗯𝗮𝗱/𝗣𝘂𝗻𝗲 😍

Looking to become a Data Analyst? It’s one of the most in-demand roles in tech — and the best part? No coding required!

🔥 Learn Data Analytics with Real-time Projects ,Hands-on Tools

Highlights:
100% Placement Support
500+ Hiring Partners
Weekly Hiring Drives

𝗥𝗲𝗴𝗶𝘀𝘁𝗲𝗿 𝗡𝗼𝘄:- 👇

🔹 Hyderabad :- https://pdlink.in/4kFhjn3

🔹 Pune:- https://pdlink.in/45p4GrC

Hurry Up 🏃‍♂️! Limited seats are available.
1
Want to become a Data Scientist?

Here’s a quick roadmap with essential concepts:

1. Mathematics & Statistics

Linear Algebra: Matrix operations, eigenvalues, eigenvectors, and decomposition, which are crucial for machine learning.

Probability & Statistics: Hypothesis testing, probability distributions, Bayesian inference, confidence intervals, and statistical significance.

Calculus: Derivatives, integrals, and gradients, especially partial derivatives, which are essential for understanding model optimization.


2. Programming

Python or R: Choose a primary programming language for data science.

Python: Libraries like NumPy, Pandas for data manipulation, and Scikit-Learn for machine learning.

R: Especially popular in academia and finance, with libraries like dplyr and ggplot2 for data manipulation and visualization.


SQL: Master querying and database management, essential for accessing, joining, and filtering large datasets.


3. Data Wrangling & Preprocessing

Data Cleaning: Handle missing values, outliers, duplicates, and data formatting.
Feature Engineering: Create meaningful features, handle categorical variables, and apply transformations (scaling, encoding, etc.).
Exploratory Data Analysis (EDA): Visualize data distributions, correlations, and trends to generate hypotheses and insights.


4. Data Visualization

Python Libraries: Use Matplotlib, Seaborn, and Plotly to visualize data.
Tableau or Power BI: Learn interactive visualization tools for building dashboards.
Storytelling: Develop skills to interpret and present data in a meaningful way to stakeholders.


5. Machine Learning

Supervised Learning: Understand algorithms like Linear Regression, Logistic Regression, Decision Trees, Random Forest, Gradient Boosting, and Support Vector Machines (SVM).
Unsupervised Learning: Study clustering (K-means, DBSCAN) and dimensionality reduction (PCA, t-SNE).
Evaluation Metrics: Understand accuracy, precision, recall, F1-score for classification and RMSE, MAE for regression.


6. Advanced Machine Learning & Deep Learning

Neural Networks: Understand the basics of neural networks and backpropagation.
Deep Learning: Get familiar with Convolutional Neural Networks (CNNs) for image processing and Recurrent Neural Networks (RNNs) for sequential data.
Transfer Learning: Apply pre-trained models for specific use cases.
Frameworks: Use TensorFlow Keras for building deep learning models.


7. Natural Language Processing (NLP)

Text Preprocessing: Tokenization, stemming, lemmatization, stop-word removal.
NLP Techniques: Understand bag-of-words, TF-IDF, and word embeddings (Word2Vec, GloVe).
NLP Models: Work with recurrent neural networks (RNNs), transformers (BERT, GPT) for text classification, sentiment analysis, and translation.


8. Big Data Tools (Optional)

Distributed Data Processing: Learn Hadoop and Spark for handling large datasets. Use Google BigQuery for big data storage and processing.


9. Data Science Workflows & Pipelines (Optional)

ETL & Data Pipelines: Extract, Transform, and Load data using tools like Apache Airflow for automation. Set up reproducible workflows for data transformation, modeling, and monitoring.
Model Deployment: Deploy models in production using Flask, FastAPI, or cloud services (AWS SageMaker, Google AI Platform).


10. Model Validation & Tuning

Cross-Validation: Techniques like K-fold cross-validation to avoid overfitting.
Hyperparameter Tuning: Use Grid Search, Random Search, and Bayesian Optimization to optimize model performance.
Bias-Variance Trade-off: Understand how to balance bias and variance in models for better generalization.


11. Time Series Analysis

Statistical Models: ARIMA, SARIMA, and Holt-Winters for time-series forecasting.
Time Series: Handle seasonality, trends, and lags. Use LSTMs or Prophet for more advanced time-series forecasting.


12. Experimentation & A/B Testing

Experiment Design: Learn how to set up and analyze controlled experiments.
A/B Testing: Statistical techniques for comparing groups & measuring the impact of changes.

ENJOY LEARNING 👍👍

#datascience
2
𝐒𝐭𝐚𝐫𝐭 𝐘𝐨𝐮𝐫 𝐃𝐚𝐭𝐚 𝐀𝐧𝐚𝐥𝐲𝐭𝐢𝐜𝐬 𝐉𝐨𝐮𝐫𝐧𝐞𝐲 — 𝟏𝟎𝟎% 𝐅𝐫𝐞𝐞 & 𝐁𝐞𝐠𝐢𝐧𝐧𝐞𝐫-𝐅𝐫𝐢𝐞𝐧𝐝𝐥𝐲😍

Want to dive into data analytics but don’t know where to start?🧑‍💻✨️

These free Microsoft learning paths take you from analytics basics to creating dashboards, AI insights with Copilot, and end-to-end analytics with Microsoft Fabric.📊📌

𝐋𝐢𝐧𝐤👇:-

https://pdlink.in/47oQD6f

No prior experience needed — just curiosity✅️
1