How to Use Polynomial Feature Transforms for Machine Learning
In this tutorial, you will discover how to use polynomial feature transforms for feature engineering with numerical input variables.
https://bit.ly/3h3dUy8
In this tutorial, you will discover how to use polynomial feature transforms for feature engineering with numerical input variables.
https://bit.ly/3h3dUy8
Catalyst 101 — Accelerated PyTorch
In this post, you will learn about Catalyst framework, developed with focus on reproducibility, fast experimentation, and code/idea reusing.
https://bit.ly/2Yah4r7
In this post, you will learn about Catalyst framework, developed with focus on reproducibility, fast experimentation, and code/idea reusing.
https://bit.ly/2Yah4r7
Using AI to predict retinal disease progression
In this post, you will learn about AI system that can predict the development of exAMD which was created by DeepMind in collaboration with Moorfields Eye Hospital and Google Health.
https://bit.ly/2MEbnwv
In this post, you will learn about AI system that can predict the development of exAMD which was created by DeepMind in collaboration with Moorfields Eye Hospital and Google Health.
https://bit.ly/2MEbnwv
How to Do Data Exploration for Image Segmentation and Object Detection
In this article, the author will share with you how he approaches data exploration for image segmentation and object detection problems.
https://bit.ly/3cL9IQf
In this article, the author will share with you how he approaches data exploration for image segmentation and object detection problems.
https://bit.ly/3cL9IQf
Data Science Digest (June 2020)
Hi folks, I’m happy to share with you the latest Data Science Digest issue featuring Data Science & Machine Learning goodies for June 2020. Please upvote on Habr and applaud on Medium.
Habr (RU) — https://bit.ly/30lGGUR
Medium (EN) — https://bit.ly/3f4xbNS
Hi folks, I’m happy to share with you the latest Data Science Digest issue featuring Data Science & Machine Learning goodies for June 2020. Please upvote on Habr and applaud on Medium.
Habr (RU) — https://bit.ly/30lGGUR
Medium (EN) — https://bit.ly/3f4xbNS
The Ultimate Guide to Deploying Machine Learning Models
This multi-part series is a great resource for learning about model deployment. Covers a variety of topics, including common pitfalls, interfaces, model registries, A/B testing and more.
https://bit.ly/3cNSGB3
This multi-part series is a great resource for learning about model deployment. Covers a variety of topics, including common pitfalls, interfaces, model registries, A/B testing and more.
https://bit.ly/3cNSGB3
OpenCV Social Distancing Detector
In this tutorial, you will learn what social distancing is and how OpenCV and deep learning can be used to implement a social distancing detector.
https://bit.ly/2ULzAWb
In this tutorial, you will learn what social distancing is and how OpenCV and deep learning can be used to implement a social distancing detector.
https://bit.ly/2ULzAWb
Anti-Patterns in NLP (8 types of NLP idiots)
In this talk, you will learn about common anti-patterns that happen in the industry while solving text problems.
https://bit.ly/31SwxQf
In this talk, you will learn about common anti-patterns that happen in the industry while solving text problems.
https://bit.ly/31SwxQf
Interactive, Scalable Dashboards with Vaex and Dash
Vaex and Dash are open-source libraries that make it easy to build interactive dashboards on the web for millions, and even billions, of data samples using just your Python skills. This tutorial shows what you can do with these libraries and how to use them.
https://bit.ly/2Otifxr
Vaex and Dash are open-source libraries that make it easy to build interactive dashboards on the web for millions, and even billions, of data samples using just your Python skills. This tutorial shows what you can do with these libraries and how to use them.
https://bit.ly/2Otifxr
Deep Learning with PyTorch
Download a free copy of the full book and learn how to get started with AI / ML development using PyTorch. This book provides a detailed, hands-on introduction to building and training neural networks with PyTorch, a popular open-source machine learning framework.
https://bit.ly/3jPFMqY
Download a free copy of the full book and learn how to get started with AI / ML development using PyTorch. This book provides a detailed, hands-on introduction to building and training neural networks with PyTorch, a popular open-source machine learning framework.
https://bit.ly/3jPFMqY
Understanding coordinate systems and DICOM for deep learning medical image analysis
Multiple introductory concepts regarding deep learning in medical imaging, such as coordinate system and DICOM data extraction from the machine learning perspective.
https://bit.ly/3hSi0sB
Multiple introductory concepts regarding deep learning in medical imaging, such as coordinate system and DICOM data extraction from the machine learning perspective.
https://bit.ly/3hSi0sB
Awesome GPT-3
This evolving GPT-3 collection includes links to some of the best demos and tutorials around the web. This is a great rabbit hole for anyone interested in understanding how GPT-3 works and where it's going.
https://bit.ly/30LQozy
This evolving GPT-3 collection includes links to some of the best demos and tutorials around the web. This is a great rabbit hole for anyone interested in understanding how GPT-3 works and where it's going.
https://bit.ly/30LQozy
Object Detection from 9 FPS to 650 FPS in 6 Steps
This article is a practical deep dive into making a specific deep learning model (Nvidia’s SSD300) run fast on a powerful GPU server, but the general principles apply to all GPU programming. The SSD300 is an object-detection model trained on COCO, so output will be bounding boxes with probabilities for 81 classes of object.
https://bit.ly/34YwqTd
This article is a practical deep dive into making a specific deep learning model (Nvidia’s SSD300) run fast on a powerful GPU server, but the general principles apply to all GPU programming. The SSD300 is an object-detection model trained on COCO, so output will be bounding boxes with probabilities for 81 classes of object.
https://bit.ly/34YwqTd
The 2020 Data & AI Landscape
In this post, you will learn about:
— Key trends in data infrastructure
— Key trends in analytics & enterprise AI
— The 2020 landscape
— Who’s in, who’s out — noteworthy IPOS, M&A and additions
https://bit.ly/378UCol
In this post, you will learn about:
— Key trends in data infrastructure
— Key trends in analytics & enterprise AI
— The 2020 landscape
— Who’s in, who’s out — noteworthy IPOS, M&A and additions
https://bit.ly/378UCol
Using reinforcement learning to personalize AI-accelerated MRI scans
Our early experiments with the fastMRI data set show that our models outperform the previous active MRI acquisition state of the art over a broad range of acceleration factors.
https://bit.ly/3j1tOsz
Our early experiments with the fastMRI data set show that our models outperform the previous active MRI acquisition state of the art over a broad range of acceleration factors.
https://bit.ly/3j1tOsz
Putting ML in Production
A guide and case study on MLOps for software engineers, data scientists and product managers. Deploy ML to production for a real product with live data using open source tools.
https://bit.ly/2GXFb89
A guide and case study on MLOps for software engineers, data scientists and product managers. Deploy ML to production for a real product with live data using open source tools.
https://bit.ly/2GXFb89
Stanford MLSys Seminar Series
In this seminar series, we want to take a look at the frontier of machine learning systems, and how machine learning changes the modern programming stack. Our goal is to help curate a curriculum of awesome work in ML systems to help drive research focus to interesting questions.
https://stanford.io/3dFVl1J
In this seminar series, we want to take a look at the frontier of machine learning systems, and how machine learning changes the modern programming stack. Our goal is to help curate a curriculum of awesome work in ML systems to help drive research focus to interesting questions.
https://stanford.io/3dFVl1J
#dataset
MSeg: A Composite Dataset for Multi-domain Semantic Segmentation
MSeg is a composite dataset that unifies semantic segmentation datasets from different domains. In this dataset, authors reconcile the taxonomies and bring the pixel-level annotations into alignment by relabeling more than 220,000 object masks in more than 80,000 images.
https://bit.ly/2Hfqc9A
MSeg: A Composite Dataset for Multi-domain Semantic Segmentation
MSeg is a composite dataset that unifies semantic segmentation datasets from different domains. In this dataset, authors reconcile the taxonomies and bring the pixel-level annotations into alignment by relabeling more than 220,000 object masks in more than 80,000 images.
https://bit.ly/2Hfqc9A
Druid - Interactive Analytics At Scale
Druid – один из полезных и популярных инструментов в мире Больших Данных. Именно эта OLAP система позволяет эффективно обрабатывать, хранить и запрашивать данные. Что и подтверждает востребованность Druid среди инструментов в среде обработки Больших Данных
С Владимиром Иордановым мы поговорим о том, как работает Druid, из чего он состоит и каковы его возможности. Владимир познакомит нас с компонентами Druid, расскажет об архитектуре кластера, о том как проходит обработка данных. Мы сможем понаблюдать на практике, как с ним работать.
О спикере:
🔸 Владимир Иорданов – BigData Tech Lead в Lohika и уже более шести лет работает в проектах, связанных с Большими Данными. Его последний проект был непосредственно связан с Apache Druid. Во время работы на этом проекте Владимир получил большой опыт работы с поддержкой и разработкой под эту систему в production. Этим опытом наш спикер и поделится на BigData Odesa #TechTalks .
🔹Где: онлайн
🔹Когда: 17.12.2020 в 19:00
🔹Язык доклада: русский
🔹Регистрация обязательна
🔹Вход: donation. Будем вам признательны за перечисление любой комфортной для Вас суммы в благотворительный фонд “Корпорация монстров”. Способы перечисления помощи есть на странице регистрации.
Регистрация на онлайн-трансляцию => https://docs.google.com/forms/d/e/1FAIpQLSdALs-5FgvDKwoAVqJkbvYKOR0UTLrWTvMszDUGl1HIylISrA/viewform
Как всегда, вас ждет интересная тема и полезный вечер. Вы научитесь эффективно применять Druid в своих проектах при построении системы обработки больших данных.
Присоединяйтесь!
Druid – один из полезных и популярных инструментов в мире Больших Данных. Именно эта OLAP система позволяет эффективно обрабатывать, хранить и запрашивать данные. Что и подтверждает востребованность Druid среди инструментов в среде обработки Больших Данных
С Владимиром Иордановым мы поговорим о том, как работает Druid, из чего он состоит и каковы его возможности. Владимир познакомит нас с компонентами Druid, расскажет об архитектуре кластера, о том как проходит обработка данных. Мы сможем понаблюдать на практике, как с ним работать.
О спикере:
🔸 Владимир Иорданов – BigData Tech Lead в Lohika и уже более шести лет работает в проектах, связанных с Большими Данными. Его последний проект был непосредственно связан с Apache Druid. Во время работы на этом проекте Владимир получил большой опыт работы с поддержкой и разработкой под эту систему в production. Этим опытом наш спикер и поделится на BigData Odesa #TechTalks .
🔹Где: онлайн
🔹Когда: 17.12.2020 в 19:00
🔹Язык доклада: русский
🔹Регистрация обязательна
🔹Вход: donation. Будем вам признательны за перечисление любой комфортной для Вас суммы в благотворительный фонд “Корпорация монстров”. Способы перечисления помощи есть на странице регистрации.
Регистрация на онлайн-трансляцию => https://docs.google.com/forms/d/e/1FAIpQLSdALs-5FgvDKwoAVqJkbvYKOR0UTLrWTvMszDUGl1HIylISrA/viewform
Как всегда, вас ждет интересная тема и полезный вечер. Вы научитесь эффективно применять Druid в своих проектах при построении системы обработки больших данных.
Присоединяйтесь!
Hey folks!
I know, I know… You’ve all been wondering for quite a while if this digest is actually dead or kinda not exactly. I’m here to say that it’s alive and kicking, and I’m — finally — back.
Now, it makes sense to explain where I’ve been all this time. Well, I have two words for you: Covid-19 and a child (probably shouldn’t use these in one sentence).
With quarantines imposed, most people had to sit at home and watch TV series… But it wasn’t and isn’t the case if you’re a developer. Just WFH, baby. And to the babies — my son was born in May 2020, so my plate was extra full.
Anyway, the situation has stabilized, and I’m back. So, what can you expect to see next?
- Daily updates on all things AI/ML/Data on Telegram and other social media
- Weekly email newsletter with Top AI news and resources
- Quizzes and surveys
- Webinars
- Fun stuff
- etc
I hope this sorted things out a bit. Stay tuned and have a great one, all!
P. S. Updates will start arriving soon.
Best regards,
Dmitry Spodarets
@DataScienceDigest
I know, I know… You’ve all been wondering for quite a while if this digest is actually dead or kinda not exactly. I’m here to say that it’s alive and kicking, and I’m — finally — back.
Now, it makes sense to explain where I’ve been all this time. Well, I have two words for you: Covid-19 and a child (probably shouldn’t use these in one sentence).
With quarantines imposed, most people had to sit at home and watch TV series… But it wasn’t and isn’t the case if you’re a developer. Just WFH, baby. And to the babies — my son was born in May 2020, so my plate was extra full.
Anyway, the situation has stabilized, and I’m back. So, what can you expect to see next?
- Daily updates on all things AI/ML/Data on Telegram and other social media
- Weekly email newsletter with Top AI news and resources
- Quizzes and surveys
- Webinars
- Fun stuff
- etc
I hope this sorted things out a bit. Stay tuned and have a great one, all!
P. S. Updates will start arriving soon.
Best regards,
Dmitry Spodarets
@DataScienceDigest
Recommendation Algorithms & System Designs of YouTube, Spotify, Airbnb, Netflix, TikTok, and Uber
Ever wondered how top technology companies can so accurately predict their customers’ next step? Go no further! In this article, you will find a collection of recommendation algorithms and system designs that they may be using. Note that the author collected all the info from open sources and judges from his personal experience; there is no guarantee that the designs are 100% correct.
https://bit.ly/3m0y0Mo
@DataScienceDigest
Ever wondered how top technology companies can so accurately predict their customers’ next step? Go no further! In this article, you will find a collection of recommendation algorithms and system designs that they may be using. Note that the author collected all the info from open sources and judges from his personal experience; there is no guarantee that the designs are 100% correct.
https://bit.ly/3m0y0Mo
@DataScienceDigest