Machine Learning Algorithm
👍4❤2
Data Analysis using Python
👍3👏1
05 Machine Learning Project Ideas for a Standout Resume
1. Next Word Prediction Model
Build an NLP model to predict the next word in a sentence.
2. Hybrid Machine Learning Model
Combine algorithms for improved predictions.
3. Model Deployment
Deploy ML models as APIs or containers.
4. User Profiling & Segmentation
Segment users based on behavior and preferences.
5. Fashion Recommendation System
Recommend fashion items using image features.
🌟 Ai projects: https://news.1rj.ru/str/aichads
1. Next Word Prediction Model
Build an NLP model to predict the next word in a sentence.
2. Hybrid Machine Learning Model
Combine algorithms for improved predictions.
3. Model Deployment
Deploy ML models as APIs or containers.
4. User Profiling & Segmentation
Segment users based on behavior and preferences.
5. Fashion Recommendation System
Recommend fashion items using image features.
🌟 Ai projects: https://news.1rj.ru/str/aichads
❤1👍1
5 Free Python Courses for Data Science Beginners
1️⃣ Python for Beginners – freeCodeCamp
2️⃣ Python – Kaggle
3️⃣ Python Mini-Projects – freeCodeCamp
4️⃣ Python Tutorial – W3Schools
5️⃣ oops with Python- freeCodeCamp
1️⃣ Python for Beginners – freeCodeCamp
2️⃣ Python – Kaggle
3️⃣ Python Mini-Projects – freeCodeCamp
4️⃣ Python Tutorial – W3Schools
5️⃣ oops with Python- freeCodeCamp
Here are two amazing SQL Projects for data analytics 👇👇
Calculating Free-to-Paid Conversion Rate with SQL Project
Career Track Analysis with SQL and Tableau Project
Like this post if you need more data analytics projects in the channel 😄
Hope it helps :)
Calculating Free-to-Paid Conversion Rate with SQL Project
Career Track Analysis with SQL and Tableau Project
Like this post if you need more data analytics projects in the channel 😄
Hope it helps :)
👍4
Complete roadmap to learn Python for data analysis
Step 1: Fundamentals of Python
1. Basics of Python Programming
- Introduction to Python
- Data types (integers, floats, strings, booleans)
- Variables and constants
- Basic operators (arithmetic, comparison, logical)
2. Control Structures
- Conditional statements (if, elif, else)
- Loops (for, while)
- List comprehensions
3. Functions and Modules
- Defining functions
- Function arguments and return values
- Importing modules
- Built-in functions vs. user-defined functions
4. Data Structures
- Lists, tuples, sets, dictionaries
- Manipulating data structures (add, remove, update elements)
Step 2: Advanced Python
1. File Handling
- Reading from and writing to files
- Working with different file formats (txt, csv, json)
2. Error Handling
- Try, except blocks
- Handling exceptions and errors gracefully
3. Object-Oriented Programming (OOP)
- Classes and objects
- Inheritance and polymorphism
- Encapsulation
Step 3: Libraries for Data Analysis
1. NumPy
- Understanding arrays and array operations
- Indexing, slicing, and iterating
- Mathematical functions and statistical operations
2. Pandas
- Series and DataFrames
- Reading and writing data (csv, excel, sql, json)
- Data cleaning and preparation
- Merging, joining, and concatenating data
- Grouping and aggregating data
3. Matplotlib and Seaborn
- Data visualization with Matplotlib
- Plotting different types of graphs (line, bar, scatter, histogram)
- Customizing plots
- Advanced visualizations with Seaborn
Step 4: Data Manipulation and Analysis
1. Data Wrangling
- Handling missing values
- Data transformation
- Feature engineering
2. Exploratory Data Analysis (EDA)
- Denoscriptive statistics
- Data visualization techniques
- Identifying patterns and outliers
3. Statistical Analysis
- Hypothesis testing
- Correlation and regression analysis
- Probability distributions
Step 5: Advanced Topics
1. Time Series Analysis
- Working with datetime objects
- Time series decomposition
- Forecasting models
2. Machine Learning Basics
- Introduction to machine learning
- Supervised vs. unsupervised learning
- Using Scikit-Learn for machine learning
- Building and evaluating models
3. Big Data and Cloud Computing
- Introduction to big data frameworks (e.g., Hadoop, Spark)
- Using cloud services for data analysis (e.g., AWS, Google Cloud)
Step 6: Practical Projects
1. Hands-on Projects
- Analyzing datasets from Kaggle
- Building interactive dashboards with Plotly or Dash
- Developing end-to-end data analysis projects
2. Collaborative Projects
- Participating in data science competitions
- Contributing to open-source projects
👨💻 FREE Resources to Learn & Practice Python
1. https://www.freecodecamp.org/learn/data-analysis-with-python/#data-analysis-with-python-course
2. https://www.hackerrank.com/domains/python
3. https://www.hackerearth.com/practice/python/getting-started/numbers/practice-problems/
4. https://news.1rj.ru/str/PythonInterviews
5. https://www.w3schools.com/python/python_exercises.asp
6. https://news.1rj.ru/str/pythonfreebootcamp/134
7. https://news.1rj.ru/str/pythonanalyst
8. https://pythonbasics.org/exercises/
9. https://news.1rj.ru/str/pythondevelopersindia/300
10. https://www.geeksforgeeks.org/python-programming-language/learn-python-tutorial
11. https://news.1rj.ru/str/pythonspecialist/33
Join @free4unow_backup for more free resources
ENJOY LEARNING 👍👍
Step 1: Fundamentals of Python
1. Basics of Python Programming
- Introduction to Python
- Data types (integers, floats, strings, booleans)
- Variables and constants
- Basic operators (arithmetic, comparison, logical)
2. Control Structures
- Conditional statements (if, elif, else)
- Loops (for, while)
- List comprehensions
3. Functions and Modules
- Defining functions
- Function arguments and return values
- Importing modules
- Built-in functions vs. user-defined functions
4. Data Structures
- Lists, tuples, sets, dictionaries
- Manipulating data structures (add, remove, update elements)
Step 2: Advanced Python
1. File Handling
- Reading from and writing to files
- Working with different file formats (txt, csv, json)
2. Error Handling
- Try, except blocks
- Handling exceptions and errors gracefully
3. Object-Oriented Programming (OOP)
- Classes and objects
- Inheritance and polymorphism
- Encapsulation
Step 3: Libraries for Data Analysis
1. NumPy
- Understanding arrays and array operations
- Indexing, slicing, and iterating
- Mathematical functions and statistical operations
2. Pandas
- Series and DataFrames
- Reading and writing data (csv, excel, sql, json)
- Data cleaning and preparation
- Merging, joining, and concatenating data
- Grouping and aggregating data
3. Matplotlib and Seaborn
- Data visualization with Matplotlib
- Plotting different types of graphs (line, bar, scatter, histogram)
- Customizing plots
- Advanced visualizations with Seaborn
Step 4: Data Manipulation and Analysis
1. Data Wrangling
- Handling missing values
- Data transformation
- Feature engineering
2. Exploratory Data Analysis (EDA)
- Denoscriptive statistics
- Data visualization techniques
- Identifying patterns and outliers
3. Statistical Analysis
- Hypothesis testing
- Correlation and regression analysis
- Probability distributions
Step 5: Advanced Topics
1. Time Series Analysis
- Working with datetime objects
- Time series decomposition
- Forecasting models
2. Machine Learning Basics
- Introduction to machine learning
- Supervised vs. unsupervised learning
- Using Scikit-Learn for machine learning
- Building and evaluating models
3. Big Data and Cloud Computing
- Introduction to big data frameworks (e.g., Hadoop, Spark)
- Using cloud services for data analysis (e.g., AWS, Google Cloud)
Step 6: Practical Projects
1. Hands-on Projects
- Analyzing datasets from Kaggle
- Building interactive dashboards with Plotly or Dash
- Developing end-to-end data analysis projects
2. Collaborative Projects
- Participating in data science competitions
- Contributing to open-source projects
👨💻 FREE Resources to Learn & Practice Python
1. https://www.freecodecamp.org/learn/data-analysis-with-python/#data-analysis-with-python-course
2. https://www.hackerrank.com/domains/python
3. https://www.hackerearth.com/practice/python/getting-started/numbers/practice-problems/
4. https://news.1rj.ru/str/PythonInterviews
5. https://www.w3schools.com/python/python_exercises.asp
6. https://news.1rj.ru/str/pythonfreebootcamp/134
7. https://news.1rj.ru/str/pythonanalyst
8. https://pythonbasics.org/exercises/
9. https://news.1rj.ru/str/pythondevelopersindia/300
10. https://www.geeksforgeeks.org/python-programming-language/learn-python-tutorial
11. https://news.1rj.ru/str/pythonspecialist/33
Join @free4unow_backup for more free resources
ENJOY LEARNING 👍👍
👍7❤4🥰2👏2
Forwarded from Data Science & Machine Learning Resources
Roadmap for Learning Machine Learning (ML)
Here’s a concise and point-wise roadmap for learning ML:
1. Prerequisites
- Learn programming basics (e.g., Python).
- Understand mathematics:
1 - Linear Algebra (vectors, matrices).
2 - Probability and Statistics (distributions, Bayes’ theorem).
3 - Calculus (derivatives, gradients).
4 - Familiarize yourself with data structures and algorithms.
2. Basics of Machine Learning
-Understand ML concepts:
Supervised, unsupervised, and reinforcement learning.
Training, validation, and testing datasets.
- Learn how to preprocess and clean data.
- Get familiar with Python libraries:
NumPy, Pandas, Matplotlib, and Seaborn.
3. Supervised Learning
- Study regression techniques:
Linear and Logistic Regression.
- Explore classification algorithms:
Decision Trees, Support Vector Machines (SVM), k-NN.
- Learn model evaluation metrics:
Accuracy, Precision, Recall, F1 Score, ROC-AUC.
4. Unsupervised Learning
- Learn clustering techniques:
k-Means, DBSCAN, Hierarchical Clustering.
- Understand Dimensionality Reduction:
PCA, t-SNE.
5. Advanced Concepts
- Explore ensemble methods:
Random Forest, Gradient Boosting, XGBoost, LightGBM.
- Learn hyperparameter tuning techniques:
Grid Search, Random Search.
6. Deep Learning (Optional for Advanced ML)
- Learn neural networks basics:
Forward and Backpropagation.
- Study Deep Learning libraries:
TensorFlow, PyTorch, Keras.
Explore CNNs, RNNs, and Transformers.
7. Hands-on Practice
- Work on small projects like:
1 - Predicting house prices.
2 - Sentiment analysis on tweets.
3 - Image classification.
4 - Explore Kaggle competitions and datasets.
8. Deployment
- Learn how to deploy ML models:
Use Flask, FastAPI, or Django.
- Explore cloud platforms: AWS, Azure, Google Cloud.
9. Keep Learning
- Stay updated with new techniques:
Follow blogs, papers, and conferences (e.g., NeurIPS, ICML).
- Dive into specialized fields:
NLP, Computer Vision, Reinforcement Learning.
Join for more: https://news.1rj.ru/str/datalemur
Here’s a concise and point-wise roadmap for learning ML:
1. Prerequisites
- Learn programming basics (e.g., Python).
- Understand mathematics:
1 - Linear Algebra (vectors, matrices).
2 - Probability and Statistics (distributions, Bayes’ theorem).
3 - Calculus (derivatives, gradients).
4 - Familiarize yourself with data structures and algorithms.
2. Basics of Machine Learning
-Understand ML concepts:
Supervised, unsupervised, and reinforcement learning.
Training, validation, and testing datasets.
- Learn how to preprocess and clean data.
- Get familiar with Python libraries:
NumPy, Pandas, Matplotlib, and Seaborn.
3. Supervised Learning
- Study regression techniques:
Linear and Logistic Regression.
- Explore classification algorithms:
Decision Trees, Support Vector Machines (SVM), k-NN.
- Learn model evaluation metrics:
Accuracy, Precision, Recall, F1 Score, ROC-AUC.
4. Unsupervised Learning
- Learn clustering techniques:
k-Means, DBSCAN, Hierarchical Clustering.
- Understand Dimensionality Reduction:
PCA, t-SNE.
5. Advanced Concepts
- Explore ensemble methods:
Random Forest, Gradient Boosting, XGBoost, LightGBM.
- Learn hyperparameter tuning techniques:
Grid Search, Random Search.
6. Deep Learning (Optional for Advanced ML)
- Learn neural networks basics:
Forward and Backpropagation.
- Study Deep Learning libraries:
TensorFlow, PyTorch, Keras.
Explore CNNs, RNNs, and Transformers.
7. Hands-on Practice
- Work on small projects like:
1 - Predicting house prices.
2 - Sentiment analysis on tweets.
3 - Image classification.
4 - Explore Kaggle competitions and datasets.
8. Deployment
- Learn how to deploy ML models:
Use Flask, FastAPI, or Django.
- Explore cloud platforms: AWS, Azure, Google Cloud.
9. Keep Learning
- Stay updated with new techniques:
Follow blogs, papers, and conferences (e.g., NeurIPS, ICML).
- Dive into specialized fields:
NLP, Computer Vision, Reinforcement Learning.
Join for more: https://news.1rj.ru/str/datalemur
👍5
import requests
def asteroidOrbits(year, orbitclass):
base_url = "https://jsonmock.hackerrank.com/api/asteroids/search"
page = 1
res = []
while True:
response = requests.get(f"{base_url}?orbit_class={orbitclass}&discovery_date={year}&page={page}").json()
res.extend(response['data'])
if page >= response['total_pages']:
break
page += 1
res.sort(key=lambda x: (float(x.get('period_yr', 1.00)), x['designation']))
return [x['designation'] for x in res]Rest API: Asteroid Orbits ✅
👍3
Please go through this top 10 SQL projects with Datasets that you can practice and can add in your resume
📌1. Social Media Analytics:
(https://www.kaggle.com/amanajmera1/framingham-heart-study-dataset)
🚀2. Web Analytics:
(https://www.kaggle.com/zynicide/wine-reviews)
📌3. HR Analytics:
(https://www.kaggle.com/pavansubhasht/ibm-hr-analytics-
attrition-dataset)
🚀4. Healthcare Data Analysis:
(https://www.kaggle.com/cdc/mortality)
📌5. E-commerce Analysis:
(https://www.kaggle.com/olistbr/brazilian-ecommerce)
🚀6. Inventory Management:
(https://www.kaggle.com/datasets?
search=inventory+management)
📌 7.Customer Relationship Management:
(https://www.kaggle.com/pankajjsh06/ibm-watson-
marketing-customer-value-data)
🚀8. Financial Data Analysis:
(https://www.kaggle.com/awaiskalia/banking-database)
📌9. Supply Chain Management:
(https://www.kaggle.com/shashwatwork/procurement-analytics)
🚀10. Analysis of Sales Data:
(https://www.kaggle.com/kyanyoga/sample-sales-data)
Small suggestion from my side for non tech students: kindly pick those datasets which you like the subject in general, that way you will be more excited to practice it, instead of just doing it for the sake of resume, you will learn SQL more passionately, since it’s a programming language try to make it more exciting for yourself.
Join for more: https://news.1rj.ru/str/DataPortfolio
Hope this piece of information helps you
📌1. Social Media Analytics:
(https://www.kaggle.com/amanajmera1/framingham-heart-study-dataset)
🚀2. Web Analytics:
(https://www.kaggle.com/zynicide/wine-reviews)
📌3. HR Analytics:
(https://www.kaggle.com/pavansubhasht/ibm-hr-analytics-
attrition-dataset)
🚀4. Healthcare Data Analysis:
(https://www.kaggle.com/cdc/mortality)
📌5. E-commerce Analysis:
(https://www.kaggle.com/olistbr/brazilian-ecommerce)
🚀6. Inventory Management:
(https://www.kaggle.com/datasets?
search=inventory+management)
📌 7.Customer Relationship Management:
(https://www.kaggle.com/pankajjsh06/ibm-watson-
marketing-customer-value-data)
🚀8. Financial Data Analysis:
(https://www.kaggle.com/awaiskalia/banking-database)
📌9. Supply Chain Management:
(https://www.kaggle.com/shashwatwork/procurement-analytics)
🚀10. Analysis of Sales Data:
(https://www.kaggle.com/kyanyoga/sample-sales-data)
Small suggestion from my side for non tech students: kindly pick those datasets which you like the subject in general, that way you will be more excited to practice it, instead of just doing it for the sake of resume, you will learn SQL more passionately, since it’s a programming language try to make it more exciting for yourself.
Join for more: https://news.1rj.ru/str/DataPortfolio
Hope this piece of information helps you
👍8❤2
Top Platforms for Building Data Science Portfolio
Build an irresistible portfolio that hooks recruiters with these free platforms.
Landing a job as a data scientist begins with building your portfolio with a comprehensive list of all your projects. To help you get started with building your portfolio, here is the list of top data science platforms. Remember the stronger your portfolio, the better chances you have of landing your dream job.
1. GitHub
2. Kaggle
3. LinkedIn
4. Medium
5. MachineHack
6. DagsHub
7. HuggingFace
Build an irresistible portfolio that hooks recruiters with these free platforms.
Landing a job as a data scientist begins with building your portfolio with a comprehensive list of all your projects. To help you get started with building your portfolio, here is the list of top data science platforms. Remember the stronger your portfolio, the better chances you have of landing your dream job.
1. GitHub
2. Kaggle
3. LinkedIn
4. Medium
5. MachineHack
6. DagsHub
7. HuggingFace
👍4