Data Science Portfolio - Kaggle Datasets & AI Projects | Artificial Intelligence – Telegram
Data Science Portfolio - Kaggle Datasets & AI Projects | Artificial Intelligence
37.3K subscribers
283 photos
76 files
336 links
Free Datasets For Data Science Projects & Portfolio

Buy ads: https://telega.io/c/DataPortfolio

For Promotions/ads: @coderfun @love_data
Download Telegram
𝗝𝗣 𝗠𝗼𝗿𝗴𝗮𝗻 𝗙𝗥𝗘𝗘 𝗩𝗶𝗿𝘁𝘂𝗮𝗹 𝗖𝗲𝗿𝘁𝗶𝗳𝗶𝗰𝗮𝘁𝗶𝗼𝗻 𝗣𝗿𝗼𝗴𝗿𝗮𝗺😍

Want hands-on experience from a top global company without leaving your home?

These FREE virtual internship by JPMorgan on Forage let you explore careers in

 Software Engineering
 Investment Banking
 Quantitative Research

𝐋𝐢𝐧𝐤 👇:-

https://pdlink.in/4kStNZi

Enroll For FREE & Get Certified 🎓
Learn Data Science in 2024

𝟭. 𝗔𝗽𝗽𝗹𝘆 𝗣𝗮𝗿𝗲𝘁𝗼'𝘀 𝗟𝗮𝘄 𝘁𝗼 𝗟𝗲𝗮𝗿𝗻 𝗝𝘂𝘀𝘁 𝗘𝗻𝗼𝘂𝗴𝗵 📚

Pareto's Law states that "that 80% of consequences come from 20% of the causes".

This law should serve as a guiding framework for the volume of content you need to know to be proficient in data science.

Often rookies make the mistake of overspending their time learning algorithms that are rarely applied in production. Learning about advanced algorithms such as XLNet, Bayesian SVD++, and BiLSTMs, are cool to learn.

But, in reality, you will rarely apply such algorithms in production (unless your job demands research and application of state-of-the-art algos).

For most ML applications in production - especially in the MVP phase, simple algos like logistic regression, K-Means, random forest, and XGBoost provide the biggest bang for the buck because of their simplicity in training, interpretation and productionization.

So, invest more time learning topics that provide immediate value now, not a year later.

𝟮. 𝗙𝗶𝗻𝗱 𝗮 𝗠𝗲𝗻𝘁𝗼𝗿

There’s a Japanese proverb that says “Better than a thousand days of diligent study is one day with a great teacher.” This proverb directly applies to learning data science quickly.

Mentors can teach you about how to build a model in production and how to manage stakeholders - stuff that you don’t often read about in courses and books.

So, find a mentor who can teach you practical knowledge in data science.

𝟯. 𝗗𝗲𝗹𝗶𝗯𝗲𝗿𝗮𝘁𝗲 𝗣𝗿𝗮𝗰𝘁𝗶𝗰𝗲 ✍️

If you are serious about growing your excelling in data science, you have to put in the time to nurture your knowledge. This means that you need to spend less time watching mindless videos on TikTok and spend more time reading books and watching video lectures.

Join @datasciencefree for more

ENJOY LEARNING 👍👍
👍4
Forwarded from Artificial Intelligence
𝗦𝘁𝗿𝘂𝗴𝗴𝗹𝗶𝗻𝗴 𝘄𝗶𝘁𝗵 𝗣𝗼𝘄𝗲𝗿 𝗕𝗜? 𝗧𝗵𝗶𝘀 𝗖𝗵𝗲𝗮𝘁 𝗦𝗵𝗲𝗲𝘁 𝗶𝘀 𝗬𝗼𝘂𝗿 𝗨𝗹𝘁𝗶𝗺𝗮𝘁𝗲 𝗦𝗵𝗼𝗿𝘁𝗰𝘂𝘁!😍

Mastering Power BI can be overwhelming, but this cheat sheet by DataCamp makes it super easy! 🚀

𝐋𝐢𝐧𝐤👇:-

https://pdlink.in/4ld6F7Y

No more flipping through tabs & tutorials—just pin this cheat sheet and analyze data like a pro!✅️
👍1
NumPy_SciPy_Pandas_Quandl_Cheat_Sheet.pdf
134.6 KB
Cheatsheet on Numpy and pandas for easy viewing 👀
ibm_machine_learning_for_dummies.pdf
1.8 MB
Short Machine Learning guide on industry applications and how it’s used to resolve problems 💡
1663243982009.pdf
349.9 KB
All SQL solutions for leetcode, good luck grinding 🫣
git-cheat-sheet-education.pdf
97.8 KB
Git commands cheatsheets for anyone working on personal projects on GitHub! 👾
1655183344172.pdf
333.8 KB
Algorithmic concepts for anyone who is taking Data Structure and Algorithms, or interested in algorithmic trading 😉
👍52
𝟭𝟬𝟬% 𝗙𝗥𝗘𝗘 𝗖𝗲𝗿𝘁𝗶𝗳𝗶𝗰𝗮𝘁𝗶𝗼𝗻 𝗖𝗼𝘂𝗿𝘀𝗲𝘀😍

Master Python, Machine Learning, SQL, and Data Visualization with hands-on tutorials & real-world datasets? 🎯

This 100% FREE resource from Kaggle will help you build job-ready skills—no fluff, no fees, just pure learning!

𝐋𝐢𝐧𝐤👇:-

https://pdlink.in/3XYAnDy

Perfect for Beginners ✅️
Here are five of the most commonly used SQL queries in data science:

1. SELECT and FROM Clauses
- Basic data retrieval: SELECT column1, column2 FROM table_name;

2. WHERE Clause
- Filtering data: SELECT * FROM table_name WHERE condition;

3. GROUP BY and Aggregate Functions
- Summarizing data: SELECT column1, COUNT(*), AVG(column2) FROM table_name GROUP BY column1;

4. JOIN Operations
- Combining data from multiple tables:

     SELECT a.column1, b.column2
FROM table1 a
JOIN table2 b ON a.common_column = b.common_column;

5. Subqueries and Nested Queries
- Advanced data retrieval:

     SELECT column1
FROM table_name
WHERE column2 IN (SELECT column2 FROM another_table WHERE condition);

Like for more ❤️

Hope it helps :)
👍2
𝗧𝗼𝗽 𝗰𝗼𝗺𝗽𝗮𝗻𝗶𝗲𝘀 𝗢𝗳𝗳𝗲𝗿𝗶𝗻𝗴 𝗙𝗥𝗘𝗘 𝘃𝗶𝗿𝘁𝘂𝗮𝗹 𝗲𝘅𝗽𝗲𝗿𝗶𝗲𝗻𝗰𝗲 𝗽𝗿𝗼𝗴𝗿𝗮𝗺𝘀😍

Want to work on real industry tasks, develop in-demand skills, and boost your resume—all for FREE? 

 Your dream career starts with real experience—grab this opportunity today!

𝐋𝐢𝐧𝐤👇:-

https://pdlink.in/4bCyUIM

💡 No experience required—just learn, upskill & build your portfolio! 🚀
Free Datasets to work on Power BI + SQL projects 👇👇

1. AdventureWorks Sample Database:
- Link: [AdventureWorks Sample Database](https://docs.microsoft.com/en-us/sql/samples/adventureworks-install-configure?view=sql-server-ver15)
- Denoscription: A sample database provided by Microsoft, containing sales, products, customers, and other related data.

2. Online Retail Dataset:
- Link: [UCI Machine Learning Repository - Online Retail Dataset](https://archive.ics.uci.edu/ml/datasets/online+retail)
- Denoscription: Transactional data from an online retail store, suitable for customer segmentation and sales analysis.

3. Supermarket Sales Dataset:
- Link: [Supermarket Sales Dataset](https://www.kaggle.com/aungpyaeap/supermarket-sales)
- Denoscription: Sales data from a supermarket, useful for inventory management and sales performance analysis.

4. Yahoo Finance (Historical Stock Data):
- Link: [Yahoo Finance](https://finance.yahoo.com/)
- Denoscription: Historical stock data for various companies, suitable for financial analysis and visualization.

5. Human Resources Analytics: Employee Attrition and Performance:
- Link: [Kaggle HR Analytics Dataset](https://www.kaggle.com/pavansubhasht/ibm-hr-analytics-attrition-dataset)
- Denoscription: Employee data including demographics, performance, and attrition information, suitable for employee performance analysis.

Bonus Open Sources Resources: https://news.1rj.ru/str/DataPortfolio/16

These datasets are freely available for practicing Power BI and SQL skills. You can download them from the provided links and import them into your SQL database management system (e.g., MySQL, SQL Server, PostgreSQL) for hands-on ☺️💪
👍3
Forwarded from Generative AI
𝟱 𝗙𝗥𝗘𝗘 𝗗𝗮𝘁𝗮 𝗔𝗻𝗮𝗹𝘆𝘁𝗶𝗰𝘀 𝗖𝗲𝗿𝘁𝗶𝗳𝗶𝗰𝗮𝘁𝗶𝗼𝗻 𝗖𝗼𝘂𝗿𝘀𝗲𝘀 😍

Whether you’re a complete beginner or looking to level up, these courses cover Excel, Power BI, Data Science, and Real-World Analytics Projects to make you job-ready.

𝐋𝐢𝐧𝐤👇:-

https://pdlink.in/3DPkrga

All The Best 🎊
👍1