Data Science Portfolio - Kaggle Datasets & AI Projects | Artificial Intelligence – Telegram
Data Science Portfolio - Kaggle Datasets & AI Projects | Artificial Intelligence
37.4K subscribers
283 photos
76 files
336 links
Free Datasets For Data Science Projects & Portfolio

Buy ads: https://telega.io/c/DataPortfolio

For Promotions/ads: @coderfun @love_data
Download Telegram
Flow chart of commonly used statistical tests
🔥3
𝟲 𝗕𝗲𝘀𝘁 𝗬𝗼𝘂𝗧𝘂𝗯𝗲 𝗖𝗵𝗮𝗻𝗻𝗲𝗹𝘀 𝘁𝗼 𝗠𝗮𝘀𝘁𝗲𝗿 𝗣𝗼𝘄𝗲𝗿 𝗕𝗜😍

Power BI Isn’t Just a Tool—It’s a Career Game-Changer🚀

Whether you’re a student, a working professional, or switching careers, learning Power BI can set you apart in the competitive world of data analytics📊

𝐋𝐢𝐧𝐤👇:-

https://pdlink.in/3ELirpu

Your Analytics Journey Starts Now✅️
👍1
Forwarded from Artificial Intelligence
𝟱 𝗙𝗥𝗘𝗘 𝗜𝗕𝗠 𝗖𝗲𝗿𝘁𝗶𝗳𝗶𝗰𝗮𝘁𝗶𝗼𝗻 𝗖𝗼𝘂𝗿𝘀𝗲𝘀 𝘁𝗼 𝗦𝗸𝘆𝗿𝗼𝗰𝗸𝗲𝘁 𝗬𝗼𝘂𝗿 𝗥𝗲𝘀𝘂𝗺𝗲😍

From mastering Cloud Computing to diving into Deep Learning, Docker, Big Data, and IoT Blockchain

IBM, one of the biggest tech companies, is offering 5 FREE courses that can seriously upgrade your resume and skills — without costing you anything.

𝗟𝗶𝗻𝗸:-👇

https://pdlink.in/44GsWoC

Enroll For FREE & Get Certified
👍2
5 frequently Asked SQL Interview Questions with Answers in Data Engineering interviews:
𝐃𝐢𝐟𝐟𝐢𝐜𝐮𝐥𝐭𝐲 - 𝐌𝐞𝐝𝐢𝐮𝐦

⚫️Determine the Top 5 Products with the Highest Revenue in Each Category.
Schema: Products (ProductID, Name, CategoryID), Sales (SaleID, ProductID, Amount)

WITH ProductRevenue AS (
SELECT p.ProductID,
p.Name,
p.CategoryID,
SUM(s.Amount) AS TotalRevenue,
RANK() OVER (PARTITION BY p.CategoryID ORDER BY SUM(s.Amount) DESC) AS RevenueRank
FROM Products p
JOIN Sales s ON p.ProductID = s.ProductID
GROUP BY p.ProductID, p.Name, p.CategoryID
)
SELECT ProductID, Name, CategoryID, TotalRevenue
FROM ProductRevenue
WHERE RevenueRank <= 5;

⚫️ Identify Employees with Increasing Sales for Four Consecutive Quarters.
Schema: Sales (EmployeeID, SaleDate, Amount)

WITH QuarterlySales AS (
SELECT EmployeeID,
DATE_TRUNC('quarter', SaleDate) AS Quarter,
SUM(Amount) AS QuarterlyAmount
FROM Sales
GROUP BY EmployeeID, DATE_TRUNC('quarter', SaleDate)
),
SalesTrend AS (
SELECT EmployeeID,
Quarter,
QuarterlyAmount,
LAG(QuarterlyAmount, 1) OVER (PARTITION BY EmployeeID ORDER BY Quarter) AS PrevQuarter1,
LAG(QuarterlyAmount, 2) OVER (PARTITION BY EmployeeID ORDER BY Quarter) AS PrevQuarter2,
LAG(QuarterlyAmount, 3) OVER (PARTITION BY EmployeeID ORDER BY Quarter) AS PrevQuarter3
FROM QuarterlySales
)
SELECT EmployeeID, Quarter, QuarterlyAmount
FROM SalesTrend
WHERE QuarterlyAmount > PrevQuarter1 AND PrevQuarter1 > PrevQuarter2 AND PrevQuarter2 > PrevQuarter3;

⚫️ List Customers Who Made Purchases in Each of the Last Three Years.
Schema: Orders (OrderID, CustomerID, OrderDate)

WITH YearlyOrders AS (
SELECT CustomerID,
EXTRACT(YEAR FROM OrderDate) AS OrderYear
FROM Orders
GROUP BY CustomerID, EXTRACT(YEAR FROM OrderDate)
),
RecentYears AS (
SELECT DISTINCT OrderYear
FROM Orders
WHERE OrderDate >= CURRENT_DATE - INTERVAL '3 years'
),
CustomerYearlyOrders AS (
SELECT CustomerID,
COUNT(DISTINCT OrderYear) AS YearCount
FROM YearlyOrders
WHERE OrderYear IN (SELECT OrderYear FROM RecentYears)
GROUP BY CustomerID
)
SELECT CustomerID
FROM CustomerYearlyOrders
WHERE YearCount = 3;


⚫️ Find the Third Lowest Price for Each Product Category.
Schema: Products (ProductID, Name, CategoryID, Price)

WITH RankedPrices AS (
SELECT CategoryID,
Price,
DENSE_RANK() OVER (PARTITION BY CategoryID ORDER BY Price ASC) AS PriceRank
FROM Products
)
SELECT CategoryID, Price
FROM RankedPrices
WHERE PriceRank = 3;

⚫️ Identify Products with Total Sales Exceeding a Specified Threshold Over the Last 30 Days.
Schema: Sales (SaleID, ProductID, SaleDate, Amount)

WITH RecentSales AS (
SELECT ProductID,
SUM(Amount) AS TotalSales
FROM Sales
WHERE SaleDate >= CURRENT_DATE - INTERVAL '30 days'
GROUP BY ProductID
)
SELECT ProductID, TotalSales
FROM RecentSales
WHERE TotalSales > 200;

Here you can find essential Interview Resources👇
https://whatsapp.com/channel/0029VaGgzAk72WTmQFERKh02

Like this post if you need more 👍❤️

Hope it helps :)
👍1
𝟰 𝗙𝗥𝗘𝗘 𝗖𝗼𝘂𝗿𝘀𝗲𝘀 𝗯𝘆 𝗛𝗮𝗿𝘃𝗮𝗿𝗱 𝗮𝗻𝗱 𝗦𝘁𝗮𝗻𝗳𝗼𝗿𝗱 𝘁𝗼 𝗟𝗲𝗮𝗿𝗻 𝗔𝗜😍

Dreaming of Mastering AI? 🎯

Harvard and Stanford—two of the most prestigious universities in the world—are offering FREE AI courses👨‍💻

No hidden fees, no long applications—just pure, world-class education, accessible to everyone🔥

𝐋𝐢𝐧𝐤👇:-

https://pdlink.in/3GqHkau

Here’s your golden ticket to the future!
👍1
Important Topics to become a data scientist [Advanced Level]
👇👇

1. Mathematics

Linear Algebra
Analytic Geometry
Matrix
Vector Calculus
Optimization
Regression
Dimensionality Reduction
Density Estimation
Classification

2. Probability

Introduction to Probability
1D Random Variable
The function of One Random Variable
Joint Probability Distribution
Discrete Distribution
Normal Distribution

3. Statistics

Introduction to Statistics
Data Denoscription
Random Samples
Sampling Distribution
Parameter Estimation
Hypotheses Testing
Regression

4. Programming

Python:

Python Basics
List
Set
Tuples
Dictionary
Function
NumPy
Pandas
Matplotlib/Seaborn

R Programming:

R Basics
Vector
List
Data Frame
Matrix
Array
Function
dplyr
ggplot2
Tidyr
Shiny

DataBase:
SQL
MongoDB

Data Structures

Web scraping

Linux

Git

5. Machine Learning

How Model Works
Basic Data Exploration
First ML Model
Model Validation
Underfitting & Overfitting
Random Forest
Handling Missing Values
Handling Categorical Variables
Pipelines
Cross-Validation(R)
XGBoost(Python|R)
Data Leakage

6. Deep Learning

Artificial Neural Network
Convolutional Neural Network
Recurrent Neural Network
TensorFlow
Keras
PyTorch
A Single Neuron
Deep Neural Network
Stochastic Gradient Descent
Overfitting and Underfitting
Dropout Batch Normalization
Binary Classification

7. Feature Engineering

Baseline Model
Categorical Encodings
Feature Generation
Feature Selection

8. Natural Language Processing

Text Classification
Word Vectors

9. Data Visualization Tools

BI (Business Intelligence):
Tableau
Power BI
Qlik View
Qlik Sense

10. Deployment

Microsoft Azure
Heroku
Google Cloud Platform
Flask
Django

I have curated the best interview resources to crack Data Science Interviews
👇👇
https://whatsapp.com/channel/0029Va4QUHa6rsQjhITHK82y

Like if you need similar content 😄👍
👍3
Forwarded from Generative AI
𝗙𝗥𝗘𝗘 𝗚𝗼𝗼𝗴𝗹𝗲 𝗟𝗲𝗮𝗿𝗻𝗶𝗻𝗴 𝗣𝗮𝘁𝗵! 𝗕𝗲𝗰𝗼𝗺𝗲 𝗮 𝗖𝗲𝗿𝘁𝗶𝗳𝗶𝗲𝗱 𝗗𝗮𝘁𝗮 𝗔𝗻𝗮𝗹𝘆𝘀𝘁 𝗶𝗻 𝟮𝟬𝟮𝟱😍

If you’re dreaming of starting a high-paying data career or switching into the booming tech industry, Google just made it a whole lot easier — and it’s completely FREE👨‍💻

𝐋𝐢𝐧𝐤👇:-

https://pdlink.in/4cMx2h2

You’ll get access to hands-on labs, real datasets, and industry-grade training created directly by Google’s own experts💻
👍2
Please go through this top 5 SQL projects with Datasets that you can practice and can add in your resume

🚀1. Web Analytics:
(
https://www.kaggle.com/zynicide/wine-reviews)

🚀2. Healthcare Data Analysis:
(
https://www.kaggle.com/cdc/mortality)

📌3. E-commerce Analysis:
(
https://www.kaggle.com/olistbr/brazilian-ecommerce)

🚀4. Inventory Management:
(
https://www.kaggle.com/code/govindji/inventory-management)


🚀 5. Analysis of Sales Data:
(
https://www.kaggle.com/kyanyoga/sample-sales-data)

Small suggestion from my side for non tech students: kindly pick those datasets which you like the subject in general, that way you will be more excited to practice it, instead of just doing it for the sake of resume, you will learn SQL more passionately, since it’s a programming language try to make it more exciting for yourself.

Hope this piece of information helps you
👍2
𝗕𝗲𝘀𝘁 𝗬𝗼𝘂𝗧𝘂𝗯𝗲 𝗖𝗵𝗮𝗻𝗻𝗲𝗹𝘀 𝘁𝗼 𝗟𝗲𝗮𝗿𝗻 𝗘𝘀𝘀𝗲𝗻𝘁𝗶𝗮𝗹 𝗗𝗮𝘁𝗮 𝗔𝗻𝗮𝗹𝘆𝘁𝗶𝗰𝘀 𝗦𝗸𝗶𝗹𝗹𝘀 𝗳𝗼𝗿 𝗙𝗥𝗘𝗘😍

Dreaming of becoming a Data Analyst but feel overwhelmed by where to start?👨‍💻

Here’s the truth: YouTube is packed with goldmine content, and the best part — it’s all 100% FREE🔥

𝐋𝐢𝐧𝐤👇:-

https://pdlink.in/4cL3SyM

🚀 If You’re Serious About Data Analytics, You Can’t Sleep on These YouTube Channels!
👍1
Forwarded from Artificial Intelligence
𝗧𝗖𝗦 𝗙𝗥𝗘𝗘 𝗖𝗲𝗿𝘁𝗶𝗳𝗶𝗰𝗮𝘁𝗶𝗼𝗻 𝗢𝗻 𝗗𝗮𝘁𝗮 𝗠𝗮𝗻𝗮𝗴𝗲𝗺𝗲𝗻𝘁 - 𝗘𝗻𝗿𝗼𝗹𝗹 𝗙𝗼𝗿 𝗙𝗥𝗘𝗘😍

Want to know how top companies handle massive amounts of data without losing track? 📊

TCS is offering a FREE beginner-friendly course on Master Data Management, and yes—it comes with a certificate! 🎓

𝐋𝐢𝐧𝐤👇:-

https://pdlink.in/4jGFBw0

Just click and start learning!✅️
👍1
🚀 𝗦𝘁𝗿𝘂𝗴𝗴𝗹𝗶𝗻𝗴 𝘄𝗶𝘁𝗵 𝗗𝗮𝘁𝗮 𝗦𝗰𝗶𝗲𝗻𝗰𝗲 𝗜𝗻𝘁𝗲𝗿𝘃𝗶𝗲𝘄𝘀? 𝗙𝗼𝗹𝗹𝗼𝘄 𝗧𝗵𝗶𝘀 𝗥𝗼𝗮𝗱𝗺𝗮𝗽! 🚀

Data Science interviews can be daunting, but with the right approach, you can ace them! If you're feeling overwhelmed, here's a roadmap to guide you through the process and help you succeed:

🔍 𝟭. 𝗨𝗻𝗱𝗲𝗿𝘀𝘁𝗮𝗻𝗱 𝘁𝗵𝗲 𝗕𝗮𝘀𝗶𝗰𝘀:
Master fundamental concepts like statistics, linear algebra, and probability. These are crucial for tackling both theoretical and practical questions.

💻 𝟮. 𝗪𝗼𝗿𝗸 𝗼𝗻 𝗥𝗲𝗮𝗹-𝗪𝗼𝗿𝗹𝗱 𝗣𝗿𝗼𝗷𝗲𝗰𝘁𝘀:
Build a strong portfolio by solving real-world problems. Kaggle competitions, open datasets, and personal projects are great ways to gain hands-on experience.

🧠 𝟯. 𝗦𝗵𝗮𝗿𝗽𝗲𝗻 𝗬𝗼𝘂𝗿 𝗖𝗼𝗱𝗶𝗻𝗴 𝗦𝗸𝗶𝗹𝗹𝘀:
Coding is key in Data Science! Practice on platforms like LeetCode, HackerRank, or Codewars to boost your problem-solving ability and efficiency. Be comfortable with Python, SQL, and essential libraries.

📊 𝟰. 𝗠𝗮𝘀𝘁𝗲𝗿 𝗗𝗮𝘁𝗮 𝗪𝗿𝗮𝗻𝗴𝗹𝗶𝗻𝗴 & 𝗣𝗿𝗲𝗽𝗿𝗼𝗰𝗲𝘀𝘀𝗶𝗻𝗴:
A significant portion of Data Science work revolves around cleaning and preparing data. Make sure you're comfortable with handling missing data, outliers, and feature engineering.

📚 𝟱. 𝗦𝘁𝘂𝗱𝘆 𝗔𝗹𝗴𝗼𝗿𝗶𝘁𝗵𝗺𝘀 & 𝗠𝗼𝗱𝗲𝗹𝘀:
From decision trees to neural networks, ensure you understand how different models work and when to apply them. Know their strengths, weaknesses, and the mathematical principles behind them.

💬 𝟲. 𝗜𝗺𝗽𝗿𝗼𝘃𝗲 𝗖𝗼𝗺𝗺𝘂𝗻𝗶𝗰𝗮𝘁𝗶𝗼𝗻 𝗦𝗸𝗶𝗹𝗹𝘀:
Being able to explain complex concepts in a simple way is essential, especially when communicating with non-technical stakeholders. Practice explaining your findings and solutions clearly.

🔄 𝟳. 𝗠𝗼𝗰𝗸 𝗜𝗻𝘁𝗲𝗿𝘃𝗶𝗲𝘄𝘀 & 𝗙𝗲𝗲𝗱𝗯𝗮𝗰𝗸:
Practice mock interviews with peers or mentors. Constructive feedback will help you identify areas of improvement and build confidence.

📈 𝟴. 𝗞𝗲𝗲𝗽 𝗨𝗽 𝗪𝗶𝘁𝗵 𝗧𝗿𝗲𝗻𝗱𝘀:
Data Science is a fast-evolving field! Stay updated on the latest techniques, tools, and industry trends to remain competitive.

👉 𝗣𝗿𝗼 𝗧𝗶𝗽: Be persistent! Rejections are part of the journey, but every experience teaches you something new.
Many people still aren't fully utilizing the power of Telegram.

There are numerous channels on Telegram that can help you find the latest job and internship opportunities?

Here are some of my top channel recommendations to help you get started 👇👇

Latest Jobs & Internships: https://news.1rj.ru/str/getjobss

Jobs Preparation Resources:
https://news.1rj.ru/str/jobinterviewsprep

Web Development Jobs:
https://news.1rj.ru/str/webdeveloperjob

Data Science Jobs:
https://news.1rj.ru/str/datasciencej

Interview Tips:
https://news.1rj.ru/str/Interview_Jobs

Data Analyst Jobs:
https://news.1rj.ru/str/jobs_SQL

AI Jobs:
https://news.1rj.ru/str/AIjobz

Remote Jobs:
https://news.1rj.ru/str/jobs_us_uk

FAANG Jobs:
https://news.1rj.ru/str/FAANGJob

Software Developer Jobs: https://news.1rj.ru/str/internshiptojobs

If you found this helpful, don’t forget to like, share, and follow for more resources that can boost your career journey!

Let me know if you know any other useful telegram channel

ENJOY LEARNING👍👍
👍1
Forwarded from Artificial Intelligence
𝟱 𝗙𝗿𝗲𝗲 𝗪𝗲𝗯𝘀𝗶𝘁𝗲𝘀 𝘁𝗼 𝗟𝗲𝗮𝗿𝗻 𝗣𝘆𝘁𝗵𝗼𝗻 𝗳𝗿𝗼𝗺 𝗦𝗰𝗿𝗮𝘁𝗰𝗵 𝗶𝗻 𝟮𝟬𝟮𝟱 (𝗡𝗼 𝗜𝗻𝘃𝗲𝘀𝘁𝗺𝗲𝗻𝘁 𝗡𝗲𝗲𝗱𝗲𝗱!)😍

If you’re serious about starting your tech journey, Python is one of the best languages to master👨‍💻👨‍🎓

I’ve found 5 hidden gems that offer beginner tutorials, advanced exercises, and even real-world projects — absolutely FREE🔥

𝐋𝐢𝐧𝐤👇:-

https://pdlink.in/4lOVqmb

Start today, and you’ll thank yourself tomorrow.✅️
👍1
Machine learning powers so many things around us – from recommendation systems to self-driving cars!

But understanding the different types of algorithms can be tricky.

This is a quick and easy guide to the four main categories: Supervised, Unsupervised, Semi-Supervised, and Reinforcement Learning.

𝟏. 𝐒𝐮𝐩𝐞𝐫𝐯𝐢𝐬𝐞𝐝 𝐋𝐞𝐚𝐫𝐧𝐢𝐧𝐠
In supervised learning, the model learns from examples that already have the answers (labeled data). The goal is for the model to predict the correct result when given new data.

𝐒𝐨𝐦𝐞 𝐜𝐨𝐦𝐦𝐨𝐧 𝐬𝐮𝐩𝐞𝐫𝐯𝐢𝐬𝐞𝐝 𝐥𝐞𝐚𝐫𝐧𝐢𝐧𝐠 𝐚𝐥𝐠𝐨𝐫𝐢𝐭𝐡𝐦𝐬 𝐢𝐧𝐜𝐥𝐮𝐝𝐞:

➡️ Linear Regression – For predicting continuous values, like house prices.
➡️ Logistic Regression – For predicting categories, like spam or not spam.
➡️ Decision Trees – For making decisions in a step-by-step way.
➡️ K-Nearest Neighbors (KNN) – For finding similar data points.
➡️ Random Forests – A collection of decision trees for better accuracy.
➡️ Neural Networks – The foundation of deep learning, mimicking the human brain.

𝟐. 𝐔𝐧𝐬𝐮𝐩𝐞𝐫𝐯𝐢𝐬𝐞𝐝 𝐋𝐞𝐚𝐫𝐧𝐢𝐧𝐠
With unsupervised learning, the model explores patterns in data that doesn’t have any labels. It finds hidden structures or groupings.

𝐒𝐨𝐦𝐞 𝐩𝐨𝐩𝐮𝐥𝐚𝐫 𝐮𝐧𝐬𝐮𝐩𝐞𝐫𝐯𝐢𝐬𝐞𝐝 𝐥𝐞𝐚𝐫𝐧𝐢𝐧𝐠 𝐚𝐥𝐠𝐨𝐫𝐢𝐭𝐡𝐦𝐬 𝐢𝐧𝐜𝐥𝐮𝐝𝐞:

➡️ K-Means Clustering – For grouping data into clusters.
➡️ Hierarchical Clustering – For building a tree of clusters.
➡️ Principal Component Analysis (PCA) – For reducing data to its most important parts.
➡️ Autoencoders – For finding simpler representations of data.

𝟑. 𝐒𝐞𝐦𝐢-𝐒𝐮𝐩𝐞𝐫𝐯𝐢𝐬𝐞𝐝 𝐋𝐞𝐚𝐫𝐧𝐢𝐧𝐠
This is a mix of supervised and unsupervised learning. It uses a small amount of labeled data with a large amount of unlabeled data to improve learning.

𝐂𝐨𝐦𝐦𝐨𝐧 𝐬𝐞𝐦𝐢-𝐬𝐮𝐩𝐞𝐫𝐯𝐢𝐬𝐞𝐝 𝐥𝐞𝐚𝐫𝐧𝐢𝐧𝐠 𝐚𝐥𝐠𝐨𝐫𝐢𝐭𝐡𝐦𝐬 𝐢𝐧𝐜𝐥𝐮𝐝𝐞:

➡️ Label Propagation – For spreading labels through connected data points.
➡️ Semi-Supervised SVM – For combining labeled and unlabeled data.
➡️ Graph-Based Methods – For using graph structures to improve learning.

𝟒. 𝐑𝐞𝐢𝐧𝐟𝐨𝐫𝐜𝐞𝐦𝐞𝐧𝐭 𝐋𝐞𝐚𝐫𝐧𝐢𝐧𝐠
In reinforcement learning, the model learns by trial and error. It interacts with its environment, receives feedback (rewards or penalties), and learns how to act to maximize rewards.

𝐏𝐨𝐩𝐮𝐥𝐚𝐫 𝐫𝐞𝐢𝐧𝐟𝐨𝐫𝐜𝐞𝐦𝐞𝐧𝐭 𝐥𝐞𝐚𝐫𝐧𝐢𝐧𝐠 𝐚𝐥𝐠𝐨𝐫𝐢𝐭𝐡𝐦𝐬 𝐢𝐧𝐜𝐥𝐮𝐝𝐞:

➡️ Q-Learning – For learning the best actions over time.
➡️ Deep Q-Networks (DQN) – Combining Q-learning with deep learning.
➡️ Policy Gradient Methods – For learning policies directly.
➡️ Proximal Policy Optimization (PPO) – For stable and effective learning.

ENJOY LEARNING 👍👍
👍2