𝗠𝗶𝗰𝗿𝗼𝘀𝗼𝗳𝘁 𝗙𝗥𝗘𝗘 𝗖𝗲𝗿𝘁𝗶𝗳𝗶𝗰𝗮𝘁𝗶𝗼𝗻 𝗖𝗼𝘂𝗿𝘀𝗲𝘀😍
Whether you’re a student, fresher, or professional looking to upskill — Microsoft has dropped a series of completely free courses to get you started.
Learn SQL ,Power BI & More In 2025
𝗟𝗶𝗻𝗸:-👇
https://pdlink.in/42FxnyM
Enroll For FREE & Get Certified 🎓
Whether you’re a student, fresher, or professional looking to upskill — Microsoft has dropped a series of completely free courses to get you started.
Learn SQL ,Power BI & More In 2025
𝗟𝗶𝗻𝗸:-👇
https://pdlink.in/42FxnyM
Enroll For FREE & Get Certified 🎓
👍1
A-Z of essential data science concepts
A: Algorithm - A set of rules or instructions for solving a problem or completing a task.
B: Big Data - Large and complex datasets that traditional data processing applications are unable to handle efficiently.
C: Classification - A type of machine learning task that involves assigning labels to instances based on their characteristics.
D: Data Mining - The process of discovering patterns and extracting useful information from large datasets.
E: Ensemble Learning - A machine learning technique that combines multiple models to improve predictive performance.
F: Feature Engineering - The process of selecting, extracting, and transforming features from raw data to improve model performance.
G: Gradient Descent - An optimization algorithm used to minimize the error of a model by adjusting its parameters iteratively.
H: Hypothesis Testing - A statistical method used to make inferences about a population based on sample data.
I: Imputation - The process of replacing missing values in a dataset with estimated values.
J: Joint Probability - The probability of the intersection of two or more events occurring simultaneously.
K: K-Means Clustering - A popular unsupervised machine learning algorithm used for clustering data points into groups.
L: Logistic Regression - A statistical model used for binary classification tasks.
M: Machine Learning - A subset of artificial intelligence that enables systems to learn from data and improve performance over time.
N: Neural Network - A computer system inspired by the structure of the human brain, used for various machine learning tasks.
O: Outlier Detection - The process of identifying observations in a dataset that significantly deviate from the rest of the data points.
P: Precision and Recall - Evaluation metrics used to assess the performance of classification models.
Q: Quantitative Analysis - The process of using mathematical and statistical methods to analyze and interpret data.
R: Regression Analysis - A statistical technique used to model the relationship between a dependent variable and one or more independent variables.
S: Support Vector Machine - A supervised machine learning algorithm used for classification and regression tasks.
T: Time Series Analysis - The study of data collected over time to detect patterns, trends, and seasonal variations.
U: Unsupervised Learning - Machine learning techniques used to identify patterns and relationships in data without labeled outcomes.
V: Validation - The process of assessing the performance and generalization of a machine learning model using independent datasets.
W: Weka - A popular open-source software tool used for data mining and machine learning tasks.
X: XGBoost - An optimized implementation of gradient boosting that is widely used for classification and regression tasks.
Y: Yarn - A resource manager used in Apache Hadoop for managing resources across distributed clusters.
Z: Zero-Inflated Model - A statistical model used to analyze data with excess zeros, commonly found in count data.
Best Data Science & Machine Learning Resources: https://topmate.io/coding/914624
Credits: https://news.1rj.ru/str/datasciencefun
Like if you need similar content 😄👍
Hope this helps you 😊
A: Algorithm - A set of rules or instructions for solving a problem or completing a task.
B: Big Data - Large and complex datasets that traditional data processing applications are unable to handle efficiently.
C: Classification - A type of machine learning task that involves assigning labels to instances based on their characteristics.
D: Data Mining - The process of discovering patterns and extracting useful information from large datasets.
E: Ensemble Learning - A machine learning technique that combines multiple models to improve predictive performance.
F: Feature Engineering - The process of selecting, extracting, and transforming features from raw data to improve model performance.
G: Gradient Descent - An optimization algorithm used to minimize the error of a model by adjusting its parameters iteratively.
H: Hypothesis Testing - A statistical method used to make inferences about a population based on sample data.
I: Imputation - The process of replacing missing values in a dataset with estimated values.
J: Joint Probability - The probability of the intersection of two or more events occurring simultaneously.
K: K-Means Clustering - A popular unsupervised machine learning algorithm used for clustering data points into groups.
L: Logistic Regression - A statistical model used for binary classification tasks.
M: Machine Learning - A subset of artificial intelligence that enables systems to learn from data and improve performance over time.
N: Neural Network - A computer system inspired by the structure of the human brain, used for various machine learning tasks.
O: Outlier Detection - The process of identifying observations in a dataset that significantly deviate from the rest of the data points.
P: Precision and Recall - Evaluation metrics used to assess the performance of classification models.
Q: Quantitative Analysis - The process of using mathematical and statistical methods to analyze and interpret data.
R: Regression Analysis - A statistical technique used to model the relationship between a dependent variable and one or more independent variables.
S: Support Vector Machine - A supervised machine learning algorithm used for classification and regression tasks.
T: Time Series Analysis - The study of data collected over time to detect patterns, trends, and seasonal variations.
U: Unsupervised Learning - Machine learning techniques used to identify patterns and relationships in data without labeled outcomes.
V: Validation - The process of assessing the performance and generalization of a machine learning model using independent datasets.
W: Weka - A popular open-source software tool used for data mining and machine learning tasks.
X: XGBoost - An optimized implementation of gradient boosting that is widely used for classification and regression tasks.
Y: Yarn - A resource manager used in Apache Hadoop for managing resources across distributed clusters.
Z: Zero-Inflated Model - A statistical model used to analyze data with excess zeros, commonly found in count data.
Best Data Science & Machine Learning Resources: https://topmate.io/coding/914624
Credits: https://news.1rj.ru/str/datasciencefun
Like if you need similar content 😄👍
Hope this helps you 😊
👍1
𝟯 𝗙𝗿𝗲𝗲 𝗧𝗖𝗦 𝗖𝗼𝘂𝗿𝘀𝗲𝘀 𝗘𝘃𝗲𝗿𝘆 𝗙𝗿𝗲𝘀𝗵𝗲𝗿 𝗠𝘂𝘀𝘁 𝗧𝗮𝗸𝗲 𝘁𝗼 𝗚𝗲𝘁 𝗝𝗼𝗯-𝗥𝗲𝗮𝗱𝘆😍
🎯 If You’re a Fresher, These TCS Courses Are a Must-Do📄✔️
Stepping into the job market can be overwhelming—but what if you had certified, expert-backed training that actually prepares you?👨🎓✨️
𝐋𝐢𝐧𝐤👇:-
https://pdlink.in/42Nd9Do
Don’t wait. Get certified, get confident, and get closer to landing your first job✅️
🎯 If You’re a Fresher, These TCS Courses Are a Must-Do📄✔️
Stepping into the job market can be overwhelming—but what if you had certified, expert-backed training that actually prepares you?👨🎓✨️
𝐋𝐢𝐧𝐤👇:-
https://pdlink.in/42Nd9Do
Don’t wait. Get certified, get confident, and get closer to landing your first job✅️
👍2
“The Best Public Datasets for Machine Learning and Data Science” by Stacy Stanford
https://datasimplifier.com/best-data-analyst-projects-for-freshers/
https://toolbox.google.com/datasetsearch
https://www.kaggle.com/datasets
http://mlr.cs.umass.edu/ml/
https://www.visualdata.io/
https://guides.library.cmu.edu/machine-learning/datasets
https://www.data.gov/
https://nces.ed.gov/
https://www.ukdataservice.ac.uk/
https://datausa.io/
https://www.cs.toronto.edu/~delve/data/boston/bostonDetail.html
https://www.kaggle.com/xiuchengwang/python-dataset-download
https://www.quandl.com/
https://data.worldbank.org/
https://www.imf.org/en/Data
https://markets.ft.com/data/
https://trends.google.com/trends/?q=google&ctab=0&geo=all&date=all&sort=0
https://www.aeaweb.org/resources/data/us-macro-regional
http://xviewdataset.org/#dataset
http://labelme.csail.mit.edu/Release3.0/browserTools/php/dataset.php
http://image-net.org/
http://cocodataset.org/
http://visualgenome.org/
https://ai.googleblog.com/2016/09/introducing-open-images-dataset.html?m=1
http://vis-www.cs.umass.edu/lfw/
http://vision.stanford.edu/aditya86/ImageNetDogs/
http://web.mit.edu/torralba/www/indoor.html
http://www.cs.jhu.edu/~mdredze/datasets/sentiment/
http://ai.stanford.edu/~amaas/data/sentiment/
http://nlp.stanford.edu/sentiment/code.html
http://help.sentiment140.com/for-students/
https://www.kaggle.com/crowdflower/twitter-airline-sentiment
https://hotpotqa.github.io/
https://www.cs.cmu.edu/~./enron/
https://snap.stanford.edu/data/web-Amazon.html
https://aws.amazon.com/datasets/google-books-ngrams/
http://u.cs.biu.ac.il/~koppel/BlogCorpus.htm
https://code.google.com/archive/p/wiki-links/downloads
http://www.dt.fee.unicamp.br/~tiago/smsspamcollection/
https://www.yelp.com/dataset
https://news.1rj.ru/str/DataPortfolio/2
https://archive.ics.uci.edu/ml/datasets/Spambase
https://bdd-data.berkeley.edu/
http://apolloscape.auto/
https://archive.org/details/comma-dataset
https://www.cityscapes-dataset.com/
http://aplicaciones.cimat.mx/Personal/jbhayet/ccsad-dataset
http://www.vision.ee.ethz.ch/~timofter/traffic_signs/
http://cvrr.ucsd.edu/LISA/datasets.html
https://hci.iwr.uni-heidelberg.de/node/6132
http://www.lara.prd.fr/benchmarks/trafficlightsrecognition
http://computing.wpi.edu/dataset.html
https://mimic.physionet.org/
✅ Best Telegram channels to get free coding & data science resources
https://news.1rj.ru/str/addlist/4q2PYC0pH_VjZDk5
✅ Free Courses with Certificate:
https://news.1rj.ru/str/free4unow_backup
https://datasimplifier.com/best-data-analyst-projects-for-freshers/
https://toolbox.google.com/datasetsearch
https://www.kaggle.com/datasets
http://mlr.cs.umass.edu/ml/
https://www.visualdata.io/
https://guides.library.cmu.edu/machine-learning/datasets
https://www.data.gov/
https://nces.ed.gov/
https://www.ukdataservice.ac.uk/
https://datausa.io/
https://www.cs.toronto.edu/~delve/data/boston/bostonDetail.html
https://www.kaggle.com/xiuchengwang/python-dataset-download
https://www.quandl.com/
https://data.worldbank.org/
https://www.imf.org/en/Data
https://markets.ft.com/data/
https://trends.google.com/trends/?q=google&ctab=0&geo=all&date=all&sort=0
https://www.aeaweb.org/resources/data/us-macro-regional
http://xviewdataset.org/#dataset
http://labelme.csail.mit.edu/Release3.0/browserTools/php/dataset.php
http://image-net.org/
http://cocodataset.org/
http://visualgenome.org/
https://ai.googleblog.com/2016/09/introducing-open-images-dataset.html?m=1
http://vis-www.cs.umass.edu/lfw/
http://vision.stanford.edu/aditya86/ImageNetDogs/
http://web.mit.edu/torralba/www/indoor.html
http://www.cs.jhu.edu/~mdredze/datasets/sentiment/
http://ai.stanford.edu/~amaas/data/sentiment/
http://nlp.stanford.edu/sentiment/code.html
http://help.sentiment140.com/for-students/
https://www.kaggle.com/crowdflower/twitter-airline-sentiment
https://hotpotqa.github.io/
https://www.cs.cmu.edu/~./enron/
https://snap.stanford.edu/data/web-Amazon.html
https://aws.amazon.com/datasets/google-books-ngrams/
http://u.cs.biu.ac.il/~koppel/BlogCorpus.htm
https://code.google.com/archive/p/wiki-links/downloads
http://www.dt.fee.unicamp.br/~tiago/smsspamcollection/
https://www.yelp.com/dataset
https://news.1rj.ru/str/DataPortfolio/2
https://archive.ics.uci.edu/ml/datasets/Spambase
https://bdd-data.berkeley.edu/
http://apolloscape.auto/
https://archive.org/details/comma-dataset
https://www.cityscapes-dataset.com/
http://aplicaciones.cimat.mx/Personal/jbhayet/ccsad-dataset
http://www.vision.ee.ethz.ch/~timofter/traffic_signs/
http://cvrr.ucsd.edu/LISA/datasets.html
https://hci.iwr.uni-heidelberg.de/node/6132
http://www.lara.prd.fr/benchmarks/trafficlightsrecognition
http://computing.wpi.edu/dataset.html
https://mimic.physionet.org/
✅ Best Telegram channels to get free coding & data science resources
https://news.1rj.ru/str/addlist/4q2PYC0pH_VjZDk5
✅ Free Courses with Certificate:
https://news.1rj.ru/str/free4unow_backup
❤1👍1
𝗙𝗿𝗲𝗲 𝗖𝗼𝘂𝗿𝘀𝗲 𝘄𝗶𝘁𝗵 𝗖𝗲𝗿𝘁𝗶𝗳𝗶𝗰𝗮𝘁𝗲 𝗯𝘆 𝗚𝗼𝗼𝗴𝗹𝗲 – 𝗟𝗲𝗮𝗿𝗻 𝗣𝘆𝘁𝗵𝗼𝗻 𝗳𝗼𝗿 𝗗𝗮𝘁𝗮 𝗔𝗻𝗮𝗹𝘆𝘁𝗶𝗰𝘀😍
If you’re starting your journey into data analytics, Python is the first skill you need to master👨🎓
A free, beginner-friendly course by Google on Kaggle, designed to take you from zero to data-ready with hands-on coding practice👨💻📝
𝐋𝐢𝐧𝐤👇:-
https://pdlink.in/4k24zGl
Just start coding right in your browser✅️
If you’re starting your journey into data analytics, Python is the first skill you need to master👨🎓
A free, beginner-friendly course by Google on Kaggle, designed to take you from zero to data-ready with hands-on coding practice👨💻📝
𝐋𝐢𝐧𝐤👇:-
https://pdlink.in/4k24zGl
Just start coding right in your browser✅️
👍1
Top 100+ questions%0A %22Google Data Science Interview%22.pdf
16.7 MB
💯 Top 100+ Google Data Science Interview Questions
🌟 Essential Prep Guide for Aspiring Candidates
Google is known for its rigorous data science interview process, which typically follows a hybrid format. Candidates are expected to demonstrate strong programming skills, solid knowledge in statistics and machine learning, and a keen ability to approach problems from a product-oriented perspective.
To succeed, one must be proficient in several critical areas: statistics and probability, SQL and Python programming, product sense, and case study-based analytics.
This curated list features over 100 of the most commonly asked and important questions in Google data science interviews. It serves as a comprehensive resource to help candidates prepare effectively and confidently for the challenge ahead.
🌟 Essential Prep Guide for Aspiring Candidates
Google is known for its rigorous data science interview process, which typically follows a hybrid format. Candidates are expected to demonstrate strong programming skills, solid knowledge in statistics and machine learning, and a keen ability to approach problems from a product-oriented perspective.
To succeed, one must be proficient in several critical areas: statistics and probability, SQL and Python programming, product sense, and case study-based analytics.
This curated list features over 100 of the most commonly asked and important questions in Google data science interviews. It serves as a comprehensive resource to help candidates prepare effectively and confidently for the challenge ahead.
#DataScience #GoogleInterview #InterviewPrep #MachineLearning #SQL #Statistics #ProductAnalytics #Python #CareerGrowth
👍5
𝟱 𝗙𝗿𝗲𝗲 𝗠𝗶𝗰𝗿𝗼𝘀𝗼𝗳𝘁 𝗗𝗮𝘁𝗮 𝗦𝗰𝗶𝗲𝗻𝗰𝗲 𝗖𝗼𝘂𝗿𝘀𝗲𝘀 𝗬𝗼𝘂 𝗖𝗮𝗻’𝘁 𝗠𝗶𝘀𝘀😍
Microsoft Learn is offering 5 must-do courses for aspiring data scientists, absolutely free🔥📊
These self-paced learning modules are designed by industry experts and cover everything from Python and ML to Microsoft Fabric and Azure🎯
𝐋𝐢𝐧𝐤👇:-
https://pdlink.in/4iSWjaP
Job-ready content that gets you results✅️
Microsoft Learn is offering 5 must-do courses for aspiring data scientists, absolutely free🔥📊
These self-paced learning modules are designed by industry experts and cover everything from Python and ML to Microsoft Fabric and Azure🎯
𝐋𝐢𝐧𝐤👇:-
https://pdlink.in/4iSWjaP
Job-ready content that gets you results✅️
Feature Scaling is one of the most useful and necessary transformations to perform on a training dataset, since with very few exceptions, ML algorithms do not fit well to datasets with attributes that have very different scales.
Let's talk about it 🧵
There are 2 very effective techniques to transform all the attributes of a dataset to the same scale, which are:
▪️ Normalization
▪️ Standardization
The 2 techniques perform the same task, but in different ways. Moreover, each one has its strengths and weaknesses.
Normalization (min-max scaling) is very simple: values are shifted and rescaled to be in the range of 0 and 1.
This is achieved by subtracting each value by the min value and dividing the result by the difference between the max and min value.
In contrast, Standardization first subtracts the mean value (so that the values always have zero mean) and then divides the result by the standard deviation (so that the resulting distribution has unit variance).
More about them:
▪️Standardization doesn't frame the data between the range 0-1, which is undesirable for some algorithms.
▪️Standardization is robust to outliers.
▪️Normalization is sensitive to outliers. A very large value may squash the other values in the range 0.0-0.2.
Both algorithms are implemented in the Scikit-learn Python library and are very easy to use. Check below Google Colab code with a toy example, where you can see how each technique works.
https://colab.research.google.com/drive/1DsvTezhnwfS7bPAeHHHHLHzcZTvjBzLc?usp=sharing
Check below spreadsheet, where you can see another example, step by step, of how to normalize and standardize your data.
https://docs.google.com/spreadsheets/d/14GsqJxrulv2CBW_XyNUGoA-f9l-6iKuZLJMcc2_5tZM/edit?usp=drivesdk
Well, the real benefit of feature scaling is when you want to train a model from a dataset with many features (e.g., m > 10) and these features have very different scales (different orders of magnitude). For NN this preprocessing is key.
Enable gradient descent to converge faster
Let's talk about it 🧵
There are 2 very effective techniques to transform all the attributes of a dataset to the same scale, which are:
▪️ Normalization
▪️ Standardization
The 2 techniques perform the same task, but in different ways. Moreover, each one has its strengths and weaknesses.
Normalization (min-max scaling) is very simple: values are shifted and rescaled to be in the range of 0 and 1.
This is achieved by subtracting each value by the min value and dividing the result by the difference between the max and min value.
In contrast, Standardization first subtracts the mean value (so that the values always have zero mean) and then divides the result by the standard deviation (so that the resulting distribution has unit variance).
More about them:
▪️Standardization doesn't frame the data between the range 0-1, which is undesirable for some algorithms.
▪️Standardization is robust to outliers.
▪️Normalization is sensitive to outliers. A very large value may squash the other values in the range 0.0-0.2.
Both algorithms are implemented in the Scikit-learn Python library and are very easy to use. Check below Google Colab code with a toy example, where you can see how each technique works.
https://colab.research.google.com/drive/1DsvTezhnwfS7bPAeHHHHLHzcZTvjBzLc?usp=sharing
Check below spreadsheet, where you can see another example, step by step, of how to normalize and standardize your data.
https://docs.google.com/spreadsheets/d/14GsqJxrulv2CBW_XyNUGoA-f9l-6iKuZLJMcc2_5tZM/edit?usp=drivesdk
Well, the real benefit of feature scaling is when you want to train a model from a dataset with many features (e.g., m > 10) and these features have very different scales (different orders of magnitude). For NN this preprocessing is key.
Enable gradient descent to converge faster
Google
DS - Feature Scaling.ipynb
Colaboratory notebook
👍3
Forwarded from Artificial Intelligence
𝗕𝗼𝗼𝘀𝘁 𝗬𝗼𝘂𝗿 𝗦𝗸𝗶𝗹𝗹𝘀 𝘄𝗶𝘁𝗵 𝗧𝗵𝗲𝘀𝗲 𝗙𝗿𝗲𝗲 𝗖𝗲𝗿𝘁𝗶𝗳𝗶𝗰𝗮𝘁𝗶𝗼𝗻 𝗖𝗼𝘂𝗿𝘀𝗲𝘀😍
Ready to take your career to the next level?📊📌
These free certification courses offer a golden opportunity to build expertise in tech, programming, AI, and more—all for free!🔥💻
𝐋𝐢𝐧𝐤👇:-
https://pdlink.in/4gPNbDc
These courses are your stepping stones to success✅️
Ready to take your career to the next level?📊📌
These free certification courses offer a golden opportunity to build expertise in tech, programming, AI, and more—all for free!🔥💻
𝐋𝐢𝐧𝐤👇:-
https://pdlink.in/4gPNbDc
These courses are your stepping stones to success✅️
9 coding project ideas to sharpen your skills:
✅ To-Do List App — practice CRUD operations
⏰ Pomodoro Timer — learn DOM manipulation & time functions
📦 Inventory Management System — manage data & UI
🌤️ Weather App — fetch real-time data using APIs
🧮 Calculator — master functions and UI design
📊 Expense Tracker — work with charts and local storage
🗂️ Portfolio Website — showcase your skills & projects
🔐 Login/Signup System — learn form validation & authentication
🎮 Mini Game (like Tic-Tac-Toe) — apply logic and event handling
Coding Projects:👇
https://whatsapp.com/channel/0029VazkxJ62UPB7OQhBE502
ENJOY LEARNING 👍👍
✅ To-Do List App — practice CRUD operations
⏰ Pomodoro Timer — learn DOM manipulation & time functions
📦 Inventory Management System — manage data & UI
🌤️ Weather App — fetch real-time data using APIs
🧮 Calculator — master functions and UI design
📊 Expense Tracker — work with charts and local storage
🗂️ Portfolio Website — showcase your skills & projects
🔐 Login/Signup System — learn form validation & authentication
🎮 Mini Game (like Tic-Tac-Toe) — apply logic and event handling
Coding Projects:👇
https://whatsapp.com/channel/0029VazkxJ62UPB7OQhBE502
ENJOY LEARNING 👍👍
👍2❤1
𝗗𝗮𝘁𝗮 𝗔𝗻𝗮𝗹𝘆𝘁𝗶𝗰𝘀 𝗩𝗶𝗿𝘁𝘂𝗮𝗹 𝗜𝗻𝘁𝗲𝗿𝗻𝘀𝗵𝗶𝗽 𝗣𝗿𝗼𝗴𝗿𝗮𝗺𝘀 𝗜𝗻 𝗧𝗼𝗽 𝗖𝗼𝗺𝗽𝗮𝗻𝗶𝗲𝘀😍
1️⃣ BCG Data Science & Analytics Virtual Experience
2️⃣ TATA Data Visualization Internship
3️⃣ Accenture Data Analytics Virtual Internship
𝐋𝐢𝐧𝐤👇:-
https://pdlink.in/409RHXN
Enroll for FREE & Get Certified 🎓
1️⃣ BCG Data Science & Analytics Virtual Experience
2️⃣ TATA Data Visualization Internship
3️⃣ Accenture Data Analytics Virtual Internship
𝐋𝐢𝐧𝐤👇:-
https://pdlink.in/409RHXN
Enroll for FREE & Get Certified 🎓
Key Concepts for Data Science Interviews
1. Data Cleaning and Preprocessing: Master techniques for cleaning, transforming, and preparing data for analysis, including handling missing data, outlier detection, data normalization, and feature engineering.
2. Statistics and Probability: Have a solid understanding of denoscriptive and inferential statistics, including distributions, hypothesis testing, p-values, confidence intervals, and Bayesian probability.
3. Linear Algebra and Calculus: Understand the mathematical foundations of data science, including matrix operations, eigenvalues, derivatives, and gradients, which are essential for algorithms like PCA and gradient descent.
4. Machine Learning Algorithms: Know the fundamentals of machine learning, including supervised and unsupervised learning. Be familiar with key algorithms like linear regression, logistic regression, decision trees, random forests, SVMs, and k-means clustering.
5. Model Evaluation and Validation: Learn how to evaluate model performance using metrics such as accuracy, precision, recall, F1 score, ROC-AUC, and confusion matrices. Understand techniques like cross-validation and overfitting prevention.
6. Feature Engineering: Develop the ability to create meaningful features from raw data that improve model performance. This includes encoding categorical variables, scaling features, and creating interaction terms.
7. Deep Learning: Understand the basics of neural networks and deep learning. Familiarize yourself with architectures like CNNs, RNNs, and frameworks like TensorFlow and PyTorch.
8. Natural Language Processing (NLP): Learn key NLP techniques such as tokenization, stemming, lemmatization, and sentiment analysis. Understand the use of models like BERT, Word2Vec, and LSTM for text data.
9. Big Data Technologies: Gain knowledge of big data frameworks and tools like Hadoop, Spark, and NoSQL databases that are used to process large datasets efficiently.
10. Data Visualization and Storytelling: Develop the ability to create compelling visualizations using tools like Matplotlib, Seaborn, or Tableau. Practice conveying your data findings clearly to both technical and non-technical audiences through visual storytelling.
11. Python and R: Be proficient in Python and R for data manipulation, analysis, and model building. Familiarity with libraries like Pandas, NumPy, Scikit-learn, and tidyverse is essential.
12. Domain Knowledge: Develop a deep understanding of the specific industry or domain you're working in, as this context helps you make more informed decisions during the data analysis and modeling process.
I have curated the best interview resources to crack Data Science Interviews
👇👇
https://whatsapp.com/channel/0029Va4QUHa6rsQjhITHK82y
Like if you need similar content 😄👍
1. Data Cleaning and Preprocessing: Master techniques for cleaning, transforming, and preparing data for analysis, including handling missing data, outlier detection, data normalization, and feature engineering.
2. Statistics and Probability: Have a solid understanding of denoscriptive and inferential statistics, including distributions, hypothesis testing, p-values, confidence intervals, and Bayesian probability.
3. Linear Algebra and Calculus: Understand the mathematical foundations of data science, including matrix operations, eigenvalues, derivatives, and gradients, which are essential for algorithms like PCA and gradient descent.
4. Machine Learning Algorithms: Know the fundamentals of machine learning, including supervised and unsupervised learning. Be familiar with key algorithms like linear regression, logistic regression, decision trees, random forests, SVMs, and k-means clustering.
5. Model Evaluation and Validation: Learn how to evaluate model performance using metrics such as accuracy, precision, recall, F1 score, ROC-AUC, and confusion matrices. Understand techniques like cross-validation and overfitting prevention.
6. Feature Engineering: Develop the ability to create meaningful features from raw data that improve model performance. This includes encoding categorical variables, scaling features, and creating interaction terms.
7. Deep Learning: Understand the basics of neural networks and deep learning. Familiarize yourself with architectures like CNNs, RNNs, and frameworks like TensorFlow and PyTorch.
8. Natural Language Processing (NLP): Learn key NLP techniques such as tokenization, stemming, lemmatization, and sentiment analysis. Understand the use of models like BERT, Word2Vec, and LSTM for text data.
9. Big Data Technologies: Gain knowledge of big data frameworks and tools like Hadoop, Spark, and NoSQL databases that are used to process large datasets efficiently.
10. Data Visualization and Storytelling: Develop the ability to create compelling visualizations using tools like Matplotlib, Seaborn, or Tableau. Practice conveying your data findings clearly to both technical and non-technical audiences through visual storytelling.
11. Python and R: Be proficient in Python and R for data manipulation, analysis, and model building. Familiarity with libraries like Pandas, NumPy, Scikit-learn, and tidyverse is essential.
12. Domain Knowledge: Develop a deep understanding of the specific industry or domain you're working in, as this context helps you make more informed decisions during the data analysis and modeling process.
I have curated the best interview resources to crack Data Science Interviews
👇👇
https://whatsapp.com/channel/0029Va4QUHa6rsQjhITHK82y
Like if you need similar content 😄👍
👍2
Forwarded from Artificial Intelligence
𝗠𝗶𝗰𝗿𝗼𝘀𝗼𝗳𝘁 𝟭𝟬𝟬% 𝗙𝗿𝗲𝗲 𝗖𝗼𝘂𝗿𝘀𝗲𝘀 𝗳𝗼𝗿 𝗔𝘇𝘂𝗿𝗲, 𝗔𝗜, 𝗖𝘆𝗯𝗲𝗿𝘀𝗲𝗰𝘂𝗿𝗶𝘁𝘆 & 𝗠𝗼𝗿𝗲😍
Want to upskill in Azure, AI, Cybersecurity, or App Development—without spending a single rupee?👨💻🎯
Enter Microsoft Learn — a 100% free platform that offers expert-led learning paths to help you grow📊📌
𝐋𝐢𝐧𝐤👇:-
https://pdlink.in/4k6lA2b
Enjoy Learning ✅️
Want to upskill in Azure, AI, Cybersecurity, or App Development—without spending a single rupee?👨💻🎯
Enter Microsoft Learn — a 100% free platform that offers expert-led learning paths to help you grow📊📌
𝐋𝐢𝐧𝐤👇:-
https://pdlink.in/4k6lA2b
Enjoy Learning ✅️
👍1
MUST ADD these 5 POWER Bl projects to your resume to get hired
Here are 5 mini projects that not only help you to gain experience but also it will help you to build your resume stronger
📌Customer Churn Analysis
🔗 https://www.kaggle.com/code/fabiendaniel/customer-segmentation/input
📌Credit Card Fraud
🔗 https://www.kaggle.com/datasets/mlg-ulb/creditcardfraud
📌Movie Sales Analysis
🔗https://www.kaggle.com/datasets/PromptCloudHQ/imdb-data
📌Airline Sector
🔗https://www.kaggle.com/datasets/yuanyuwendymu/airline-
📌Financial Data Analysis
🔗https://www.kaggle.com/datasets/qks1%7Cver/financial-data-
Simple guide
1. Data Utilization:
- Initiate the process by using the provided datasets for a comprehensive analysis.
2. Domain Research:
- Conduct thorough research within the domain to identify crucial metrics and KPIs for analysis.
3. Dashboard Blueprint:
- Outline the structure and aesthetics of your dashboard, drawing inspiration from existing online dashboards for enhanced design and functionality.
4. Data Handling:
- Import data meticulously, ensuring accuracy. Proceed with cleaning, modeling, and the creation of essential measures and calculations.
5. Question Formulation:
- Brainstorm a list of insightful questions your dashboard aims to answer, covering trends, comparisons, aggregations, and correlations within the data.
6. Platform Integration:
- Utilize Novypro.com as the hosting platform for your dashboard, ensuring seamless integration and accessibility.
7. LinkedIn Visibility:
- Share your dashboard on LinkedIn with a concise post providing context. Include a link to your Novypro-hosted dashboard to foster engagement and professional connections.
Join for more: https://news.1rj.ru/str/DataPortfolio
Hope this helps you :)
Here are 5 mini projects that not only help you to gain experience but also it will help you to build your resume stronger
📌Customer Churn Analysis
🔗 https://www.kaggle.com/code/fabiendaniel/customer-segmentation/input
📌Credit Card Fraud
🔗 https://www.kaggle.com/datasets/mlg-ulb/creditcardfraud
📌Movie Sales Analysis
🔗https://www.kaggle.com/datasets/PromptCloudHQ/imdb-data
📌Airline Sector
🔗https://www.kaggle.com/datasets/yuanyuwendymu/airline-
📌Financial Data Analysis
🔗https://www.kaggle.com/datasets/qks1%7Cver/financial-data-
Simple guide
1. Data Utilization:
- Initiate the process by using the provided datasets for a comprehensive analysis.
2. Domain Research:
- Conduct thorough research within the domain to identify crucial metrics and KPIs for analysis.
3. Dashboard Blueprint:
- Outline the structure and aesthetics of your dashboard, drawing inspiration from existing online dashboards for enhanced design and functionality.
4. Data Handling:
- Import data meticulously, ensuring accuracy. Proceed with cleaning, modeling, and the creation of essential measures and calculations.
5. Question Formulation:
- Brainstorm a list of insightful questions your dashboard aims to answer, covering trends, comparisons, aggregations, and correlations within the data.
6. Platform Integration:
- Utilize Novypro.com as the hosting platform for your dashboard, ensuring seamless integration and accessibility.
7. LinkedIn Visibility:
- Share your dashboard on LinkedIn with a concise post providing context. Include a link to your Novypro-hosted dashboard to foster engagement and professional connections.
Join for more: https://news.1rj.ru/str/DataPortfolio
Hope this helps you :)
👍2
𝗟𝗲𝗮𝗿𝗻 𝗠𝗮𝗰𝗵𝗶𝗻𝗲 𝗟𝗲𝗮𝗿𝗻𝗶𝗻𝗴 𝗳𝗿𝗼𝗺 𝗚𝗼𝗼𝗴𝗹𝗲 𝗘𝗻𝗴𝗶𝗻𝗲𝗲𝗿𝘀 — 𝗙𝗼𝗿 𝗙𝗿𝗲𝗲!😍
Want to break into machine learning but not sure where to start?💻
Google’s Machine Learning Crash Course is the perfect launchpad—absolutely free, beginner-friendly, and created by the engineers behind the tools.👨💻📌
𝐋𝐢𝐧𝐤👇:-
https://pdlink.in/4jEiJOe
All The Best 🎊
Want to break into machine learning but not sure where to start?💻
Google’s Machine Learning Crash Course is the perfect launchpad—absolutely free, beginner-friendly, and created by the engineers behind the tools.👨💻📌
𝐋𝐢𝐧𝐤👇:-
https://pdlink.in/4jEiJOe
All The Best 🎊
🔍 Real-World Data Analyst Tasks & How to Solve Them
As a Data Analyst, your job isn’t just about writing SQL queries or making dashboards—it’s about solving business problems using data. Let’s explore some common real-world tasks and how you can handle them like a pro!
📌 Task 1: Cleaning Messy Data
Before analyzing data, you need to remove duplicates, handle missing values, and standardize formats.
✅ Solution (Using Pandas in Python):
💡 Tip: Always check for inconsistent spellings and incorrect date formats!
📌 Task 2: Analyzing Sales Trends
A company wants to know which months have the highest sales.
✅ Solution (Using SQL):
💡 Tip: Try adding YEAR(SaleDate) to compare yearly trends!
📌 Task 3: Creating a Business Dashboard
Your manager asks you to create a dashboard showing revenue by region, top-selling products, and monthly growth.
✅ Solution (Using Power BI / Tableau):
👉 Add KPI Cards to show total sales & profit
👉 Use a Line Chart for monthly trends
👉 Create a Bar Chart for top-selling products
👉 Use Filters/Slicers for better interactivity
💡 Tip: Keep your dashboards clean, interactive, and easy to interpret!
Like this post for more content like this ♥️
Share with credits: https://news.1rj.ru/str/sqlspecialist
Hope it helps :)
As a Data Analyst, your job isn’t just about writing SQL queries or making dashboards—it’s about solving business problems using data. Let’s explore some common real-world tasks and how you can handle them like a pro!
📌 Task 1: Cleaning Messy Data
Before analyzing data, you need to remove duplicates, handle missing values, and standardize formats.
✅ Solution (Using Pandas in Python):
import pandas as pd
df = pd.read_csv('sales_data.csv')
df.drop_duplicates(inplace=True) # Remove duplicate rows
df.fillna(0, inplace=True) # Fill missing values with 0
print(df.head())
💡 Tip: Always check for inconsistent spellings and incorrect date formats!
📌 Task 2: Analyzing Sales Trends
A company wants to know which months have the highest sales.
✅ Solution (Using SQL):
SELECT MONTH(SaleDate) AS Month, SUM(Quantity * Price) AS Total_Revenue
FROM Sales
GROUP BY MONTH(SaleDate)
ORDER BY Total_Revenue DESC;
💡 Tip: Try adding YEAR(SaleDate) to compare yearly trends!
📌 Task 3: Creating a Business Dashboard
Your manager asks you to create a dashboard showing revenue by region, top-selling products, and monthly growth.
✅ Solution (Using Power BI / Tableau):
👉 Add KPI Cards to show total sales & profit
👉 Use a Line Chart for monthly trends
👉 Create a Bar Chart for top-selling products
👉 Use Filters/Slicers for better interactivity
💡 Tip: Keep your dashboards clean, interactive, and easy to interpret!
Like this post for more content like this ♥️
Share with credits: https://news.1rj.ru/str/sqlspecialist
Hope it helps :)
👍3❤1
Forwarded from Artificial Intelligence
𝗙𝗥𝗘𝗘 𝗠𝗶𝗰𝗿𝗼𝘀𝗼𝗳𝘁 𝗖𝗲𝗿𝘁𝗶𝗳𝗶𝗰𝗮𝘁𝗶𝗼𝗻 𝗖𝗼𝘂𝗿𝘀𝗲𝘀 😍
Feeling like your resume could use a boost? 🚀
Let’s make that happen with Microsoft Azure certifications that are not only perfect for beginners but also completely free!🔥💯
𝐋𝐢𝐧𝐤👇:-
https://pdlink.in/4iVRmiQ
Essential skills for today’s tech-driven world✅️
Feeling like your resume could use a boost? 🚀
Let’s make that happen with Microsoft Azure certifications that are not only perfect for beginners but also completely free!🔥💯
𝐋𝐢𝐧𝐤👇:-
https://pdlink.in/4iVRmiQ
Essential skills for today’s tech-driven world✅️
👍1
Want to make a transition to a career in data?
Here is a 7-step plan for each data role
Data Scientist
Statistics and Math: Advanced statistics, linear algebra, calculus.
Machine Learning: Supervised and unsupervised learning algorithms.
xData Wrangling: Cleaning and transforming datasets.
Big Data: Hadoop, Spark, SQL/NoSQL databases.
Data Visualization: Matplotlib, Seaborn, D3.js.
Domain Knowledge: Industry-specific data science applications.
Data Analyst
Data Visualization: Tableau, Power BI, Excel for visualizations.
SQL: Querying and managing databases.
Statistics: Basic statistical analysis and probability.
Excel: Data manipulation and analysis.
Python/R: Programming for data analysis.
Data Cleaning: Techniques for data preprocessing.
Business Acumen: Understanding business context for insights.
Data Engineer
SQL/NoSQL Databases: MySQL, PostgreSQL, MongoDB, Cassandra.
ETL Tools: Apache NiFi, Talend, Informatica.
Big Data: Hadoop, Spark, Kafka.
Programming: Python, Java, Scala.
Data Warehousing: Redshift, BigQuery, Snowflake.
Cloud Platforms: AWS, GCP, Azure.
Data Modeling: Designing and implementing data models.
#data
Here is a 7-step plan for each data role
Data Scientist
Statistics and Math: Advanced statistics, linear algebra, calculus.
Machine Learning: Supervised and unsupervised learning algorithms.
xData Wrangling: Cleaning and transforming datasets.
Big Data: Hadoop, Spark, SQL/NoSQL databases.
Data Visualization: Matplotlib, Seaborn, D3.js.
Domain Knowledge: Industry-specific data science applications.
Data Analyst
Data Visualization: Tableau, Power BI, Excel for visualizations.
SQL: Querying and managing databases.
Statistics: Basic statistical analysis and probability.
Excel: Data manipulation and analysis.
Python/R: Programming for data analysis.
Data Cleaning: Techniques for data preprocessing.
Business Acumen: Understanding business context for insights.
Data Engineer
SQL/NoSQL Databases: MySQL, PostgreSQL, MongoDB, Cassandra.
ETL Tools: Apache NiFi, Talend, Informatica.
Big Data: Hadoop, Spark, Kafka.
Programming: Python, Java, Scala.
Data Warehousing: Redshift, BigQuery, Snowflake.
Cloud Platforms: AWS, GCP, Azure.
Data Modeling: Designing and implementing data models.
#data
❤1👍1
Forwarded from Python Projects & Resources
𝗧𝗼𝗽 𝗣𝘆𝘁𝗵𝗼𝗻 𝗜𝗻𝘁𝗲𝗿𝘃𝗶𝗲𝘄 𝗤𝘂𝗲𝘀𝘁𝗶𝗼𝗻𝘀 𝗳𝗼𝗿 𝟮𝟬𝟮𝟱 — 𝗥𝗲𝗰𝗲𝗻𝘁𝗹𝘆 𝗔𝘀𝗸𝗲𝗱 𝗯𝘆 𝗠𝗡𝗖𝘀😍
📌 Preparing for Python Interviews in 2025?🗣
If you’re aiming for roles in data analysis, backend development, or automation, Python is your key weapon—and so is preparing with the right questions.💻✨️
𝐋𝐢𝐧𝐤👇:-
https://pdlink.in/3ZbAtrW
Crack your next Python interview✅️
📌 Preparing for Python Interviews in 2025?🗣
If you’re aiming for roles in data analysis, backend development, or automation, Python is your key weapon—and so is preparing with the right questions.💻✨️
𝐋𝐢𝐧𝐤👇:-
https://pdlink.in/3ZbAtrW
Crack your next Python interview✅️
👍1
Free Books, Courses & Certificates to learn Data Analytics & Data Science for beginners
Free Courses, Projects & Internship for data analytics
FREE Data Analytics Online Courses from Udacity
Free courses to learn Data Science in 2023
Complete Roadmap with Free Resources to become a data analyst
Free Resources to learn Python
Free Certification Courses from Microsoft to try in 2023
Share our channel for more free resources: https://news.1rj.ru/str/udacityfreecourse
#datascience #dataanalytics
Free Courses, Projects & Internship for data analytics
FREE Data Analytics Online Courses from Udacity
Free courses to learn Data Science in 2023
Complete Roadmap with Free Resources to become a data analyst
Free Resources to learn Python
Free Certification Courses from Microsoft to try in 2023
Share our channel for more free resources: https://news.1rj.ru/str/udacityfreecourse
#datascience #dataanalytics
👍2
𝟱 𝗙𝗿𝗲𝗲 𝗠𝗜𝗧 𝗣𝗿𝗼𝗴𝗿𝗮𝗺𝗺𝗶𝗻𝗴 𝗖𝗼𝘂𝗿𝘀𝗲𝘀 𝗧𝗵𝗮𝘁 𝗘𝘃𝗲𝗿𝘆 𝗕𝗲𝗴𝗶𝗻𝗻𝗲𝗿 𝗦𝗵𝗼𝘂𝗹𝗱 𝗦𝘁𝗮𝗿𝘁 𝗪𝗶𝘁𝗵😍
💻 Want to Learn Coding but Don’t Know Where to Start?🎯
Whether you’re a student, career switcher, or complete beginner, this curated list is your perfect launchpad into tech💻🚀
𝐋𝐢𝐧𝐤👇:-
https://pdlink.in/437ow7Y
All The Best 🎊
💻 Want to Learn Coding but Don’t Know Where to Start?🎯
Whether you’re a student, career switcher, or complete beginner, this curated list is your perfect launchpad into tech💻🚀
𝐋𝐢𝐧𝐤👇:-
https://pdlink.in/437ow7Y
All The Best 🎊
👍1