Data Science Portfolio - Kaggle Datasets & AI Projects | Artificial Intelligence – Telegram
Data Science Portfolio - Kaggle Datasets & AI Projects | Artificial Intelligence
37.5K subscribers
283 photos
76 files
336 links
Free Datasets For Data Science Projects & Portfolio

Buy ads: https://telega.io/c/DataPortfolio

For Promotions/ads: @coderfun @love_data
Download Telegram
Forwarded from Artificial Intelligence
𝟰 𝗙𝗿𝗲𝗲 𝗣𝘆𝘁𝗵𝗼𝗻 𝗖𝗼𝘂𝗿𝘀𝗲𝘀 𝘁𝗼 𝗦𝘁𝗮𝗿𝘁 𝗖𝗼𝗱𝗶𝗻𝗴 𝗟𝗶𝗸𝗲 𝗮 𝗣𝗿𝗼 𝗶𝗻 𝟮𝟬𝟮𝟱😍

Looking to kickstart your coding journey with Python? 🐍

Whether you’re an aspiring data analyst, a student, or preparing for tech roles, these free Python courses are perfect for beginners!📊📌

𝐋𝐢𝐧𝐤👇:-

https://pdlink.in/4jtpf9M

These platforms offer high-quality learning — no fees, no catch✅️
Power BI Interview Questions Asked Bajaj Auto Ltd

1. Self Introduction
2. What are your roles and responsibilities of your project?
3. Difference between Import Mode and Direct Mode?
4. What kind of projects have you worked on Domain?
5. How do you handle complex data transformations in Power Query? Can you provide an example of a challenging transformation you implemented?
6. What challenges you faced while doing a projects?
7. Types of Refreshes in Power BI?
8. What is DAX in Power BI?
9. How do you perform data cleansing and transformation in Power BI?
10. How do you connect to data sources in Power BI?
11. What are the components in Power BI?
12. What is Power Pivot will do in Power BI?
13. Write a query to fetch top 5 employees having highest salary?
14. Write a query to find 2nd highest salary from employee table?
15. Difference between Rank function & Dense Rank function in SQL?
16. Difference between Power BI Desktop & Power BI Service?
17. How will you optimize Power BI reports?
18. What are the difficulties you have faced when doing a projects?
19. How can you optimize a SQL query?
20. What is Indexes?
21. How ETL process happen in Power BI?
22. What is difference between Star schema & Snowflake schema and how will know when to use which schemas respectively?
23. How will you perform filtering & it's types?
24. What is Bookmarks?
25. Difference between Drilldown and Drill through in Power BI?
26. Difference between Calculated column and measure?
27. Difference between Slicer and Filter?
28. What is a use Pandas, Matplotlib, seaborn Libraries?
29. Difference between Sum and SumX?
30. Do you have any questions?
1👍1
𝗧𝗼𝗽 𝗠𝗡𝗖𝘀 𝗢𝗳𝗳𝗲𝗿𝗶𝗻𝗴 𝗙𝗥𝗘𝗘 𝗖𝗲𝗿𝘁𝗶𝗳𝗶𝗰𝗮𝘁𝗶𝗼𝗻 𝗖𝗼𝘂𝗿𝘀𝗲𝘀 😍

Google :- https://pdlink.in/3H2YJX7

Microsoft :- https://pdlink.in/4iq8QlM

Infosys :- https://pdlink.in/4jsHZXf

IBM :- https://pdlink.in/3QyJyqk

Cisco :- https://pdlink.in/4fYr1xO

Enroll For FREE & Get Certified 🎓
Machine Learning Algorithms every data scientist should know:

📌 Supervised Learning:

🔹 Regression
∟ Linear Regression
∟ Ridge & Lasso Regression
∟ Polynomial Regression

🔹 Classification
∟ Logistic Regression
∟ K-Nearest Neighbors (KNN)
∟ Decision Tree
∟ Random Forest
∟ Support Vector Machine (SVM)
∟ Naive Bayes
∟ Gradient Boosting (XGBoost, LightGBM, CatBoost)


📌 Unsupervised Learning:

🔹 Clustering
∟ K-Means
∟ Hierarchical Clustering
∟ DBSCAN

🔹 Dimensionality Reduction
∟ PCA (Principal Component Analysis)
∟ t-SNE
∟ LDA (Linear Discriminant Analysis)


📌 Reinforcement Learning (Basics):
∟ Q-Learning
∟ Deep Q Network (DQN)


📌 Ensemble Techniques:
∟ Bagging (Random Forest)
∟ Boosting (XGBoost, AdaBoost, Gradient Boosting)
∟ Stacking

Don’t forget to learn model evaluation metrics: accuracy, precision, recall, F1-score, AUC-ROC, confusion matrix, etc.

Free Machine Learning Resources: https://whatsapp.com/channel/0029Va8v3eo1NCrQfGMseL2D

React ❤️ for more free resources
4
𝗙𝗥𝗘𝗘 𝗠𝗶𝗰𝗿𝗼𝘀𝗼𝗳𝘁 𝗧𝗲𝗰𝗵 𝗖𝗲𝗿𝘁𝗶𝗳𝗶𝗰𝗮𝘁𝗶𝗼𝗻 𝗖𝗼𝘂𝗿𝘀𝗲𝘀😍

🚀 Learn In-Demand Tech Skills for Free — Certified by Microsoft!

These free Microsoft-certified online courses are perfect for beginners, students, and professionals looking to upskill

𝐋𝐢𝐧𝐤👇:-

https://pdlink.in/3Hio2Vg

Enroll For FREE & Get Certified🎓️
A-Z of essential data science concepts

A: Algorithm - A set of rules or instructions for solving a problem or completing a task.
B: Big Data - Large and complex datasets that traditional data processing applications are unable to handle efficiently.
C: Classification - A type of machine learning task that involves assigning labels to instances based on their characteristics.
D: Data Mining - The process of discovering patterns and extracting useful information from large datasets.
E: Ensemble Learning - A machine learning technique that combines multiple models to improve predictive performance.
F: Feature Engineering - The process of selecting, extracting, and transforming features from raw data to improve model performance.
G: Gradient Descent - An optimization algorithm used to minimize the error of a model by adjusting its parameters iteratively.
H: Hypothesis Testing - A statistical method used to make inferences about a population based on sample data.
I: Imputation - The process of replacing missing values in a dataset with estimated values.
J: Joint Probability - The probability of the intersection of two or more events occurring simultaneously.
K: K-Means Clustering - A popular unsupervised machine learning algorithm used for clustering data points into groups.
L: Logistic Regression - A statistical model used for binary classification tasks.
M: Machine Learning - A subset of artificial intelligence that enables systems to learn from data and improve performance over time.
N: Neural Network - A computer system inspired by the structure of the human brain, used for various machine learning tasks.
O: Outlier Detection - The process of identifying observations in a dataset that significantly deviate from the rest of the data points.
P: Precision and Recall - Evaluation metrics used to assess the performance of classification models.
Q: Quantitative Analysis - The process of using mathematical and statistical methods to analyze and interpret data.
R: Regression Analysis - A statistical technique used to model the relationship between a dependent variable and one or more independent variables.
S: Support Vector Machine - A supervised machine learning algorithm used for classification and regression tasks.
T: Time Series Analysis - The study of data collected over time to detect patterns, trends, and seasonal variations.
U: Unsupervised Learning - Machine learning techniques used to identify patterns and relationships in data without labeled outcomes.
V: Validation - The process of assessing the performance and generalization of a machine learning model using independent datasets.
W: Weka - A popular open-source software tool used for data mining and machine learning tasks.
X: XGBoost - An optimized implementation of gradient boosting that is widely used for classification and regression tasks.
Y: Yarn - A resource manager used in Apache Hadoop for managing resources across distributed clusters.
Z: Zero-Inflated Model - A statistical model used to analyze data with excess zeros, commonly found in count data.

Best Data Science & Machine Learning Resources: https://topmate.io/coding/914624

Credits: https://news.1rj.ru/str/datasciencefun

Like if you need similar content 😄👍

Hope this helps you 😊
1
𝗙𝗥𝗘𝗘 𝗧𝗔𝗧𝗔 𝗗𝗮𝘁𝗮 𝗔𝗻𝗮𝗹𝘆𝘁𝗶𝗰𝘀 𝗩𝗶𝗿𝘁𝘂𝗮𝗹 𝗜𝗻𝘁𝗲𝗿𝗻𝘀𝗵𝗶𝗽😍

Gain Real-World Data Analytics Experience with TATA – 100% Free!

This free TATA Data Analytics Virtual Internship on Forage lets you step into the shoes of a data analyst — no experience required!

𝐋𝐢𝐧𝐤👇:-

https://pdlink.in/3FyjDgp

Enroll For FREE & Get Certified🎓️
1
🔥 Data Science Roadmap 2025

Step 1: 🐍 Python Basics
Step 2: 📊 Data Analysis (Pandas, NumPy)
Step 3: 📈 Data Visualization (Matplotlib, Seaborn)
Step 4: 🤖 Machine Learning (Scikit-learn)
Step 5: � Deep Learning (TensorFlow/PyTorch)
Step 6: 🗃️ SQL & Big Data (Spark)
Step 7: 🚀 Deploy Models (Flask, FastAPI)
Step 8: 📢 Showcase Projects
Step 9: 💼 Land a Job!

🔓 Pro Tip: Compete on Kaggle

#datascience
2
𝟰 𝗣𝗼𝘄𝗲𝗿𝗳𝘂𝗹 𝗙𝗿𝗲𝗲 𝗥𝗼𝗮𝗱𝗺𝗮𝗽𝘀 𝘁𝗼 𝗠𝗮𝘀𝘁𝗲𝗿 𝗝𝗮𝘃𝗮𝗦𝗰𝗿𝗶𝗽𝘁, 𝗗𝗮𝘁𝗮 𝗦𝗰𝗶𝗲𝗻𝗰𝗲, 𝗔𝗜/𝗠𝗟 & 𝗙𝗿𝗼𝗻𝘁𝗲𝗻𝗱 𝗗𝗲𝘃𝗲𝗹𝗼𝗽𝗺𝗲𝗻𝘁 😍

Learn Tech the Smart Way: Step-by-Step Roadmaps for Beginners🚀

Learning tech doesn’t have to be overwhelming—especially when you have a roadmap to guide you!📊📌

𝐋𝐢𝐧𝐤👇:-

https://pdlink.in/45wfx2V

Enjoy Learning ✅️
1
𝗗𝗮𝘁𝗮 𝗦𝗰𝗶𝗲𝗻𝗰𝗲 𝗿𝗼𝗮𝗱𝗺𝗮𝗽 𝘁𝗼 𝘀𝗵𝗮𝗽𝗲 𝘆𝗼𝘂𝗿 𝗰𝗮𝗿𝗲𝗲𝗿: 👇

-> 1. Learn the Language of Data
Start with Python or R. Learn how to write clean noscripts, automate tasks, and manipulate data like a pro.

-> 2. Master Data Handling
Use Pandas, NumPy, and SQL. These are your weapons for data cleaning, transformation, and querying.
Garbage in = Garbage out. Always clean your data.

-> 3. Nail the Basics of Statistics & Probability
You can’t call yourself a data scientist if you don’t understand distributions, p-values, confidence intervals, and hypothesis testing.

-> 4. Exploratory Data Analysis (EDA)
Visualize the story behind the numbers with Matplotlib, Seaborn, and Plotly.
EDA is how you uncover hidden gold.

-> 5. Learn Machine Learning the Right Way

Start simple:

Linear Regression

Logistic Regression

Decision Trees
Then level up with Random Forest, XGBoost, and Neural Networks.


-> 6. Build Real Projects
Kaggle, personal projects, domain-specific problems—don’t just learn, apply.
Make a portfolio that speaks louder than your resume.

-> 7. Learn Deployment (Optional but Powerful)
Use Flask, Streamlit, or FastAPI to deploy your models.
Turn models into real-world applications.

-> 8. Sharpen Soft Skills
Storytelling, communication, and business acumen are just as important as technical skills.
Explain your insights like a leader.


𝗬𝗼𝘂 𝗱𝗼𝗻’𝘁 𝗵𝗮𝘃𝗲 𝘁𝗼 𝗯𝗲 𝗽𝗲𝗿𝗳𝗲𝗰𝘁.
𝗬𝗼𝘂 𝗷𝘂𝘀𝘁 𝗵𝗮𝘃𝗲 𝘁𝗼 𝗯𝗲 𝗰𝗼𝗻𝘀𝗶𝘀𝘁𝗲𝗻𝘁.

Join our WhatsApp channel: https://whatsapp.com/channel/0029Va8v3eo1NCrQfGMseL2D

Like if you need similar content 😄👍

Hope this helps you 😊
1
𝟴 𝗕𝗲𝘀𝘁 𝗙𝗿𝗲𝗲 𝗗𝗮𝘁𝗮 𝗦𝗰𝗶𝗲𝗻𝗰𝗲 𝗖𝗼𝘂𝗿𝘀𝗲𝘀 𝗳𝗿𝗼𝗺 𝗛𝗮𝗿𝘃𝗮𝗿𝗱, 𝗠𝗜𝗧 & 𝗦𝘁𝗮𝗻𝗳𝗼𝗿𝗱😍

🎓 Learn Data Science for Free from the World’s Best Universities🚀

Top institutions like Harvard, MIT, and Stanford are offering world-class data science courses online — and they’re 100% free. 🎯📍

𝐋𝐢𝐧𝐤👇:-

https://pdlink.in/3Hfpwjc

All The Best 👍
1
5 Handy Tips to master Data Science ⬇️


1️⃣ Begin with introductory projects that cover the fundamental concepts of data science, such as data exploration, cleaning, and visualization. These projects will help you get familiar with common data science tools and libraries like Python (Pandas, NumPy, Matplotlib), R, SQL, and Excel

2️⃣ Look for publicly available datasets from sources like Kaggle, UCI Machine Learning Repository. Working with real-world data will expose you to the challenges of messy, incomplete, and heterogeneous data, which is common in practical scenarios.

3️⃣ Explore various data science techniques like regression, classification, clustering, and time series analysis. Apply these techniques to different datasets and domains to gain a broader understanding of their strengths, weaknesses, and appropriate use cases.

4️⃣ Work on projects that involve the entire data science lifecycle, from data collection and cleaning to model building, evaluation, and deployment. This will help you understand how different components of the data science process fit together.

5️⃣ Consistent practice is key to mastering any skill. Set aside dedicated time to work on data science projects, and gradually increase the complexity and scope of your projects as you gain more experience.
1