Data Science Portfolio - Kaggle Datasets & AI Projects | Artificial Intelligence – Telegram
Data Science Portfolio - Kaggle Datasets & AI Projects | Artificial Intelligence
37.5K subscribers
283 photos
76 files
336 links
Free Datasets For Data Science Projects & Portfolio

Buy ads: https://telega.io/c/DataPortfolio

For Promotions/ads: @coderfun @love_data
Download Telegram
7 High-Impact Portfolio Project Ideas for Aspiring Data Analysts

Sales Dashboard – Use Power BI or Tableau to visualize KPIs like revenue, profit, and region-wise performance
Customer Churn Analysis – Predict which customers are likely to leave using Python (Logistic Regression, EDA)
Netflix Dataset Exploration – Analyze trends in content types, genres, and release years with Pandas & Matplotlib
HR Analytics Dashboard – Visualize attrition, department strength, and performance reviews
Survey Data Analysis – Clean, visualize, and derive insights from user feedback or product surveys
E-commerce Product Analysis – Analyze top-selling products, revenue by category, and return rates
Airbnb Price Predictor – Use machine learning to predict listing prices based on location, amenities, and ratings

These projects showcase real-world skills and storytelling with data.

Share with credits: https://news.1rj.ru/str/sqlspecialist

Hope it helps :)
3
Beginner’s Roadmap to Learn Data Structures & Algorithms

1. Foundations: Start with the basics of programming and mathematical concepts to build a strong foundation.

2. Data Structure: Dive into essential data structures like arrays, linked lists, stacks, and queues to organise and store data efficiently.

3. Searching & Sorting: Learn various search and sort techniques to optimise data retrieval and organisation.

4. Trees & Graphs: Understand the concepts of binary trees and graph representation to tackle complex hierarchical data.

5. Recursion: Grasp the principles of recursion and how to implement recursive algorithms for problem-solving.

6. Advanced Data Structures: Explore advanced structures like hashing, heaps, and hash maps to enhance data manipulation.

7. Algorithms: Master algorithms such as greedy, divide and conquer, and dynamic programming to solve intricate problems.

8. Advanced Topics: Delve into backtracking, string algorithms, and bit manipulation for a deeper understanding.

9. Problem Solving: Practice on coding platforms like LeetCode to sharpen your skills and solve real-world algorithmic challenges.

10. Projects & Portfolio: Build real-world projects and showcase your skills on GitHub to create an impressive portfolio.

Best DSA RESOURCES: https://topmate.io/coding/886874

All the best 👍👍
3
𝗣-𝗩𝗮𝗹𝘂𝗲𝘀 𝗳𝗼𝗿 𝗥𝗲𝗴𝗿𝗲𝘀𝘀𝗶𝗼𝗻 𝗠𝗼𝗱𝗲𝗹 𝗘𝘅𝗽𝗹𝗮𝗶𝗻𝗲𝗱

𝗪𝗵𝗲𝗻 𝗯𝘂𝗶𝗹𝗱𝗶𝗻𝗴 𝗮 𝗿𝗲𝗴𝗿𝗲𝘀𝘀𝗶𝗼𝗻 𝗺𝗼𝗱𝗲𝗹, 𝗻𝗼𝘁 𝗲𝘃𝗲𝗿𝘆 𝘃𝗮𝗿𝗶𝗮𝗯𝗹𝗲 𝗶𝘀 𝗰𝗿𝗲𝗮𝘁𝗲𝗱 𝗲𝗾𝘂𝗮𝗹.

Some variables will genuinely impact your predictions, while others are just background noise.

𝗧𝗵𝗲 𝗽-𝘃𝗮𝗹𝘂𝗲 𝗵𝗲𝗹𝗽𝘀 𝘆𝗼𝘂 𝗳𝗶𝗴𝘂𝗿𝗲 𝗼𝘂𝘁 𝘄𝗵𝗶𝗰𝗵 𝗶𝘀 𝘄𝗵𝗶𝗰𝗵.

𝗪𝗵𝗮𝘁 𝗲𝘅𝗮𝗰𝘁𝗹𝘆 𝗶𝘀 𝗮 𝗣-𝗩𝗮𝗹𝘂𝗲?

𝗔 𝗽-𝘃𝗮𝗹𝘂𝗲 𝗮𝗻𝘀𝘄𝗲𝗿𝘀 𝗼𝗻𝗲 𝗾𝘂𝗲𝘀𝘁𝗶𝗼𝗻:
➔ If this variable had no real effect, what’s the probability that we’d still observe results this extreme just by chance?

• 𝗟𝗼𝘄 𝗣-𝗩𝗮𝗹𝘂𝗲 (𝘂𝘀𝘂𝗮𝗹𝗹𝘆 < 0.05): Strong evidence that the variable is important.
• 𝗛𝗶𝗴𝗵 𝗣-𝗩𝗮𝗹𝘂𝗲 (> 0.05): The variable’s relationship with the output could easily be random.

𝗛𝗼𝘄 𝗣-𝗩𝗮𝗹𝘂𝗲𝘀 𝗚𝘂𝗶𝗱𝗲 𝗬𝗼𝘂𝗿 𝗥𝗲𝗴𝗿𝗲𝘀𝘀𝗶𝗼𝗻 𝗠𝗼𝗱𝗲𝗹

𝗜𝗺𝗮𝗴𝗶𝗻𝗲 𝘆𝗼𝘂’𝗿𝗲 𝗮 𝘀𝗰𝘂𝗹𝗽𝘁𝗼𝗿.
You start with a messy block of stone (all your features).
P-values are your chisel.
𝗥𝗲𝗺𝗼𝘃𝗲 the features with high p-values (not useful).
𝗞𝗲𝗲𝗽 the features with low p-values (important).

This results in a leaner, smarter model that doesn’t just memorize noise but learns real patterns.

𝗪𝗵𝘆 𝗣-𝗩𝗮𝗹𝘂𝗲𝘀 𝗠𝗮𝘁𝘁𝗲𝗿

𝗪𝗶𝘁𝗵𝗼𝘂𝘁 𝗽-𝘃𝗮𝗹𝘂𝗲𝘀, 𝗺𝗼𝗱𝗲𝗹 𝗯𝘂𝗶𝗹𝗱𝗶𝗻𝗴 𝗯𝗲𝗰𝗼𝗺𝗲𝘀 𝗴𝘂𝗲𝘀𝘀𝘄𝗼𝗿𝗸.

𝗟𝗼𝘄 𝗣-𝗩𝗮𝗹𝘂𝗲 ➔ Likely genuine effect.
𝗛𝗶𝗴𝗵 𝗣-𝗩𝗮𝗹𝘂𝗲 ➔ Likely coincidence.

𝗜𝗳 𝘆𝗼𝘂 𝗶𝗴𝗻𝗼𝗿𝗲 𝗶𝘁, 𝘆𝗼𝘂 𝗿𝗶𝘀𝗸:
• Overfitting your model with junk features
• Lowering your model’s accuracy and interpretability
• Making wrong business decisions based on faulty insights

𝗧𝗵𝗲 𝟬.𝟬𝟱 𝗧𝗵𝗿𝗲𝘀𝗵𝗼𝗹𝗱: 𝗡𝗼𝘁 𝗔 𝗠𝗮𝗴𝗶𝗰 𝗡𝘂𝗺𝗯𝗲𝗿

You’ll often hear: If p < 0.05, it’s significant!

𝗕𝘂𝘁 𝗯𝗲 𝗰𝗮𝗿𝗲𝗳𝘂𝗹.
This threshold is not universal.
• In critical fields (like medicine), you might need a much lower p-value (e.g., 0.01).
• In exploratory analysis, you might tolerate higher p-values.

Context always matters.

𝗥𝗲𝗮𝗹-𝗪𝗼𝗿𝗹𝗱 𝗔𝗱𝘃𝗶𝗰𝗲

When evaluating your regression model:
➔ 𝗗𝗼𝗻’𝘁 𝗷𝘂𝘀𝘁 𝗹𝗼𝗼𝗸 𝗮𝘁 𝗽-𝘃𝗮𝗹𝘂𝗲𝘀 𝗮𝗹𝗼𝗻𝗲.

𝗖𝗼𝗻𝘀𝗶𝗱𝗲𝗿:
• The feature’s practical importance (not just statistical)
• Multicollinearity (highly correlated variables can distort p-values)
• Overall model fit (R², Adjusted R²)

𝗜𝗻 𝗦𝗵𝗼𝗿𝘁:

𝗟𝗼𝘄 𝗣-𝗩𝗮𝗹𝘂𝗲 = 𝗧𝗵𝗲 𝗳𝗲𝗮𝘁𝘂𝗿𝗲 𝗺𝗮𝘁𝘁𝗲𝗿𝘀.
𝗛𝗶𝗴𝗵 𝗣-𝗩𝗮𝗹𝘂𝗲 = 𝗜𝘁’𝘀 𝗽𝗿𝗼𝗯𝗮𝗯𝗹𝘆 𝗷𝘂𝘀𝘁 𝗻𝗼𝗶𝘀𝗲.
4