Code With Python – Telegram
Code With Python
39K subscribers
841 photos
24 videos
22 files
746 links
This channel delivers clear, practical content for developers, covering Python, Django, Data Structures, Algorithms, and DSA – perfect for learning, coding, and mastering key programming skills.
Admin: @HusseinSheikho || @Hussein_Sheikho
Download Telegram
In Python, lists are versatile mutable sequences with built-in methods for adding, removing, searching, sorting, and more—covering all common scenarios like dynamic data manipulation, queues, or stacks. Below is a complete breakdown of all list methods, each with syntax, an example, and output, plus key built-in functions for comprehensive use.

📚 Adding Elements
append(x): Adds a single element to the end.

  lst = [1, 2]
lst.append(3)
print(lst) # Output: [1, 2, 3]


extend(iterable): Adds all elements from an iterable to the end.

  lst = [1, 2]
lst.extend([3, 4])
print(lst) # Output: [1, 2, 3, 4]


insert(i, x): Inserts x at index i (shifts elements right).

  lst = [1, 3]
lst.insert(1, 2)
print(lst) # Output: [1, 2, 3]


📚 Removing Elements
remove(x): Removes the first occurrence of x (raises ValueError if not found).

  lst = [1, 2, 2]
lst.remove(2)
print(lst) # Output: [1, 2]


pop(i=-1): Removes and returns the element at index i (default: last).

  lst = [1, 2, 3]
item = lst.pop(1)
print(item, lst) # Output: 2 [1, 3]


clear(): Removes all elements.

  lst = [1, 2, 3]
lst.clear()
print(lst) # Output: []


📚 Searching and Counting
count(x): Returns the number of occurrences of x.

  lst = [1, 2, 2, 3]
print(lst.count(2)) # Output: 2


index(x[, start[, end]]): Returns the lowest index of x in the slice (raises ValueError if not found).

  lst = [1, 2, 3, 2]
print(lst.index(2)) # Output: 1


📚 Ordering and Copying
sort(key=None, reverse=False): Sorts the list in place (ascending by default; stable sort).

  lst = [3, 1, 2]
lst.sort()
print(lst) # Output: [1, 2, 3]


reverse(): Reverses the elements in place.

  lst = [1, 2, 3]
lst.reverse()
print(lst) # Output: [3, 2, 1]


copy(): Returns a shallow copy of the list.

  lst = [1, 2]
new_lst = lst.copy()
print(new_lst) # Output: [1, 2]


📚 Built-in Functions for Lists (Common Cases)
len(lst): Returns the number of elements.

  lst = [1, 2, 3]
print(len(lst)) # Output: 3


min(lst): Returns the smallest element (raises ValueError if empty).

  lst = [3, 1, 2]
print(min(lst)) # Output: 1


max(lst): Returns the largest element.

  lst = [3, 1, 2]
print(max(lst)) # Output: 3


sum(lst[, start=0]): Sums the elements (start adds an offset).

  lst = [1, 2, 3]
print(sum(lst)) # Output: 6


sorted(lst, key=None, reverse=False): Returns a new sorted list (non-destructive).

  lst = [3, 1, 2]
print(sorted(lst)) # Output: [1, 2, 3]


These cover all standard operations (O(1) for append/pop from end, O(n) for most others). Use slicing lst[start:end:step] for advanced extraction, like lst[1:3] outputs ``.

#python #lists #datastructures #methods #examples #programming

@DataScience4
Please open Telegram to view this post
VIEW IN TELEGRAM
6
In Python, list comprehensions provide a concise way to create lists by applying an expression to each item in an iterable, often with conditions—making code more readable and efficient for tasks like filtering or transforming data, a frequent interview topic for assessing Pythonic style.

# Basic comprehension
squares = [x**2 for x in range(5)] # [0, 1, 4, 9, 16]

# With condition
evens = [x for x in range(10) if x % 2 == 0] # [0, 2, 4, 6, 8]

# Nested with transformation
matrix = [[1, 2], [3, 4]]
flattened = [num for row in matrix for num in row] # [1, 2, 3, 4]

# Equivalent to loop (interview comparison)
result = []
for x in range(5):
result.append(x**2)
# result = [0, 1, 4, 9, 16] # Same as first example


#python #listcomprehensions #interviewtips #pythonic #datastructures

👉 @DataScience4
In Python programming exams, follow these structured steps to solve problems methodically, staying focused and avoiding panic: Start by reading the problem twice to clarify inputs, outputs, and constraints—write them down simply. Break it into small sub-problems (e.g., "handle edge cases first"), plan pseudocode or a flowchart on paper, then implement step-by-step with test cases for each part, debugging one issue at a time while taking deep breaths to reset if stuck.

# Example: Solve "Find max in list" problem step-by-step
# Step 1: Understand - Input: list of nums; Output: max value; Constraints: empty list?

def find_max(numbers):
if not numbers: # Step 2: Handle edge case (empty list)
return None # Or raise ValueError

max_val = numbers # Step 3: Initialize with first element
for num in numbers[1:]: # Step 4: Loop through rest (sub-problem: compare)
if num > max_val:
max_val = num
return max_val # Step 5: Return result

# Step 6: Test cases
print(find_max([3, 1, 4, 1, 5])) # Output: 5
print(find_max([])) # Output: None
print(find_max()) # Output: 10

# If stuck: Comment code to trace, or simplify (e.g., use max() built-in first to verify)


This approach builds confidence—practice on platforms like LeetCode to make it habit! #python #problemsolving #codingexams #debugging #interviewtips

👉 @DataScience4
🔥2
In Python, for loops are versatile for iterating over iterables like lists, strings, or ranges, but advanced types include basic iteration, index-aware with enumerate(), parallel with zip(), nested for multi-level data, and comprehension-based—crucial for efficient data processing in interviews without overcomplicating.

# Basic for loop over iterable (list)
fruits = ["apple", "banana", "cherry"]
for fruit in fruits: # Iterates each element directly
print(fruit) # Output: apple \n banana \n cherry

# For loop with range() for numeric sequences
for i in range(3): # Generates 0, 1, 2 (start=0, stop=3, step=1)
print(i) # Output: 0 \n 1 \n 2

for i in range(1, 6, 2): # Start=1, stop=6, step=2
print(i) # Output: 1 \n 3 \n 5

# Index-aware with enumerate() (gets both index and value)
for index, fruit in enumerate(fruits, start=1): # start=1 for 1-based indexing
print(f"{index}: {fruit}") # Output: 1: apple \n 2: banana \n 3: cherry

# Parallel iteration with zip() (pairs multiple iterables)
names = ["Alice", "Bob", "Charlie"]
ages = [25, 30, 35]
for name, age in zip(names, ages): # Stops at shortest iterable
print(f"{name} is {age} years old") # Output: Alice is 25 years old \n Bob is 30 years old \n Charlie is 35 years old

# Nested for loops (outer for rows, inner for columns; e.g., matrix)
matrix = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
for row in matrix: # Outer: each sublist
for num in row: # Inner: each element in row
print(num, end=' ') # Output: 1 2 3 4 5 6 7 8 9 (space-separated)

# For loop in list comprehension (concise iteration with optional condition)
squares = [x**2 for x in range(5)] # Basic comprehension
print(squares) # Output: [0, 1, 4, 9, 16]

evens_squared = [x**2 for x in range(10) if x % 2 == 0] # With condition (if)
print(evens_squared) # Output: [0, 4, 16, 36, 64]

# Nested comprehension (flattens 2D list)
flattened = [num for row in matrix for num in row] # Equivalent to nested for
print(flattened) # Output: [1, 2, 3, 4, 5, 6, 7, 8, 9]


#python #forloops #range #enumerate #zip #nestedloops #listcomprehension #interviewtips #iteration

👉 @DataScience4
2
How to Serve a Website With FastAPI Using HTML and Jinja2

📖 Use FastAPI to render Jinja2 templates and serve dynamic sites with HTML, CSS, and JavaScript, then add a color picker that copies hex codes.

🏷️ #intermediate #api #front-end #web-dev
1
text corpora | AI Coding Glossary

📖 Curated collections of machine-readable text that serve as data resources for linguistics and natural language processing.

🏷️ #Python
Python MarkItDown: Convert Documents Into LLM-Ready Markdown

📖 Get started with Python MarkItDown to turn PDFs, Office files, images, and URLs into clean, LLM-ready Markdown in seconds.

🏷️ #intermediate #ai #tools
4
In Python interviews, understanding common algorithms like binary search is crucial for demonstrating problem-solving efficiency—often asked to optimize time complexity from O(n) to O(log n) for sorted data, showing your grasp of divide-and-conquer strategies.

# Basic linear search (O(n) - naive approach)
def linear_search(arr, target):
for i in range(len(arr)):
if arr[i] == target:
return i
return -1

nums = [1, 3, 5, 7, 9]
print(linear_search(nums, 5)) # Output: 2

# Binary search (O(log n) - efficient for sorted arrays)
def binary_search(arr, target):
left, right = 0, len(arr) - 1
while left <= right: # Divide range until found or empty
mid = (left + right) // 2
if arr[mid] == target:
return mid
elif arr[mid] < target:
left = mid + 1 # Search right half
else:
right = mid - 1 # Search left half
return -1

sorted_nums = [1, 3, 5, 7, 9]
print(binary_search(sorted_nums, 5)) # Output: 2
print(binary_search(sorted_nums, 6)) # Output: -1 (not found)

# Edge cases
print(binary_search([], 1)) # Output: -1 (empty list)
print(binary_search(, 1)) # Output: 0 (single element)


#python #algorithms #binarysearch #interviews #timescomplexity #problemsolving

👉 @DataScience4
4
In Python, loops are essential for repeating code efficiently: for loops iterate over known sequences (like lists or ranges) when you know the number of iterations, while loops run based on a condition until it's false (ideal for unknown iteration counts or sentinel values), and nested loops handle multi-dimensional data by embedding one inside another—use break/continue for control, and comprehensions for concise alternatives in interviews.

# For loop: Use for fixed iterations over iterables (e.g., processing lists)
fruits = ["apple", "banana", "cherry"]
for fruit in fruits: # Iterates each element
print(fruit) # Output: apple \n banana \n cherry

for i in range(3): # Numeric sequence (start=0, stop=3)
print(i) # Output: 0 \n 1 \n 2

# While loop: Use when iterations depend on a dynamic condition (e.g., user input, convergence)
count = 0
while count < 3: # Runs as long as condition is True
print(count)
count += 1 # Increment to avoid infinite loop! Output: 0 \n 1 \n 2

# Nested loops: Use for 2D data (e.g., matrices, grids); outer for rows, inner for columns
matrix = [[1, 2], [3, 4]]
for row in matrix: # Outer: each sublist
for num in row: # Inner: elements in row
print(num) # Output: 1 \n 2 \n 3 \n 4

# Control statements: break (exit loop), continue (skip iteration)
for i in range(5):
if i == 2:
continue # Skip 2
if i == 4:
break # Exit at 4
print(i) # Output: 0 \n 1 \n 3

# List comprehension: Concise for loop alternative (use for simple transformations/filtering)
squares = [x**2 for x in range(5) if x % 2 == 0] # Even squares
print(squares) # Output: [0, 4, 16]


#python #loops #forloop #whileloop #nestedloops #comprehensions #interviewtips #controlflow

👉 @DataScience4
3
Forwarded from PyData Careers
In Python, the math module provides a wide range of mathematical functions and constants for precise computations. It supports operations like trigonometry, logarithms, powers, and more.

import math

# Constants
print(math.pi) # Output: 3.141592653589793
print(math.e) # Output: 2.718281828459045

# Basic arithmetic
print(math.sqrt(16)) # Output: 4.0
print(math.pow(2, 3)) # Output: 8.0
print(math.factorial(5)) # Output: 120

# Trigonometric functions (in radians)
print(math.sin(math.pi / 2)) # Output: 1.0
print(math.cos(0)) # Output: 1.0
print(math.tan(math.pi / 4)) # Output: 0.9999999999999999

# Logarithmic functions
print(math.log(10)) # Output: 2.302585092994046
print(math.log10(100)) # Output: 2.0
print(math.log2(8)) # Output: 3.0

# Rounding functions
print(math.ceil(4.2)) # Output: 5
print(math.floor(4.8)) # Output: 4
print(math.trunc(4.9)) # Output: 4
print(round(4.5)) # Output: 4 (rounding to nearest even)

# Special functions
print(math.isfinite(10)) # Output: True
print(math.isinf(float('inf'))) # Output: True
print(math.isnan(0.0 / 0.0)) # Output: True

# Hyperbolic functions
print(math.sinh(1)) # Output: 1.1752011936438014
print(math.cosh(1)) # Output: 1.5430806348152417

# Copysign and fmod
print(math.copysign(-3, 1)) # Output: -3.0
print(math.fmod(10, 3)) # Output: 1.0

# Gamma function
print(math.gamma(4)) # Output: 6.0 (same as factorial(3))


By: @DataScienceQ 🚀
Please open Telegram to view this post
VIEW IN TELEGRAM
5
attention mechanism | AI Coding Glossary

📖 A neural network operation that computes a weighted sum of value vectors based on the similarity between a query and a set of keys.

🏷️ #Python
transformer architecture | AI Coding Glossary

📖 A neural network design that models sequence dependencies using self-attention instead of recurrence or convolutions.

🏷️ #Python
In Python, the collections module offers specialized container datatypes that solve real-world coding challenges with elegance and efficiency. These tools are interview favorites for optimizing time complexity and writing clean, professional code! 💡
import collections  

# defaultdict - Eliminate key errors with auto-initialization
from collections import defaultdict
gradebook = defaultdict(int)
gradebook['Alice'] += 95
print(gradebook['Alice']) # Output: 95
print(gradebook['Bob']) # Output: 0

# defaultdict for grouping operations
anagrams = defaultdict(list)
words = ["eat", "tea", "tan"]
for w in words:
key = ''.join(sorted(w))
anagrams[key].append(w)
print(anagrams['aet']) # Output: ['eat', 'tea']

# Counter - Frequency analysis in one line
from collections import Counter
text = "abracadabra"
freq = Counter(text)
print(freq['a']) # Output: 5
print(freq.most_common(2)) # Output: [('a', 5), ('b', 2)]

# Counter arithmetic for problem-solving
inventory = Counter(apples=10, oranges=5)
sales = Counter(apples=3, oranges=2)
print(inventory - sales) # Output: Counter({'apples': 7, 'oranges': 3})

# namedtuple - Self-documenting data structures
from collections import namedtuple
Employee = namedtuple('Employee', 'name role salary')
dev = Employee('Alex', 'Developer', 95000)
print(dev.role) # Output: Developer
print(dev[2]) # Output: 95000

# deque - Optimal for BFS and sliding windows
from collections import deque
queue = deque([1, 2, 3])
queue.append(4)
queue.popleft()
print(queue) # Output: deque([2, 3, 4])
queue.rotate(1)
print(queue) # Output: deque([4, 2, 3])

# OrderedDict - Track insertion order (LRU cache essential)
from collections import OrderedDict
cache = OrderedDict()
cache['A'] = 1
cache['B'] = 2
cache.move_to_end('A')
cache.popitem(last=False)
print(list(cache.keys())) # Output: ['B', 'A']

# ChainMap - Manage layered configurations
from collections import ChainMap
defaults = {'theme': 'dark', 'font': 'Arial'}
user_prefs = {'theme': 'light'}
settings = ChainMap(user_prefs, defaults)
print(settings['font']) # Output: Arial

# Practical Interview Tip: Anagram detection
print(Counter("secure") == Counter("rescue")) # Output: True

# Pro Tip: Sliding window maximum
def max_sliding_window(nums, k):
dq, result = deque(), []
for i, n in enumerate(nums):
while dq and nums[dq[-1]] < n:
dq.pop()
dq.append(i)
if dq[0] == i - k:
dq.popleft()
if i >= k - 1:
result.append(nums[dq[0]])
return result
print(max_sliding_window([1,3,-1,-3,5,3,6,7], 3)) # Output: [3,3,5,5,6,7]

# Expert Move: Custom LRU Cache implementation
class LRUCache:
def __init__(self, capacity):
self.cache = OrderedDict()
self.capacity = capacity
def get(self, key):
if key not in self.cache:
return -1
self.cache.move_to_end(key)
return self.cache[key]
def put(self, key, value):
if key in self.cache:
del self.cache[key]
self.cache[key] = value
if len(self.cache) > self.capacity:
self.cache.popitem(last=False)
cache = LRUCache(2)
cache.put(1, 10)
cache.put(2, 20)
cache.get(1)
cache.put(3, 30)
print(list(cache.cache.keys())) # Output: [2, 1, 3] → Wait! Correction: Should be [1, 3] (capacity=2 triggers eviction of '2')

# Bonus: Multiset operations with Counter
primes = Counter([2, 3, 5, 7])
odds = Counter([1, 3, 5, 7, 9])
print(primes | odds) # Output: Counter({3:1, 5:1, 7:1, 2:1, 9:1, 1:1})


By: @DatascienceN🌟

#Python #CodingInterview #DataStructures #collections #Programming #TechJobs #Algorithm #LeetCode #DeveloperTips #CareerGrowth
1
Quiz: Using Python Optional Arguments When Defining Functions

📖 Practice Python function parameters, default values, *args, **kwargs, and safe optional arguments with quick questions and short code tasks.

🏷️ #basics #python
In Python, ORM (Object-Relational Mapping) bridges the gap between object-oriented code and relational databases—mastering it is non-negotiable for backend engineering interviews and scalable application development! 🗄

# SQLAlchemy Setup - The industry standard ORM
from sqlalchemy import create_engine, Column, Integer, String, ForeignKey
from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy.orm import sessionmaker, relationship

# Configure database connection
engine = create_engine('sqlite:///company.db', echo=True)
Base = declarative_base()
Session = sessionmaker(bind=engine)
session = Session()


# Model Definition - Translate tables to Python classes
class Department(Base):
__tablename__ = 'departments'
id = Column(Integer, primary_key=True)
name = Column(String(50), nullable=False)
# One-to-Many relationship
employees = relationship("Employee", back_populates="department")

class Employee(Base):
__tablename__ = 'employees'
id = Column(Integer, primary_key=True)
name = Column(String(100))
email = Column(String(100), unique=True)
# Foreign Key
department_id = Column(Integer, ForeignKey('departments.id'))
# Relationship back-reference
department = relationship("Department", back_populates="employees")

# Create tables in database
Base.metadata.create_all(engine)


# CRUD Operations - Core interview competency
# CREATE
hr = Department(name="HR")
session.add(hr)
session.commit()

alice = Employee(name="Alice", email="alice@company.com", department=hr)
session.add(alice)
session.flush() # Assigns ID without committing
print(alice.id) # Output: 1

# READ
employee = session.query(Employee).filter_by(name="Alice").first()
print(employee.department.name) # Output: "HR"

# UPDATE
employee.email = "alice.smith@company.com"
session.commit()

# DELETE
session.delete(employee)
session.commit()


# Advanced Querying - Solve complex data challenges
from sqlalchemy import or_, and_, func

# Filter combinations
active_employees = session.query(Employee).filter(
Employee.name.like('A%'),
or_(Employee.email.endswith('@company.com'), Employee.id < 10)
)

# Aggregation
dept_count = session.query(
Department.name,
func.count(Employee.id)
).join(Employee).group_by(Department.id).all()
print(dept_count) # Output: [('HR', 1), ('Engineering', 5)]

# Pagination (critical for web apps)
page_2 = session.query(Employee).limit(10).offset(10).all()


# Relationship Handling - Avoid N+1 query disasters
# LAZY LOADING (default - causes N+1 problem)
for dept in session.query(Department):
print(dept.employees) # Triggers separate query per department

# EAGER LOADING (interview gold)
from sqlalchemy.orm import joinedload

depts = session.query(Department).options(
joinedload(Department.employees)
).all()
print(len(session.identity_map)) # Output: 6 (1 query for all data)


# Many-to-Many Relationships - Real-world schema design
# Association table
employee_projects = Table('employee_projects', Base.metadata,
Column('employee_id', Integer, ForeignKey('employees.id')),
Column('project_id', Integer, ForeignKey('projects.id'))
)

class Project(Base):
__tablename__ = 'projects'
id = Column(Integer, primary_key=True)
name = Column(String(100))
# Many-to-Many
members = relationship("Employee", secondary=employee_projects)

# Add employee to project
project = Project(name="AI Initiative")
project.members.append(alice)
session.commit()


# Transactions - Atomic operations for data integrity
from sqlalchemy.exc import SQLAlchemyError

try:
with session.begin():
alice = Employee(name="Alice", email="alice@company.com")
session.add(alice)
# Automatic rollback if error occurs
raise ValueError("Simulated error")
except ValueError:
print(session.query(Employee).count()) # Output: 0 (no partial data)
1
# Hybrid Properties - Business logic in models
from sqlalchemy.ext.hybrid import hybrid_property

class Employee(Base):
# ... existing columns ...

@hybrid_property
def name_email(self):
"""Combine name and email for display"""
return f"{self.name} <{self.email}>"

emp = session.query(Employee).first()
print(emp.name_email) # Output: "Alice <alice@company.com>"

# Can also be used in queries!
results = session.query(Employee).filter(
Employee.name_email.ilike('%alice%')
).all()


# Event Listeners - Automate business rules
from sqlalchemy import event

@event.listens_for(Employee, 'before_insert')
def validate_email(mapper, connection, target):
if '@' not in target.email:
raise ValueError("Invalid email format")

# Triggered automatically during session.add()
try:
session.add(Employee(name="Hacker", email="bademail"))
except ValueError as e:
print(str(e)) # Output: "Invalid email format"


# Raw SQL Execution - When ORM isn't enough
from sqlalchemy import text

# Parameterized query
result = session.execute(
text("SELECT * FROM employees WHERE name = :name"),
{"name": "Alice"}
)
for row in result:
print(row.id, row.email)

# Bulk insert (10x faster for large datasets)
session.execute(
Employee.__table__.insert(),
[{"name": f"User {i}", "email": f"user{i}@company.com"} for i in range(1000)]
)
session.commit()


# Connection Pooling - Production performance essential
engine = create_engine(
'postgresql://user:pass@localhost/db',
pool_size=20,
max_overflow=0,
pool_recycle=3600,
pool_pre_ping=True
)
# Prevents "database is busy" errors in high-traffic apps


# Migrations with Alembic - Schema evolution made safe
# (Run in terminal)
# $ alembic init migrations
# $ alembic revision --autogenerate -m "add employees table"
# $ alembic upgrade head

# Sample migration noscript (auto-generated)
"""add employees table
Revision ID: abc123
Revises:
Create Date: 2023-08-15 10:00:00
"""
from alembic import op
import sqlalchemy as sa

def upgrade():
op.create_table(
'employees',
sa.Column('id', sa.Integer(), primary_key=True),
sa.Column('name', sa.String(100), nullable=False),
)

def downgrade():
op.drop_table('employees')


# Advanced Pattern: Repository Pattern (interview favorite)
class EmployeeRepository:
def __init__(self, session):
self.session = session

def find_by_department(self, dept_name):
return self.session.query(Employee).join(Department).filter(
Department.name == dept_name
).all()

def create(self, **kwargs):
emp = Employee(**kwargs)
self.session.add(emp)
self.session.flush()
return emp

# Usage in application
repo = EmployeeRepository(session)
hr_employees = repo.find_by_department("HR")


# Performance Optimization - Critical for scaling
# 1. Batch operations
session.bulk_save_objects([Employee(name=f"User {i}") for i in range(1000)])
session.commit()

# 2. Column slicing
names = session.query(Employee.name).all()

# 3. Connection recycling
engine.dispose() # Force refresh stale connections

# 4. Index optimization
Index('email_index', Employee.email).create(engine)


# Common Interview Problem: Implement soft delete
class SoftDeleteMixin:
is_deleted = Column(Boolean, default=False)

@classmethod
def get_active(cls, session):
return session.query(cls).filter_by(is_deleted=False)

class Employee(Base, SoftDeleteMixin):
__tablename__ = 'employees'
id = Column(Integer, primary_key=True)
# ... other columns ...

# Override base query
session.query(Employee).get_active().all()
# Django ORM Comparison - Know both frameworks
# Django model (contrast with SQLAlchemy)
from django.db import models

class Department(models.Model):
name = models.CharField(max_length=50)

class Employee(models.Model):
name = models.CharField(max_length=100)
email = models.EmailField(unique=True)
department = models.ForeignKey(Department, on_delete=models.CASCADE)

# Django query (similar but different syntax)
Employee.objects.filter(department__name="HR").select_related('department')


# Async ORM - Modern Python requirement
# Requires SQLAlchemy 1.4+ and asyncpg
from sqlalchemy.ext.asyncio import create_async_engine, AsyncSession

async_engine = create_async_engine(
"postgresql+asyncpg://user:pass@localhost/db",
echo=True,
)
async_session = AsyncSession(async_engine)

async with async_session.begin():
result = await async_session.execute(
select(Employee).where(Employee.name == "Alice")
)
employee = result.scalar_one()


# Testing Strategies - Interview differentiator
from unittest import mock

# Mock database for unit tests
with mock.patch('sqlalchemy.create_engine') as mock_engine:
mock_conn = mock.MagicMock()
mock_engine.return_value.connect.return_value = mock_conn

# Test your ORM-dependent code
create_employee("Test", "test@company.com")
mock_conn.execute.assert_called()


# Production Monitoring - Track slow queries
from sqlalchemy import event

@event.listens_for(engine, "before_cursor_execute")
def before_cursor(conn, cursor, statement, params, context, executemany):
conn.info.setdefault('query_start_time', []).append(time.time())

@event.listens_for(engine, "after_cursor_execute")
def after_cursor(conn, cursor, statement, params, context, executemany):
total = time.time() - conn.info['query_start_time'].pop(-1)
if total > 0.1: # Log slow queries
print(f"SLOW QUERY ({total:.2f}s): {statement}")


# Interview Power Move: Implement caching layer
from functools import lru_cache

class CachedEmployeeRepository(EmployeeRepository):
@lru_cache(maxsize=100)
def get_by_id(self, employee_id):
return super().get_by_id(employee_id)

def invalidate_cache(self, employee_id):
self.get_by_id.cache_clear()

# Reduces database hits by 70% in read-heavy applications


# Pro Tip: Schema versioning in CI/CD pipelines
# Sample .gitlab-ci.yml snippet
deploy_db:
stage: deploy
noscript:
- alembic upgrade head
- pytest tests/db_tests.py # Verify schema compatibility
only:
- main


# Real-World Case Study: E-commerce inventory system
class Product(Base):
__tablename__ = 'products'
id = Column(Integer, primary_key=True)
sku = Column(String(20), unique=True)
stock = Column(Integer, default=0)

# Atomic stock update (prevents race conditions)
def decrement_stock(self, quantity, session):
result = session.query(Product).filter(
Product.id == self.id,
Product.stock >= quantity
).update({"stock": Product.stock - quantity})
if not result:
raise ValueError("Insufficient stock")

# Usage during checkout
product.decrement_stock(2, session)


By: @DATASCIENCE4 🔒

#Python #ORM #SQLAlchemy #Django #Database #BackendDevelopment #CodingInterview #WebDevelopment #TechJobs #SystemDesign #SoftwareEngineering #DataEngineering #CareerGrowth #APIs #Microservices #DatabaseDesign #TechTips #DeveloperTools #Programming #CareerTips
3
In Python, merging PDFs is a critical skill for document automation—essential for backend roles, data pipelines, and interview scenarios where file processing efficiency matters! 📑

# Basic Merging - The absolute foundation
from PyPDF2 import PdfMerger

merger = PdfMerger()
pdf_files = ["report1.pdf", "report2.pdf", "summary.pdf"]

for file in pdf_files:
merger.append(file)

merger.write("combined_report.pdf")
merger.close()


# Merge Specific Pages - Precision control
merger = PdfMerger()
merger.append("full_document.pdf", pages=(0, 3)) # First 3 pages
merger.append("appendix.pdf", pages=(2, 5)) # Pages 3-5 (0-indexed)
merger.write("custom_merge.pdf")


# Insert Pages at Position - Structured document assembly
merger = PdfMerger()
merger.append("cover.pdf")
merger.merge(1, "content.pdf") # Insert at index 1
merger.merge(2, "charts.pdf", pages=(4, 6)) # Insert specific pages
merger.write("structured_report.pdf")


# Handling Encrypted PDFs - Production reality
merger = PdfMerger()
merger.append("secure_doc.pdf", password="secret123")
merger.write("decrypted_merge.pdf")


# Bookmarks for Navigation - Professional touch
merger = PdfMerger()
merger.append("chapter1.pdf", outline_item="Introduction")
merger.append("chapter2.pdf", outline_item="Methodology")
merger.append("chapter3.pdf", outline_item="Results")
merger.write("bookmarked_report.pdf")


# Memory Optimization - Critical for large files
from PyPDF2 import PdfReader

merger = PdfMerger()
for file in ["large1.pdf", "large2.pdf"]:
reader = PdfReader(file)
merger.append(reader)
del reader # Immediate memory cleanup
merger.write("optimized_merge.pdf")


# Batch Processing - Real-world automation
import os
from PyPDF2 import PdfMerger

def merge_pdfs_in_folder(folder, output="combined.pdf"):
merger = PdfMerger()
for file in sorted(os.listdir(folder)):
if file.endswith(".pdf"):
merger.append(f"{folder}/{file}")
merger.write(output)
merger.close()

merge_pdfs_in_folder("quarterly_reports", "Q3_results.pdf")


# Error Handling - Production-grade code
from PyPDF2 import PdfMerger, PdfReadError

def safe_merge(inputs, output):
merger = PdfMerger()
try:
for file in inputs:
try:
merger.append(file)
except PdfReadError:
print(f"Skipping corrupted: {file}")
finally:
merger.write(output)
merger.close()

safe_merge(["valid.pdf", "corrupted.pdf", "valid2.pdf"], "partial_merge.pdf")


# Metadata Preservation - Legal/compliance requirement
merger = PdfMerger()
merger.append("source.pdf")

# Copy metadata from first document
meta = merger.metadata
merger.add_metadata({
**meta,
"/Producer": "Python Automation v3.0",
"/CustomField": "CONFIDENTIAL"
})
merger.write("metadata_enhanced.pdf")


# Encryption of Output - Security interview question
merger = PdfMerger()
merger.append("sensitive_data.pdf")

merger.encrypt(
user_pwd="view_only",
owner_pwd="full_access",
use_128bit=True
)
merger.write("encrypted_report.pdf")


# Page Rotation - Fix orientation issues
merger = PdfMerger()
merger.append("landscape_charts.pdf", pages=(0, 2), import_outline=False)
merger.merge(0, "portrait_text.pdf") # Rotate during merge
merger.write("standardized_orientation.pdf")


# Watermarking During Merge - Branding automation
from PyPDF2 import PdfWriter, PdfReader

def add_watermark(input_pdf, watermark_pdf, output_pdf):
watermark = PdfReader(watermark_pdf).pages[0]
output = PdfWriter()

with open(input_pdf, "rb") as f:
reader = PdfReader(f)
for page in reader.pages:
page.merge_page(watermark)
output.add_page(page)

with open(output_pdf, "wb") as f:
output.write(f)

# Apply during merge process
add_watermark("report.pdf", "watermark.pdf", "branded.pdf")
# Async Merging - Modern Python requirement
import asyncio
from PyPDF2 import PdfMerger

async def async_merge(files, output):
merger = PdfMerger()
for file in files:
await asyncio.to_thread(merger.append, file)
merger.write(output)

# Usage in async application
asyncio.run(async_merge(["doc1.pdf", "doc2.pdf"], "async_merge.pdf"))


# CLI Tool Implementation - Interview favorite
import sys
from PyPDF2 import PdfMerger

def main():
if len(sys.argv) < 3:
print("Usage: pdfmerge output.pdf input1.pdf input2.pdf ...")
sys.exit(1)

merger = PdfMerger()
for pdf in sys.argv[2:]:
merger.append(pdf)
merger.write(sys.argv[1])

if __name__ == "__main__":
main()
# Run via: python pdfmerge.py final.pdf *.pdf


# Performance Benchmarking - Optimization proof
import time
from PyPDF2 import PdfMerger

start = time.time()
merger = PdfMerger()
for _ in range(50):
merger.append("sample.pdf")
merger.write("50x_merge.pdf")
print(f"Time: {time.time()-start:.2f}s") # Baseline for optimization


# Memory-Mapped Processing - Handle 1GB+ files
import mmap
from PyPDF2 import PdfMerger

def memmap_merge(large_files, output):
merger = PdfMerger()
for file in large_files:
with open(file, "rb") as f:
mmapped = mmap.mmap(f.fileno(), 0, access=mmap.ACCESS_READ)
merger.append(mmapped)
merger.write(output)

memmap_merge(["huge1.pdf", "huge2.pdf"], "giant_merge.pdf")


# PDF/A Compliance - Archival standards
merger = PdfMerger()
merger.append("archive_source.pdf")

# Convert to PDF/A-1b standard
merger.add_metadata({
"/GTS_PDFXVersion": "PDF/A-1b",
"/GTS_PDFXConformance": "B"
})
merger.write("compliant_archive.pdf")


# Split and Re-Merge Workflow - Advanced manipulation
from PyPDF2 import PdfReader, PdfWriter

def split_and_merge(source, chunk_size=10):
reader = PdfReader(source)
chunks = [reader.pages[i:i+chunk_size] for i in range(0, len(reader.pages), chunk_size)]

for i, chunk in enumerate(chunks):
writer = PdfWriter()
for page in chunk:
writer.add_page(page)
with open(f"chunk_{i}.pdf", "wb") as f:
writer.write(f)

# Now merge chunks with new order
merger = PdfMerger()
for i in reversed(range(len(chunks))):
merger.append(f"chunk_{i}.pdf")
merger.write("reversed_document.pdf")

split_and_merge("master.pdf")


# Cloud Integration - Production pipeline example
from google.cloud import storage
from PyPDF2 import PdfMerger

def merge_from_gcs(bucket_name, prefix, output_path):
storage_client = storage.Client()
bucket = storage_client.bucket(bucket_name)
blobs = bucket.list_blobs(prefix=prefix)

merger = PdfMerger()
for blob in blobs:
if blob.name.endswith(".pdf"):
temp_path = f"/tmp/{blob.name.split('/')[-1]}"
blob.download_to_filename(temp_path)
merger.append(temp_path)

merger.write(output_path)
merger.close()

merge_from_gcs("client-reports", "Q3/", "/tmp/merged.pdf")


# Dockerized Microservice - Deployment pattern
# Dockerfile snippet:
# FROM python:3.10-slim
# RUN pip install pypdf
# COPY merge_service.py /app/
# CMD ["python", "/app/merge_service.py"]

# merge_service.py
from http.server import HTTPServer, BaseHTTPRequestHandler
from PyPDF2 import PdfMerger
import json

class MergeHandler(BaseHTTPRequestHandler):
def do_POST(self):
content_len = int(self.headers.get('Content-Length'))
body = json.loads(self.rfile.read(content_len))

merger = PdfMerger()
for url in body['inputs']:
# Download from URLs (simplified)
merger.append(download_pdf(url))
merger.write("/output/merged.pdf")

self.send_response(200)
self.end_headers()

HTTPServer(('', 8000), MergeHandler).serve_forever()
2
# Interview Power Move: Parallel Merging
from concurrent.futures import ThreadPoolExecutor
from PyPDF2 import PdfMerger

def parallel_merge(pdf_list, output, max_workers=4):
chunks = [pdf_list[i::max_workers] for i in range(max_workers)]
temp_files = []

def merge_chunk(chunk, idx):
temp = f"temp_{idx}.pdf"
merger = PdfMerger()
for pdf in chunk:
merger.append(pdf)
merger.write(temp)
return temp

with ThreadPoolExecutor() as executor:
temp_files = list(executor.map(merge_chunk, chunks, range(max_workers)))

# Final merge of chunks
final_merger = PdfMerger()
for temp in temp_files:
final_merger.append(temp)
final_merger.write(output)

parallel_merge(["doc1.pdf", "doc2.pdf", ...], "parallel_merge.pdf")


# Pro Tip: Validate PDFs before merging
from PyPDF2 import PdfReader

def is_valid_pdf(path):
try:
with open(path, "rb") as f:
reader = PdfReader(f)
return len(reader.pages) > 0
except:
return False

valid_pdfs = [f for f in pdf_files if is_valid_pdf(f)]
merger.append(valid_pdfs) # Only merge valid files


# Real-World Case Study: Invoice Processing Pipeline
import glob
from PyPDF2 import PdfMerger

def process_monthly_invoices():
# 1. Download invoices from SFTP
download_invoices("sftp://vendor.com/invoices/*.pdf")

# 2. Validate and sort
invoices = sorted(
[f for f in glob.glob("invoices/*.pdf") if is_valid_pdf(f)],
key=lambda x: extract_invoice_date(x)
)

# 3. Merge with cover page
merger = PdfMerger()
merger.append("cover_template.pdf")
for inv in invoices:
merger.append(inv, outline_item=get_client_name(inv))

# 4. Add metadata and encrypt
merger.add_metadata({"/InvoiceCount": str(len(invoices))})
merger.encrypt(owner_pwd="finance_team_2023")
merger.write(f"Q3_Invoices_{datetime.now().strftime('%Y%m')}.pdf")

# 5. Upload to secure storage
upload_to_s3("secure-bucket/processed/", "Q3_Invoices.pdf")

process_monthly_invoices()


By: https://news.1rj.ru/str/DataScience4

#Python #PDFProcessing #DocumentAutomation #PyPDF2 #CodingInterview #BackendDevelopment #FileHandling #DataEngineering #TechJobs #Programming #SystemDesign #DeveloperTips #CareerGrowth #CloudComputing #Docker #Microservices #Productivity #TechTips #Python3 #SoftwareEngineering
🐍 10 Free Courses to Learn Python

👩🏻‍💻 These top-notch resources can take your #Python skills several levels higher. The best part is that they are all completely free!


1⃣ Comprehensive Python Course for Beginners

📃A complete video course that teaches Python from basic to advanced with clear and organized explanations.


2⃣ Intensive Python Training

📃A 4-hour intensive course, fast, focused, and to the point.


3⃣ Comprehensive Python Course

📃Training with lots of real examples and exercises.


4⃣ Introduction to Python

📃Learn the fundamentals with a focus on logic, clean coding, and solving real problems.


5⃣ Automate Daily Tasks with Python

📃Learn how to automate your daily project tasks with Python.


6⃣ Learn Python with Interactive Practice

📃Interactive lessons with real data and practical exercises.


7⃣ Scientific Computing with Python

📃Project-based, for those who want to work with data and scientific analysis.


8⃣ Step-by-Step Python Training

📃Step-by-step and short training for beginners with interactive exercises.


9⃣ Google's Python Class

📃A course by Google engineers with real exercises and professional tips.


1⃣ Introduction to Programming with Python

📃University-level content for conceptual learning and problem-solving with exercises and projects.

🌐 #DataScience #DataScience

https://news.1rj.ru/str/CodeProgrammer
Please open Telegram to view this post
VIEW IN TELEGRAM
2