Machine Learning
Photo
### 4. TensorRT Optimization
---
## 🔹 PyTorch Ecosystem
### 1. TorchVision
### 2. TorchText
### 3. TorchAudio
---
## 🔹 Best Practices Summary
1. For GNNs: Normalize node features and use appropriate pooling
2. For Neural ODEs: Monitor ODE solver statistics during training
3. For Interpretability: Combine multiple explanation methods
4. For Deployment: Profile models before deployment (latency/throughput)
5. For Production: Implement monitoring for model drift
---
### 📌 Final Thoughts
Congratulations on completing this comprehensive PyTorch journey! You've learned:
✔️ Core PyTorch fundamentals
✔️ Deep neural networks & CNNs
✔️ Sequence modeling with RNNs/Transformers
✔️ Generative models & reinforcement learning
✔️ Advanced architectures & deployment
#PyTorch #DeepLearning #MachineLearning 🎓🚀
Final Practice Exercises:
1. Implement a GNN for molecular property prediction
2. Train a Neural ODE on irregularly-sampled time series
3. Deploy a model with TorchServe and create a monitoring dashboard
4. Compare SHAP and Integrated Gradients for your CNN model
5. Optimize a transformer model with TensorRT
# Convert ONNX to TensorRT
trt_logger = trt.Logger(trt.Logger.WARNING)
with trt.Builder(trt_logger) as builder:
with builder.create_network(1) as network:
with trt.OnnxParser(network, trt_logger) as parser:
with open("model.onnx", "rb") as model:
parser.parse(model.read())
engine = builder.build_cuda_engine(network)
---
## 🔹 PyTorch Ecosystem
### 1. TorchVision
from torchvision.models import efficientnet_b0
from torchvision.ops import nms, roi_align
# Pretrained models
model = efficientnet_b0(pretrained=True)
# Computer vision ops
boxes = torch.tensor([[10, 20, 50, 60], [15, 25, 40, 70]])
scores = torch.tensor([0.9, 0.8])
keep = nms(boxes, scores, iou_threshold=0.5)
### 2. TorchText
from torchtext.data import Field, BucketIterator
from torchtext.datasets import IMDB
# Define fields
TEXT = Field(tokenize='spacy', lower=True, include_lengths=True)
LABEL = Field(sequential=False, dtype=torch.float)
# Load dataset
train_data, test_data = IMDB.splits(TEXT, LABEL)
# Build vocabulary
TEXT.build_vocab(train_data, max_size=25000)
LABEL.build_vocab(train_data)
### 3. TorchAudio
import torchaudio
import torchaudio.transforms as T
# Load audio
waveform, sample_rate = torchaudio.load('audio.wav')
# Spectrogram
spectrogram = T.Spectrogram()(waveform)
# MFCC
mfcc = T.MFCC(sample_rate=sample_rate)(waveform)
# Audio augmentation
augmented = T.TimeStretch()(waveform, n_freq=0.5)
---
## 🔹 Best Practices Summary
1. For GNNs: Normalize node features and use appropriate pooling
2. For Neural ODEs: Monitor ODE solver statistics during training
3. For Interpretability: Combine multiple explanation methods
4. For Deployment: Profile models before deployment (latency/throughput)
5. For Production: Implement monitoring for model drift
---
### 📌 Final Thoughts
Congratulations on completing this comprehensive PyTorch journey! You've learned:
✔️ Core PyTorch fundamentals
✔️ Deep neural networks & CNNs
✔️ Sequence modeling with RNNs/Transformers
✔️ Generative models & reinforcement learning
✔️ Advanced architectures & deployment
#PyTorch #DeepLearning #MachineLearning 🎓🚀
Final Practice Exercises:
1. Implement a GNN for molecular property prediction
2. Train a Neural ODE on irregularly-sampled time series
3. Deploy a model with TorchServe and create a monitoring dashboard
4. Compare SHAP and Integrated Gradients for your CNN model
5. Optimize a transformer model with TensorRT
# Molecular GNN starter
class MolecularGNN(nn.Module):
def __init__(self, node_features, edge_features, hidden_dim):
super().__init__()
self.node_encoder = nn.Linear(node_features, hidden_dim)
self.edge_encoder = nn.Linear(edge_features, hidden_dim)
self.conv = tg.nn.MessagePassing(aggr='mean')
def forward(self, data):
x, edge_index, edge_attr = data.x, data.edge_index, data.edge_attr
x = self.node_encoder(x)
edge_attr = self.edge_encoder(edge_attr)
return self.conv(x, edge_index, edge_attr)
❤5
MATLAB Computer Vision Mastery - Part 4/4 (3D Vision, Motion Analysis & Final Project)
Table of Contents:
1. 3D Computer Vision Fundamentals
2. Motion Analysis & Tracking
3. Deep Learning for Computer Vision
4. Comprehensive Final Project
5. Performance Optimization & Deployment
6. Next Steps & Advanced Resources
Let's start: https://codeprogrammer.notion.site/MATLAB-Computer-Vision-Mastery-Part-4-4-3D-Vision-Motion-Analysis-Final-Project-23ccd3a4dba980acae7bdbbf974832fc
Table of Contents:
1. 3D Computer Vision Fundamentals
2. Motion Analysis & Tracking
3. Deep Learning for Computer Vision
4. Comprehensive Final Project
5. Performance Optimization & Deployment
6. Next Steps & Advanced Resources
Let's start: https://codeprogrammer.notion.site/MATLAB-Computer-Vision-Mastery-Part-4-4-3D-Vision-Motion-Analysis-Final-Project-23ccd3a4dba980acae7bdbbf974832fc
✉️ Our Telegram channels: https://news.1rj.ru/str/addlist/0f6vfFbEMdAwODBk📱 Our WhatsApp channel: https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A
Please open Telegram to view this post
VIEW IN TELEGRAM
❤3🔥2
🌟 Vision Transformer (ViT) Tutorial – Part 1: From CNNs to Transformers – The Revolution in Computer Vision
Let's start: https://hackmd.io/@husseinsheikho/vit-1
Let's start: https://hackmd.io/@husseinsheikho/vit-1
#VisionTransformer #ViT #DeepLearning #ComputerVision #Transformers #AI #MachineLearning #NeuralNetworks #ImageClassification #AttentionIsAllYouNeed
✉️ Our Telegram channels: https://news.1rj.ru/str/addlist/0f6vfFbEMdAwODBk
📱 Our WhatsApp channel: https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A
❤3👍1
🌟 Vision Transformer (ViT) Tutorial – Part 2: Implementing ViT from Scratch in PyTorch
Let's start: https://hackmd.io/@husseinsheikho/vit-2
Let's start: https://hackmd.io/@husseinsheikho/vit-2
#VisionTransformer #ViTFromScratch #PyTorch #DeepLearning #ComputerVision #Transformers #AI #MachineLearning #CodingTutorial #AttentionIsAllYouNeed
✉️ Our Telegram channels: https://news.1rj.ru/str/addlist/0f6vfFbEMdAwODBk
📱 Our WhatsApp channel: https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A
❤2
🌟 Vision Transformer (ViT) Tutorial – Part 3: Pretraining, Transfer Learning & Real-World Applications
Let's start: https://hackmd.io/@husseinsheikho/vit-3
✉️ Our Telegram channels: https://news.1rj.ru/str/addlist/0f6vfFbEMdAwODBk
Let's start: https://hackmd.io/@husseinsheikho/vit-3
#VisionTransformer #TransferLearning #HuggingFace #ImageNet #FineTuning #AI #DeepLearning #ComputerVision #Transformers #ModelZoo
✉️ Our Telegram channels: https://news.1rj.ru/str/addlist/0f6vfFbEMdAwODBk
❤3
🌟 Vision Transformer (ViT) Tutorial – Part 4: Beyond Classification – DETR, Segmentation & Video Transformers
Let's start learn: https://hackmd.io/@husseinsheikho/vit-4
#VisionTransformer #DETR #Segmenter #VideoTransformer #MAE #SelfSupervised #Multimodal #AI #DeepLearning #ComputerVision
Let's start learn: https://hackmd.io/@husseinsheikho/vit-4
#VisionTransformer #DETR #Segmenter #VideoTransformer #MAE #SelfSupervised #Multimodal #AI #DeepLearning #ComputerVision
✉️ Our Telegram channels: https://news.1rj.ru/str/addlist/0f6vfFbEMdAwODBk📱 Our WhatsApp channel: https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A
Please open Telegram to view this post
VIEW IN TELEGRAM
❤2
🌟 Vision Transformer (ViT) Tutorial – Part 5: Efficient Vision Transformers – MobileViT, TinyViT & Edge Deployment
Read lesson: https://hackmd.io/@husseinsheikho/vit-5
#MobileViT #TinyViT #EfficientViT #EdgeAI #ModelOptimization #ONNX #TensorRT #TorchServe #DeepLearning #ComputerVision #Transformers
Read lesson: https://hackmd.io/@husseinsheikho/vit-5
#MobileViT #TinyViT #EfficientViT #EdgeAI #ModelOptimization #ONNX #TensorRT #TorchServe #DeepLearning #ComputerVision #Transformers
✉️ Our Telegram channels: https://news.1rj.ru/str/addlist/0f6vfFbEMdAwODBk📱 Our WhatsApp channel: https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A
Please open Telegram to view this post
VIEW IN TELEGRAM
❤2
🌟 Vision Transformer (ViT) Tutorial – Part 6: Vision Transformers in Production – MLOps, Monitoring & CI/CD
Learn more: https://hackmd.io/@husseinsheikho/vit-6
#MLOps #ModelMonitoring #CIforML #MLflow #WandB #Kubeflow #ProductionAI #DeepLearning #ComputerVision #Transformers #AIOps
Learn more: https://hackmd.io/@husseinsheikho/vit-6
#MLOps #ModelMonitoring #CIforML #MLflow #WandB #Kubeflow #ProductionAI #DeepLearning #ComputerVision #Transformers #AIOps
✉️ Our Telegram channels: https://news.1rj.ru/str/addlist/0f6vfFbEMdAwODBk📱 Our WhatsApp channel: https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A
Please open Telegram to view this post
VIEW IN TELEGRAM
❤1
🌟 Vision Transformer (ViT) Tutorial – Part 7: The Future of Vision Transformers – Multimodal, 3D, and Beyond
Learn: https://hackmd.io/@husseinsheikho/vit-7
#FutureOfViT #MultimodalAI #3DViT #TimeSformer #PaLME #MedicalAI #EmbodiedAI #RetNet #Mamba #NextGenAI #DeepLearning #ComputerVision #Transformers
Learn: https://hackmd.io/@husseinsheikho/vit-7
#FutureOfViT #MultimodalAI #3DViT #TimeSformer #PaLME #MedicalAI #EmbodiedAI #RetNet #Mamba #NextGenAI #DeepLearning #ComputerVision #Transformers
✉️ Our Telegram channels: https://news.1rj.ru/str/addlist/0f6vfFbEMdAwODBk📱 Our WhatsApp channel: https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A
Please open Telegram to view this post
VIEW IN TELEGRAM
❤2
🔥 Master Vision Transformers with 65+ MCQs! 🔥
Are you preparing for AI interviews or want to test your knowledge in Vision Transformers (ViT)?
🧠 Dive into 65+ curated Multiple Choice Questions covering the fundamentals, architecture, training, and applications of ViT — all with answers!
🌐 Explore Now: https://hackmd.io/@husseinsheikho/vit-mcq
🔹 Table of Contents
Basic Concepts (Q1–Q15)
Architecture & Components (Q16–Q30)
Attention & Transformers (Q31–Q45)
Training & Optimization (Q46–Q55)
Advanced & Real-World Applications (Q56–Q65)
Answer Key & Explanations
Are you preparing for AI interviews or want to test your knowledge in Vision Transformers (ViT)?
🧠 Dive into 65+ curated Multiple Choice Questions covering the fundamentals, architecture, training, and applications of ViT — all with answers!
🌐 Explore Now: https://hackmd.io/@husseinsheikho/vit-mcq
🔹 Table of Contents
Basic Concepts (Q1–Q15)
Architecture & Components (Q16–Q30)
Attention & Transformers (Q31–Q45)
Training & Optimization (Q46–Q55)
Advanced & Real-World Applications (Q56–Q65)
Answer Key & Explanations
#VisionTransformer #ViT #DeepLearning #ComputerVision #Transformers #AI #MachineLearning #MCQ #InterviewPrep
✉️ Our Telegram channels: https://news.1rj.ru/str/addlist/0f6vfFbEMdAwODBk
📱 Our WhatsApp channel: https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A
❤6
Forwarded from Machine Learning with Python
5 minutes of work - 127,000$ profit!
Opened access to the Jay Welcome Club where the AI bot does all the work itself💻
Usually you pay crazy money to get into this club, but today access is free for everyone!
23,432% on deposit earned by club members in the last 6 months📈
Just follow Jay's trades and earn! 👇
https://news.1rj.ru/str/+mONXtEgVxtU5NmZl
Opened access to the Jay Welcome Club where the AI bot does all the work itself💻
Usually you pay crazy money to get into this club, but today access is free for everyone!
23,432% on deposit earned by club members in the last 6 months📈
Just follow Jay's trades and earn! 👇
https://news.1rj.ru/str/+mONXtEgVxtU5NmZl
❤1
Forwarded from Machine Learning with Python
Join our WhatsApp channel
There are dedicated resources only for WhatsApp users
https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A
There are dedicated resources only for WhatsApp users
https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A
WhatsApp.com
Research Papers
Channel • 3.5K followers • 📚 Professional Academic Writing & Simulation Services
Forwarded from Machine Learning with Python
🚀 Become an Agentic AI Builder — Free 12‑Week Certification by Ready Tensor
Ready Tensor’s Agentic AI Developer Certification is a free, project first 12‑week program designed to help you build and deploy real-world agentic AI systems. You'll complete three portfolio-ready projects using tools like LangChain, LangGraph, and vector databases, while deploying production-ready agents with FastAPI or Streamlit.
The course focuses on developing autonomous AI agents that can plan, reason, use memory, and act safely in complex environments. Certification is earned not by watching lectures, but by building — each project is reviewed against rigorous standards.
You can start anytime, and new cohorts begin monthly. Ideal for developers and engineers ready to go beyond chat prompts and start building true agentic systems.
👉 Apply now: https://www.readytensor.ai/agentic-ai-cert/
Ready Tensor’s Agentic AI Developer Certification is a free, project first 12‑week program designed to help you build and deploy real-world agentic AI systems. You'll complete three portfolio-ready projects using tools like LangChain, LangGraph, and vector databases, while deploying production-ready agents with FastAPI or Streamlit.
The course focuses on developing autonomous AI agents that can plan, reason, use memory, and act safely in complex environments. Certification is earned not by watching lectures, but by building — each project is reviewed against rigorous standards.
You can start anytime, and new cohorts begin monthly. Ideal for developers and engineers ready to go beyond chat prompts and start building true agentic systems.
👉 Apply now: https://www.readytensor.ai/agentic-ai-cert/
www.readytensor.ai
Agentic AI Developer Certification Program by Ready Tensor
Learn to build chatbots, AI assistants, and multi-agent systems with Ready Tensor's free, self-paced, and beginner-friendly Agentic AI Developer Certification. View the full program guide and how to get certified.
❤1
📘 Ultimate Guide to Graph Neural Networks (GNNs): Part 1 — Foundations of Graph Theory & Why GNNs Revolutionize AI
Duration: ~45 minutes reading time | Comprehensive beginner-to-advanced introduction
Let's start: https://hackmd.io/@husseinsheikho/GNN-1
Duration: ~45 minutes reading time | Comprehensive beginner-to-advanced introduction
Let's start: https://hackmd.io/@husseinsheikho/GNN-1
#GraphNeuralNetworks #GNN #MachineLearning #DeepLearning #AI #NeuralNetworks #DataScience #GraphTheory #ArtificialIntelligence #PyTorchGeometric #NodeClassification #LinkPrediction #GraphRepresentation #AIforBeginners #AdvancedAI
✉️ Our Telegram channels: https://news.1rj.ru/str/addlist/0f6vfFbEMdAwODBk📱 Our WhatsApp channel: https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A
Please open Telegram to view this post
VIEW IN TELEGRAM
❤1
📘 Ultimate Guide to Graph Neural Networks (GNNs): Part 2 — The Message Passing Framework: Mathematical Heart of All GNNs
Duration: ~60 minutes reading time | Comprehensive deep dive into the core mechanism powering modern GNNs
Let's study: https://hackmd.io/@husseinsheikho/GNN-2
Duration: ~60 minutes reading time | Comprehensive deep dive into the core mechanism powering modern GNNs
Let's study: https://hackmd.io/@husseinsheikho/GNN-2
#GraphNeuralNetworks #GNN #MachineLearning #DeepLearning #AI #NeuralNetworks #DataScience #GraphTheory #ArtificialIntelligence #PyTorchGeometric #MessagePassing #GraphAlgorithms #NodeClassification #LinkPrediction #GraphRepresentation #AIforBeginners #AdvancedAI
✉️ Our Telegram channels: https://news.1rj.ru/str/addlist/0f6vfFbEMdAwODBk📱 Our WhatsApp channel: https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A
Please open Telegram to view this post
VIEW IN TELEGRAM
❤3🤩1
Duration: ~60 minutes reading time | Comprehensive deep dive into cutting-edge GNN architectures
#GraphNeuralNetworks #GNN #MachineLearning #DeepLearning #AI #NeuralNetworks #DataScience #GraphTheory #ArtificialIntelligence #PyTorchGeometric #GraphTransformers #TemporalGNNs #GeometricDeepLearning #AdvancedGNNs #AIforBeginners #AdvancedAI
✉️ Our Telegram channels: https://news.1rj.ru/str/addlist/0f6vfFbEMdAwODBk📱 Our WhatsApp channel: https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A
Please open Telegram to view this post
VIEW IN TELEGRAM
❤1
📘 Ultimate Guide to Graph Neural Networks (GNNs): Part 4 — GNN Training Dynamics, Optimization Challenges, and Scalability Solutions
Duration: ~45 minutes reading time | Comprehensive guide to training GNNs effectively at scale
Part 4-A: https://hackmd.io/@husseinsheikho/GNN4-A
Part4-B: https://hackmd.io/@husseinsheikho/GNN4-B
Duration: ~45 minutes reading time | Comprehensive guide to training GNNs effectively at scale
Part 4-A: https://hackmd.io/@husseinsheikho/GNN4-A
Part4-B: https://hackmd.io/@husseinsheikho/GNN4-B
#GraphNeuralNetworks #GNN #MachineLearning #DeepLearning #AI #NeuralNetworks #DataScience #GraphTheory #ArtificialIntelligence #PyTorchGeometric #GNNOptimization #ScalableGNNs #TrainingDynamics #AIforBeginners #AdvancedAI
✉️ Our Telegram channels: https://news.1rj.ru/str/addlist/0f6vfFbEMdAwODBk📱 Our WhatsApp channel: https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A
Please open Telegram to view this post
VIEW IN TELEGRAM
❤4👎1
📘 Ultimate Guide to Graph Neural Networks (GNNs): Part 5 — GNN Applications Across Domains: Real-World Impact in 30 Minutes
Duration: ~30 minutes reading time | Practical guide to GNN applications with concrete ROI metrics
Link: https://hackmd.io/@husseinsheikho/GNN-5
Duration: ~30 minutes reading time | Practical guide to GNN applications with concrete ROI metrics
Link: https://hackmd.io/@husseinsheikho/GNN-5
#GraphNeuralNetworks #GNN #MachineLearning #DeepLearning #AI #NeuralNetworks #DataScience #GraphTheory #ArtificialIntelligence #RealWorldApplications #HealthcareAI #FinTech #DrugDiscovery #RecommendationSystems #ClimateAI
✉️ Our Telegram channels: https://news.1rj.ru/str/addlist/0f6vfFbEMdAwODBk📱 Our WhatsApp channel: https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A
Please open Telegram to view this post
VIEW IN TELEGRAM
❤5
📘 Ultimate Guide to Graph Neural Networks (GNNs): Part 6 — Advanced Frontiers, Ethics, and Future Directions
Duration: ~50 minutes reading time | Cutting-edge insights on where GNNs are headed
Let's read: https://hackmd.io/@husseinsheikho/GNN-6
Duration: ~50 minutes reading time | Cutting-edge insights on where GNNs are headed
Let's read: https://hackmd.io/@husseinsheikho/GNN-6
#GraphNeuralNetworks #GNN #MachineLearning #DeepLearning #AI #NeuralNetworks #DataScience #GraphTheory #ArtificialIntelligence #FutureOfGNNs #EmergingResearch #EthicalAI #GNNBestPractices #AdvancedAI #50MinuteRead
✉️ Our Telegram channels: https://news.1rj.ru/str/addlist/0f6vfFbEMdAwODBk📱 Our WhatsApp channel: https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A
Please open Telegram to view this post
VIEW IN TELEGRAM
❤4
📘 Ultimate Guide to Graph Neural Networks (GNNs): Part 7 — Advanced Implementation, Multimodal Integration, and Scientific Applications
Duration: ~60 minutes reading time | Deep dive into cutting-edge GNN implementations and applications
Read: https://hackmd.io/@husseinsheikho/GNN7
✉️ Our Telegram channels: https://news.1rj.ru/str/addlist/0f6vfFbEMdAwODBk
Duration: ~60 minutes reading time | Deep dive into cutting-edge GNN implementations and applications
Read: https://hackmd.io/@husseinsheikho/GNN7
#GraphNeuralNetworks #GNN #MachineLearning #DeepLearning #AI #NeuralNetworks #DataScience #GraphTheory #ArtificialIntelligence #AdvancedGNNs #MultimodalLearning #ScientificAI #GNNImplementation #60MinuteRead
Please open Telegram to view this post
VIEW IN TELEGRAM
❤2
PyTorch Masterclass: Part 1 – Foundations of Deep Learning with PyTorch
Duration: ~120 minutes
Link: https://hackmd.io/@husseinsheikho/pytorch-1
https://news.1rj.ru/str/DataScienceM🔰
Duration: ~120 minutes
Link: https://hackmd.io/@husseinsheikho/pytorch-1
#PyTorch #DeepLearning #MachineLearning #AI #NeuralNetworks #DataScience #Python #Tensors #Autograd #Backpropagation #GradientDescent #AIForBeginners #PyTorchTutorial #MachineLearningEngineer
https://news.1rj.ru/str/DataScienceM
Please open Telegram to view this post
VIEW IN TELEGRAM
❤7