Machine Learning – Telegram
Machine Learning
39.3K subscribers
3.88K photos
32 videos
44 files
1.31K links
Machine learning insights, practical tutorials, and clear explanations for beginners and aspiring data scientists. Follow the channel for models, algorithms, coding guides, and real-world ML applications.

Admin: @HusseinSheikho || @Hussein_Sheikho
Download Telegram
📌 Stop Retraining Blindly: Use PSI to Build a Smarter Monitoring Pipeline

🗂 Category: MACHINE LEARNING

🕒 Date: 2025-12-23 | ⏱️ Read time: 6 min read

A data scientist’s guide to population stability index (PSI)

#DataScience #AI #Python
🔥1
📌 The Machine Learning “Advent Calendar” Day 24: Transformers for Text in Excel

🗂 Category: MACHINE LEARNING

🕒 Date: 2025-12-24 | ⏱️ Read time: 10 min read

An intuitive, step-by-step look at how Transformers use self-attention to turn static word embeddings into…

#DataScience #AI #Python
👍1
📌 Is Your Model Time-Blind? The Case for Cyclical Feature Encoding

🗂 Category: DATA SCIENCE

🕒 Date: 2025-12-24 | ⏱️ Read time: 7 min read

How cyclical encoding improves machine learning prediction

#DataScience #AI #Python
📌 4 Techniques to Optimize AI Coding Efficiency

🗂 Category: PROGRAMMING

🕒 Date: 2025-12-24 | ⏱️ Read time: 8 min read

Learn how to code more effectively using AI

#DataScience #AI #Python
3
📌 Bonferroni vs. Benjamini-Hochberg: Choosing Your P-Value Correction

🗂 Category: STATISTICS

🕒 Date: 2025-12-24 | ⏱️ Read time: 11 min read

Multiple hypothesis testing, P-values, and Monte Carlo

#DataScience #AI #Python
2
📌 Keeping Probabilities Honest: The Jacobian Adjustment

🗂 Category: DATA SCIENCE

🕒 Date: 2025-12-25 | ⏱️ Read time: 10 min read

An intuitive explanation of transforming random variables correctly.

#DataScience #AI #Python
1
📌 Why MAP and MRR Fail for Search Ranking (and What to Use Instead)

🗂 Category: DATA SCIENCE

🕒 Date: 2025-12-25 | ⏱️ Read time: 9 min read

MAP and MRR look intuitive, but they quietly break ranking evaluation. Here’s why these metrics…

#DataScience #AI #Python
1
Forwarded from ML Research Hub
ML Engineers: NVIDIA has released a guide for beginners on fine-tuning LLMs using Unsloth.

The guide covers:

- training methods: LoRA, FFT, RL
- when and why to do fine-tuning, real use cases
- how much data and VRAM are required
- how to train locally on DGX Spark, RTX graphics cards, and more

Guide: https://blogs.nvidia.com/blog/rtx-ai-garage-fine-tuning-unsloth-dgx-spark/

👉 https://news.1rj.ru/str/DataScienceT
Please open Telegram to view this post
VIEW IN TELEGRAM
3👍1
📌 Think Your Python Code Is Slow? Stop Guessing and Start Measuring

🗂 Category: PROGRAMMING

🕒 Date: 2025-12-26 | ⏱️ Read time: 13 min read

A hands-on tour of using cProfile + SnakeViz to find (and fix) the “hot” paths…

#DataScience #AI #Python
3
📌 How to Build an AI-Powered Weather ETL Pipeline with Databricks and GPT-4o: From API To Dashboard

🗂 Category: DATA ENGINEERING

🕒 Date: 2025-12-26 | ⏱️ Read time: 11 min read

A step-by-step guide from weather API ETL to dashboard on Databricks

#DataScience #AI #Python
2
transformer Q&A.pdf
1.3 MB
𝐇𝐞𝐫𝐞’𝐬 𝐚 𝐪𝐮𝐢𝐜𝐤 𝐛𝐫𝐞𝐚𝐤𝐝𝐨𝐰𝐧 𝐟𝐫𝐨𝐦 𝐭𝐡𝐞 𝐭𝐨𝐩 𝐓𝐫𝐚𝐧𝐬𝐟𝐨𝐫𝐦𝐞𝐫𝐬 𝐈𝐧𝐭𝐞𝐫𝐯𝐢𝐞𝐰 𝐐𝐮𝐞𝐬𝐭𝐢𝐨𝐧𝐬 🔥👇⁣⁣
⁣⁣
𝘞𝘩𝘢𝘵 𝘪𝘴 𝘢 𝘛𝘳𝘢𝘯𝘴𝘧𝘰𝘳𝘮𝘦𝘳 𝘢𝘯𝘥 𝘸𝘩𝘺 𝘸𝘢𝘴 𝘪𝘵 𝘪𝘯𝘵𝘳𝘰𝘥𝘶𝘤𝘦𝘥?⁣⁣
𝘐𝘵 𝘴𝘰𝘭𝘷𝘦𝘥 𝘵𝘩𝘦 𝘭𝘪𝘮𝘪𝘵𝘢𝘵𝘪𝘰𝘯𝘴 𝘰𝘧 𝘙𝘕𝘕𝘴 & 𝘓𝘚𝘛𝘔𝘴 𝘣𝘺 𝘶𝘴𝘪𝘯𝘨 𝘴𝘦𝘭𝘧-𝘢𝘵𝘵𝘦𝘯𝘵𝘪𝘰𝘯, 𝘦𝘯𝘢𝘣𝘭𝘪𝘯𝘨 𝘱𝘢𝘳𝘢𝘭𝘭𝘦𝘭 𝘱𝘳𝘰𝘤𝘦𝘴𝘴𝘪𝘯𝘨 𝘢𝘯𝘥 𝘤𝘢𝘱𝘵𝘶𝘳𝘪𝘯𝘨 𝘭𝘰𝘯𝘨-𝘳𝘢𝘯𝘨𝘦 𝘥𝘦𝘱𝘦𝘯𝘥𝘦𝘯𝘤𝘪𝘦𝘴 𝘭𝘪𝘬𝘦 𝘯𝘦𝘷𝘦𝘳 𝘣𝘦𝘧𝘰𝘳𝘦!⁣⁣
⁣⁣
𝘚𝘦𝘭𝘧-𝘈𝘵𝘵𝘦𝘯𝘵𝘪𝘰𝘯 – 𝘛𝘩𝘦 𝘮𝘢𝘨𝘪𝘤 𝘣𝘦𝘩𝘪𝘯𝘥 𝘪𝘵⁣⁣
𝘌𝘷𝘦𝘳𝘺 𝘸𝘰𝘳𝘥 𝘶𝘯𝘥𝘦𝘳𝘴𝘵𝘢𝘯𝘥𝘴 𝘪𝘵𝘴 𝘤𝘰𝘯𝘵𝘦𝘹𝘵 𝘪𝘯 𝘳𝘦𝘭𝘢𝘵𝘪𝘰𝘯 𝘵𝘰 𝘰𝘵𝘩𝘦𝘳𝘴—𝘮𝘢𝘬𝘪𝘯𝘨 𝘦𝘮𝘣𝘦𝘥𝘥𝘪𝘯𝘨𝘴 𝘴𝘮𝘢𝘳𝘵𝘦𝘳 𝘢𝘯𝘥 𝘮𝘰𝘥𝘦𝘭𝘴 𝘮𝘰𝘳𝘦 𝘤𝘰𝘯𝘵𝘦𝘹𝘵-𝘢𝘸𝘢𝘳𝘦.⁣⁣
⁣⁣
𝘔𝘶𝘭𝘵𝘪-𝘏𝘦𝘢𝘥 𝘈𝘵𝘵𝘦𝘯𝘵𝘪𝘰𝘯 – 𝘚𝘦𝘦𝘪𝘯𝘨 𝘧𝘳𝘰𝘮 𝘮𝘶𝘭𝘵𝘪𝘱𝘭𝘦 𝘢𝘯𝘨𝘭𝘦𝘴⁣⁣
𝘋𝘪𝘧𝘧𝘦𝘳𝘦𝘯𝘵 𝘢𝘵𝘵𝘦𝘯𝘵𝘪𝘰𝘯 𝘩𝘦𝘢𝘥𝘴 𝘧𝘰𝘤𝘶𝘴 𝘰𝘯 𝘥𝘪𝘧𝘧𝘦𝘳𝘦𝘯𝘵 𝘳𝘦𝘭𝘢𝘵𝘪𝘰𝘯𝘴𝘩𝘪𝘱𝘴 𝘪𝘯 𝘵𝘩𝘦 𝘥𝘢𝘵𝘢. 𝘐𝘵’𝘴 𝘭𝘪𝘬𝘦 𝘩𝘢𝘷𝘪𝘯𝘨 𝘮𝘶𝘭𝘵𝘪𝘱𝘭𝘦 𝘦𝘹𝘱𝘦𝘳𝘵𝘴 𝘢𝘯𝘢𝘭𝘺𝘻𝘦 𝘵𝘩𝘦 𝘴𝘢𝘮𝘦 𝘪𝘯𝘧𝘰𝘳𝘮𝘢𝘵𝘪𝘰𝘯!⁣⁣
⁣⁣
𝘗𝘰𝘴𝘪𝘵𝘪𝘰𝘯𝘢𝘭 𝘌𝘯𝘤𝘰𝘥𝘪𝘯𝘨 – 𝘛𝘦𝘢𝘤𝘩𝘪𝘯𝘨 𝘵𝘩𝘦 𝘮𝘰𝘥𝘦𝘭 𝘰𝘳𝘥𝘦𝘳 𝘮𝘢𝘵𝘵𝘦𝘳𝘴⁣⁣
𝘚𝘪𝘯𝘤𝘦 𝘛𝘳𝘢𝘯𝘴𝘧𝘰𝘳𝘮𝘦𝘳𝘴 𝘥𝘰𝘯’𝘵 𝘱𝘳𝘰𝘤𝘦𝘴𝘴 𝘥𝘢𝘵𝘢 𝘴𝘦𝘲𝘶𝘦𝘯𝘵𝘪𝘢𝘭𝘭𝘺, 𝘵𝘩𝘪𝘴 𝘵𝘳𝘪𝘤𝘬 𝘦𝘯𝘴𝘶𝘳𝘦𝘴 𝘵𝘩𝘦𝘺 “𝘬𝘯𝘰𝘸” 𝘵𝘩𝘦 𝘱𝘰𝘴𝘪𝘵𝘪𝘰𝘯 𝘰𝘧 𝘦𝘢𝘤𝘩 𝘵𝘰𝘬𝘦𝘯.⁣⁣
⁣⁣
𝘓𝘢𝘺𝘦𝘳 𝘕𝘰𝘳𝘮𝘢𝘭𝘪𝘻𝘢𝘵𝘪𝘰𝘯 – 𝘚𝘵𝘢𝘣𝘪𝘭𝘪𝘻𝘪𝘯𝘨 𝘵𝘩𝘦 𝘭𝘦𝘢𝘳𝘯𝘪𝘯𝘨 𝘱𝘳𝘰𝘤𝘦𝘴𝘴⁣⁣
𝘐𝘵 𝘴𝘱𝘦𝘦𝘥𝘴 𝘶𝘱 𝘵𝘳𝘢𝘪𝘯𝘪𝘯𝘨 𝘢𝘯𝘥 𝘢𝘷𝘰𝘪𝘥𝘴 𝘷𝘢𝘯𝘪𝘴𝘩𝘪𝘯𝘨 𝘨𝘳𝘢𝘥𝘪𝘦𝘯𝘵𝘴, 𝘭𝘦𝘵𝘵𝘪𝘯𝘨 𝘮𝘰𝘥𝘦𝘭𝘴 𝘨𝘰 𝘥𝘦𝘦𝘱𝘦𝘳 𝘢𝘯𝘥 𝘭𝘦𝘢𝘳𝘯 𝘣𝘦𝘵𝘵𝘦𝘳.⁣⁣

👉 @codeprogrammer

Like and Share 👍
Please open Telegram to view this post
VIEW IN TELEGRAM
3
📌 Exploring TabPFN: A Foundation Model Built for Tabular Data

🗂 Category: LARGE LANGUAGE MODELS

🕒 Date: 2025-12-27 | ⏱️ Read time: 11 min read

Understanding the architecture, training pipeline and implementing TabPFN in practice

#DataScience #AI #Python
1