ML Research Hub – Telegram
ML Research Hub
32.7K subscribers
3.96K photos
225 videos
23 files
4.27K links
Advancing research in Machine Learning – practical insights, tools, and techniques for researchers.

Admin: @HusseinSheikho || @Hussein_Sheikho
Download Telegram
💬 GLIGEN: Open-Set Grounded Text-to-Image Generation

GLIGEN’s zero-shot performance on COCO and LVIS outperforms that of existing supervised layout-to-image baselines by a large margin. Code comming soon.

⭐️ Project: https://gligen.github.io/

⭐️ Demo: https://aka.ms/gligen

✅️ Paper: https://arxiv.org/abs/2301.07093

🖥 Github: https://github.com/gligen/GLIGEN

https://news.1rj.ru/str/DataScienceT
❤‍🔥4
Pandas for Data Science
Learning Path ⋅ Skills: Pandas, Data Science, Data Visualization

https://realpython.com/learning-paths/pandas-data-science/

https://news.1rj.ru/str/DataScienceT
❤‍🔥5
❤‍🔥32
An important collection of the 15 best machine learning cheat sheets.

مجموعة مهمة الافضل ١٥ ورقة غش في مجال التعلم الآلي.

1- Supervised Learning

https://github.com/afshinea/stanford-cs-229-machine-learning/blob/master/en/cheatsheet-supervised-learning.pdf

2- Unsupervised Learning

https://github.com/afshinea/stanford-cs-229-machine-learning/blob/master/en/cheatsheet-unsupervised-learning.pdf

3- Deep Learning

https://github.com/afshinea/stanford-cs-229-machine-learning/blob/master/en/cheatsheet-deep-learning.pdf

4- Machine Learning Tips and Tricks

https://github.com/afshinea/stanford-cs-229-machine-learning/blob/master/en/cheatsheet-machine-learning-tips-and-tricks.pdf

5- Probabilities and Statistics

https://github.com/afshinea/stanford-cs-229-machine-learning/blob/master/en/refresher-probabilities-statistics.pdf

6- Comprehensive Stanford Master Cheat Sheet

https://github.com/afshinea/stanford-cs-229-machine-learning/blob/master/en/super-cheatsheet-machine-learning.pdf

7- Linear Algebra and Calculus

https://github.com/afshinea/stanford-cs-229-machine-learning/blob/master/en/refresher-algebra-calculus.pdf

8- Data Science Cheat Sheet

https://s3.amazonaws.com/assets.datacamp.com/blog_assets/PythonForDataScience.pdf

9- Keras Cheat Sheet

https://s3.amazonaws.com/assets.datacamp.com/blog_assets/Keras_Cheat_Sheet_Python.pdf

10- Deep Learning with Keras Cheat Sheet

https://github.com/rstudio/cheatsheets/raw/master/keras.pdf

11- Visual Guide to Neural Network Infrastructures

http://www.asimovinstitute.org/wp-content/uploads/2016/09/neuralnetworks.png

12- Skicit-Learn Python Cheat Sheet

https://s3.amazonaws.com/assets.datacamp.com/blog_assets/Scikit_Learn_Cheat_Sheet_Python.pdf

13- Scikit-learn Cheat Sheet: Choosing the Right Estimator

https://scikit-learn.org/stable/tutorial/machine_learning_map/

14- Tensorflow Cheat Sheet

https://github.com/kailashahirwar/cheatsheets-ai/blob/master/PDFs/Tensorflow.pdf

15- Machine Learning Test Cheat Sheet

https://www.cheatography.com/lulu-0012/cheat-sheets/test-ml/pdf/

✳️ ساهم بنمو مجتمعنا من خلال اضافة الاصدقاء او مشاركة المنشور.
👍4❤‍🔥2
Datasets

Datasets collected for network science, deep learning and general machine learning research.

Github: https://github.com/benedekrozemberczki/datasets

Paper: https://arxiv.org/abs/2101.03091v1

Invite your friends 🌹🌹
@DataScience_Books
👍4❤‍🔥3
Multivariate Probabilistic Time Series Forecasting with Informer

Efficient transformer-based model for LSTF.

Method introduces a Probabilistic Attention mechanism to select the “active” queries rather than the “lazy” queries and provides a sparse Transformer thus mitigating the quadratic compute and memory requirements of vanilla attention.

🤗Hugging face:
https://huggingface.co/blog/informer

Paper:
https://huggingface.co/docs/transformers/main/en/model_doc/informer

⭐️ Colab:
https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/multivariate_informer.ipynb

💨 Dataset:
https://huggingface.co/docs/datasets/v2.7.0/en/package_reference/main_classes#datasets.Dataset.set_transform

https://news.1rj.ru/str/DataScienceT
❤‍🔥2👍1
Linear Algebra in Python: Matrix Inverses and Least Squares

https://realpython.com/python-linear-algebra/
❤‍🔥4👍1
❤‍🔥4
Tuned Lens 🔎

Simple interface training and evaluating tuned lenses. A tuned lens allows us to peak at the iterative computations a transformer uses to compute the next token.

pip install tuned-lens

🖥 Github: https://github.com/alignmentresearch/tuned-lens

Paper: https://arxiv.org/abs/2303.08112v1

⭐️ Dataset: https://paperswithcode.com/dataset/the-pile

🖥 Colab: https://colab.research.google.com/github/AlignmentResearch/tuned-lens/blob/main/notebooks/interactive.ipynb

https://news.1rj.ru/str/DataScienceT
❤‍🔥6
OpenSeeD

A Simple Framework for Open-Vocabulary Segmentation and Detection

🖥 Github: https://github.com/idea-research/openseed

Paper: https://arxiv.org/abs/2303.08131v2

💨 Dataset: https://paperswithcode.com/dataset/objects365

https://news.1rj.ru/str/DataScienceT
❤‍🔥3
Contrastive Semi-supervised Learning for Underwater Image Restoration via Reliable Bank

🖥 Github: https://github.com/huang-shirui/semi-uir

Paper: https://arxiv.org/abs/2303.09101v1

💨 Project: https://paperswithcode.com/dataset/uieb

https://news.1rj.ru/str/DataScienceT
❤‍🔥2
🖥 GigaGAN - Pytorch

Implementation of GigaGAN, new SOTA GAN out of Adobe.

https://github.com/lucidrains/gigagan-pytorch

https://news.1rj.ru/str/DataScienceT
❤‍🔥2
Taming Diffusion Models for Audio-Driven Co-Speech Gesture Generation (CVPR 2023)

Novel Diffusion Audio-Gesture Transformer is devised to better attend to the information from multiple modalities and model the long-term temporal dependency.

🖥 Github: https://github.com/advocate99/diffgesture

Paper: https://arxiv.org/abs/2303.09119v1

💨 Dataset: https://paperswithcode.com/dataset/beat

https://news.1rj.ru/str/DataScienceT
👍3❤‍🔥2
👍2❤‍🔥1
This media is not supported in your browser
VIEW IN TELEGRAM
⚜️ ViperGPT: Visual Inference via Python Execution for Reasoning

ViperGPT, a framework that leverages code-generation models to compose vision-and-language models into subroutines to produce a result for any query.

🖥 Github: https://github.com/cvlab-columbia/viper

Paper: https://arxiv.org/pdf/2303.08128.pdf

💨 Project: https://paperswithcode.com/dataset/beat

https://news.1rj.ru/str/DataScienceT
👍3🏆2❤‍🔥1