Macaw-LLM: Multi-Modal Language Modeling with Image, Audio, Video, and Text Integration
Macaw-LLM is a model of its kind, bringing together state-of-the-art models for processing visual, auditory, and textual information, namely CLIP, Whisper, and LLaMA.
🖥 Github: https://github.com/lyuchenyang/macaw-llm
⭐️ Model: https://tinyurl.com/yem9m4nf
📕 Paper: https://tinyurl.com/4rsexudv
🔗 Dataset: https://github.com/lyuchenyang/Macaw-LLM/blob/main/data
https://news.1rj.ru/str/DataScienceT
Macaw-LLM is a model of its kind, bringing together state-of-the-art models for processing visual, auditory, and textual information, namely CLIP, Whisper, and LLaMA.
🖥 Github: https://github.com/lyuchenyang/macaw-llm
⭐️ Model: https://tinyurl.com/yem9m4nf
📕 Paper: https://tinyurl.com/4rsexudv
🔗 Dataset: https://github.com/lyuchenyang/Macaw-LLM/blob/main/data
https://news.1rj.ru/str/DataScienceT
👍4❤2❤🔥1
Semi-supervised learning made simple with self-supervised clustering [CVPR 2023]
🖥 Github: https://github.com/pietroastolfi/suave-daino
⏩ Paper: https://arxiv.org/pdf/2306.07483v1.pdf
💨 Dataset: https://paperswithcode.com/dataset/imagenet
https://news.1rj.ru/str/DataScienceT
🖥 Github: https://github.com/pietroastolfi/suave-daino
⏩ Paper: https://arxiv.org/pdf/2306.07483v1.pdf
💨 Dataset: https://paperswithcode.com/dataset/imagenet
https://news.1rj.ru/str/DataScienceT
❤🔥2❤1👍1
This media is not supported in your browser
VIEW IN TELEGRAM
🌐 WizMap: Scalable Interactive Visualization for Exploring Large Machine Learning Embeddings
🖥 Github: https://github.com/poloclub/wizmap
⭐️ Colab: https://colab.research.google.com/drive/1GNdmBnc5UA7OYBZPtHu244eiAN-0IMZA?usp=sharing
📕 Paper: https://arxiv.org/abs/2306.09328v1
🔗 Web demo: https://poloclub.github.io/wizmap.
https://news.1rj.ru/str/DataScienceT
🖥 Github: https://github.com/poloclub/wizmap
⭐️ Colab: https://colab.research.google.com/drive/1GNdmBnc5UA7OYBZPtHu244eiAN-0IMZA?usp=sharing
📕 Paper: https://arxiv.org/abs/2306.09328v1
🔗 Web demo: https://poloclub.github.io/wizmap.
https://news.1rj.ru/str/DataScienceT
❤1❤🔥1👍1🏆1
How do Transformers work?
All the Transformer models mentioned above (GPT, BERT, BART, T5, etc.) have been trained as language models. This means they have been trained on large amounts of raw text in a self-supervised fashion. Self-supervised learning is a type of training in which the objective is automatically computed from the inputs of the model. That means that humans are not needed to label the data!
This type of model develops a statistical understanding of the language it has been trained on, but it’s not very useful for specific practical tasks. Because of this, the general pretrained model then goes through a process called transfer learning. During this process, the model is fine-tuned in a supervised way — that is, using human-annotated labels — on a given task
🔗 Read More
🌸 https://news.1rj.ru/str/DataScienceT
All the Transformer models mentioned above (GPT, BERT, BART, T5, etc.) have been trained as language models. This means they have been trained on large amounts of raw text in a self-supervised fashion. Self-supervised learning is a type of training in which the objective is automatically computed from the inputs of the model. That means that humans are not needed to label the data!
This type of model develops a statistical understanding of the language it has been trained on, but it’s not very useful for specific practical tasks. Because of this, the general pretrained model then goes through a process called transfer learning. During this process, the model is fine-tuned in a supervised way — that is, using human-annotated labels — on a given task
🔗 Read More
🌸 https://news.1rj.ru/str/DataScienceT
👍3❤2❤🔥2
Data Science With Python Workflow Cheat Sheet
Creator: business Science
Stars ⭐️: 75
Forked By: 38
https://github.com/business-science/cheatsheets/blob/master/Data_Science_With_Python_Workflow.pdf
https://news.1rj.ru/str/DataScienceT
Creator: business Science
Stars ⭐️: 75
Forked By: 38
https://github.com/business-science/cheatsheets/blob/master/Data_Science_With_Python_Workflow.pdf
https://news.1rj.ru/str/DataScienceT
👍5❤3
80+ Jupyter Notebook tutorials on image classification, object detection and image segmentation in various domains
📌 Agriculture and Food
📌 Medical and Healthcare
📌 Satellite
📌 Security and Surveillance
📌 ADAS and Self Driving Cars
📌 Retail and E-Commerce
📌 Wildlife
Classification library
https://github.com/Tessellate-Imaging/monk_v1
Notebooks - https://github.com/Tessellate-Imaging/monk_v1/tree/master/study_roadmaps/4_image_classification_zoo
Detection and Segmentation Library
https://github.com/Tessellate-Imaging/
Monk_Object_Detection
Notebooks: https://github.com/Tessellate-Imaging/Monk_Object_Detection/tree/master/application_model_zoo
https://news.1rj.ru/str/DataScienceT
📌 Agriculture and Food
📌 Medical and Healthcare
📌 Satellite
📌 Security and Surveillance
📌 ADAS and Self Driving Cars
📌 Retail and E-Commerce
📌 Wildlife
Classification library
https://github.com/Tessellate-Imaging/monk_v1
Notebooks - https://github.com/Tessellate-Imaging/monk_v1/tree/master/study_roadmaps/4_image_classification_zoo
Detection and Segmentation Library
https://github.com/Tessellate-Imaging/
Monk_Object_Detection
Notebooks: https://github.com/Tessellate-Imaging/Monk_Object_Detection/tree/master/application_model_zoo
https://news.1rj.ru/str/DataScienceT
👍7❤🔥3❤1
Choose JOBITT! Receive +10% of your first salary as a bonus from JOBITT!
Find your dream job with JOBITT! Get more, starting with your first paycheck! Find many job options on our Telegram channel: https://news.1rj.ru/str/ujobit
Find your dream job with JOBITT! Get more, starting with your first paycheck! Find many job options on our Telegram channel: https://news.1rj.ru/str/ujobit
❤2❤🔥2👍2
📌 LOMO: LOw-Memory Optimization
New optimizer, LOw-Memory Optimization enables the full parameter fine-tuning of a 7B model on a single RTX 3090, or a 65B model on a single machine with 8×RTX 3090, each with 24GB memory.
🖥 Github: https://github.com/OpenLMLab/LOMO/tree/main
📕 Paper: https://arxiv.org/pdf/2306.09782.pdf
🔗 Dataset: https://paperswithcode.com/dataset/superglue
https://news.1rj.ru/str/DataScienceT
New optimizer, LOw-Memory Optimization enables the full parameter fine-tuning of a 7B model on a single RTX 3090, or a 65B model on a single machine with 8×RTX 3090, each with 24GB memory.
🖥 Github: https://github.com/OpenLMLab/LOMO/tree/main
📕 Paper: https://arxiv.org/pdf/2306.09782.pdf
🔗 Dataset: https://paperswithcode.com/dataset/superglue
https://news.1rj.ru/str/DataScienceT
❤2❤🔥1
Jumanji: a Diverse Suite of Scalable Reinforcement Learning Environments in JAX
Jumanji is helping pioneer a new wave of hardware-accelerated research and development in the field of RL.
🖥 Github: https://github.com/instadeepai/jumanji
📕 Paper: https://arxiv.org/abs/2306.09884v1
🔗 Dataset: https://paperswithcode.com/dataset/mujoco
https://news.1rj.ru/str/DataScienceT
Jumanji is helping pioneer a new wave of hardware-accelerated research and development in the field of RL.
🖥 Github: https://github.com/instadeepai/jumanji
📕 Paper: https://arxiv.org/abs/2306.09884v1
🔗 Dataset: https://paperswithcode.com/dataset/mujoco
https://news.1rj.ru/str/DataScienceT
❤2👍2❤🔥1
Google just dropped Generative AI learning path with 9 courses:
🤖: Intro to Generative AI
🤖: Large Language Models
🤖: Responsible AI
🤖: Image Generation
🤖: Encoder-Decoder
🤖: Attention Mechanism
🤖: Transformers and BERT Models
🤖: Create Image Captioning Models
🤖: Intro to Gen AI Studio
🌐 Link: https://www.cloudskillsboost.google/paths/118
https://news.1rj.ru/str/DataScienceT
🤖: Intro to Generative AI
🤖: Large Language Models
🤖: Responsible AI
🤖: Image Generation
🤖: Encoder-Decoder
🤖: Attention Mechanism
🤖: Transformers and BERT Models
🤖: Create Image Captioning Models
🤖: Intro to Gen AI Studio
🌐 Link: https://www.cloudskillsboost.google/paths/118
https://news.1rj.ru/str/DataScienceT
Google Skills
Beginner: Introduction to Generative AI | Google Skills
Learn and earn with Google Skills, a platform that provides free training and certifications for Google Cloud partners and beginners. Explore now.
❤🔥3❤3👍1
This media is not supported in your browser
VIEW IN TELEGRAM
YOLOv8 is the newest state-of-the-art YOLO model that can be used for object detection, image classification, and instance segmentation tasks. YOLOv8 includes numerous architectural and developer experience changes and improvements over YOLOv5.
Code:
https://github.com/ultralytics/ultralytics
What's New in YOLOv8 ?
https://blog.roboflow.com/whats-new-in-yolov8/
Yolov8 Instance Segmentation (ONNX):
https://github.com/ibaiGorordo/ONNX-YOLOv8-Instance-Segmentation
https://news.1rj.ru/str/DataScienceT
Code:
https://github.com/ultralytics/ultralytics
What's New in YOLOv8 ?
https://blog.roboflow.com/whats-new-in-yolov8/
Yolov8 Instance Segmentation (ONNX):
https://github.com/ibaiGorordo/ONNX-YOLOv8-Instance-Segmentation
https://news.1rj.ru/str/DataScienceT
👍3❤🔥1
⭐️ 15 Best Machine Learning Cheat Sheet ⭐️
1- Supervised Learning
https://github.com/afshinea/stanford-cs-229-machine-learning/blob/master/en/cheatsheet-supervised-learning.pdf
2- Unsupervised Learning
https://github.com/afshinea/stanford-cs-229-machine-learning/blob/master/en/cheatsheet-unsupervised-learning.pdf
3- Deep Learning
https://github.com/afshinea/stanford-cs-229-machine-learning/blob/master/en/cheatsheet-deep-learning.pdf
4- Machine Learning Tips and Tricks
https://github.com/afshinea/stanford-cs-229-machine-learning/blob/master/en/cheatsheet-machine-learning-tips-and-tricks.pdf
5- Probabilities and Statistics
https://github.com/afshinea/stanford-cs-229-machine-learning/blob/master/en/refresher-probabilities-statistics.pdf
6- Comprehensive Stanford Master Cheat Sheet
https://github.com/afshinea/stanford-cs-229-machine-learning/blob/master/en/super-cheatsheet-machine-learning.pdf
7- Linear Algebra and Calculus
https://github.com/afshinea/stanford-cs-229-machine-learning/blob/master/en/refresher-algebra-calculus.pdf
8- Data Science Cheat Sheet
https://s3.amazonaws.com/assets.datacamp.com/blog_assets/PythonForDataScience.pdf
9- Keras Cheat Sheet
https://s3.amazonaws.com/assets.datacamp.com/blog_assets/Keras_Cheat_Sheet_Python.pdf
10- Deep Learning with Keras Cheat Sheet
https://github.com/rstudio/cheatsheets/raw/master/keras.pdf
11- Visual Guide to Neural Network Infrastructures
http://www.asimovinstitute.org/wp-content/uploads/2016/09/neuralnetworks.png
12- Skicit-Learn Python Cheat Sheet
https://s3.amazonaws.com/assets.datacamp.com/blog_assets/Scikit_Learn_Cheat_Sheet_Python.pdf
13- Scikit-learn Cheat Sheet: Choosing the Right Estimator
https://scikit-learn.org/stable/tutorial/machine_learning_map/
14- Tensorflow Cheat Sheet
https://github.com/kailashahirwar/cheatsheets-ai/blob/master/PDFs/Tensorflow.pdf
15- Machine Learning Test Cheat Sheet
https://www.cheatography.com/lulu-0012/cheat-sheets/test-ml/pdf/
https://news.1rj.ru/str/DataScienceT
1- Supervised Learning
https://github.com/afshinea/stanford-cs-229-machine-learning/blob/master/en/cheatsheet-supervised-learning.pdf
2- Unsupervised Learning
https://github.com/afshinea/stanford-cs-229-machine-learning/blob/master/en/cheatsheet-unsupervised-learning.pdf
3- Deep Learning
https://github.com/afshinea/stanford-cs-229-machine-learning/blob/master/en/cheatsheet-deep-learning.pdf
4- Machine Learning Tips and Tricks
https://github.com/afshinea/stanford-cs-229-machine-learning/blob/master/en/cheatsheet-machine-learning-tips-and-tricks.pdf
5- Probabilities and Statistics
https://github.com/afshinea/stanford-cs-229-machine-learning/blob/master/en/refresher-probabilities-statistics.pdf
6- Comprehensive Stanford Master Cheat Sheet
https://github.com/afshinea/stanford-cs-229-machine-learning/blob/master/en/super-cheatsheet-machine-learning.pdf
7- Linear Algebra and Calculus
https://github.com/afshinea/stanford-cs-229-machine-learning/blob/master/en/refresher-algebra-calculus.pdf
8- Data Science Cheat Sheet
https://s3.amazonaws.com/assets.datacamp.com/blog_assets/PythonForDataScience.pdf
9- Keras Cheat Sheet
https://s3.amazonaws.com/assets.datacamp.com/blog_assets/Keras_Cheat_Sheet_Python.pdf
10- Deep Learning with Keras Cheat Sheet
https://github.com/rstudio/cheatsheets/raw/master/keras.pdf
11- Visual Guide to Neural Network Infrastructures
http://www.asimovinstitute.org/wp-content/uploads/2016/09/neuralnetworks.png
12- Skicit-Learn Python Cheat Sheet
https://s3.amazonaws.com/assets.datacamp.com/blog_assets/Scikit_Learn_Cheat_Sheet_Python.pdf
13- Scikit-learn Cheat Sheet: Choosing the Right Estimator
https://scikit-learn.org/stable/tutorial/machine_learning_map/
14- Tensorflow Cheat Sheet
https://github.com/kailashahirwar/cheatsheets-ai/blob/master/PDFs/Tensorflow.pdf
15- Machine Learning Test Cheat Sheet
https://www.cheatography.com/lulu-0012/cheat-sheets/test-ml/pdf/
https://news.1rj.ru/str/DataScienceT
❤🔥4❤3👍2
REBEL: Relation Extraction By End-to-end Language generation
REBEL is a seq2seq model that simplifies Relation Extraction.
🖥 Github: https://github.com/Babelscape/rebel
⭐️Demo: https://huggingface.co/spaces/Babelscape/rebel-demo
⭐️ Hugging face: https://huggingface.co/Babelscape/rebel-large
📕 Paper: https://arxiv.org/abs/2306.09802v1
🔗Dataset: https://huggingface.co/Babelscape/rebel-large
https://news.1rj.ru/str/DataScienceT
REBEL is a seq2seq model that simplifies Relation Extraction.
🖥 Github: https://github.com/Babelscape/rebel
⭐️Demo: https://huggingface.co/spaces/Babelscape/rebel-demo
⭐️ Hugging face: https://huggingface.co/Babelscape/rebel-large
📕 Paper: https://arxiv.org/abs/2306.09802v1
🔗Dataset: https://huggingface.co/Babelscape/rebel-large
https://news.1rj.ru/str/DataScienceT
❤1❤🔥1
Semi-supervised learning made simple with self-supervised clustering [CVPR 2023]
🖥 Github: https://github.com/Ruixinhua/ExplainableNRS
⏩ Paper: https://arxiv.org/pdf/2306.07506v1.pdf
💨 Dataset: https://paperswithcode.com/dataset/mind
https://news.1rj.ru/str/DataScienceT
🖥 Github: https://github.com/Ruixinhua/ExplainableNRS
⏩ Paper: https://arxiv.org/pdf/2306.07506v1.pdf
💨 Dataset: https://paperswithcode.com/dataset/mind
https://news.1rj.ru/str/DataScienceT
❤2❤🔥1👍1
Multi-Modality Arena
Multi-Modality Arena is an evaluation platform for large multi-modality models.
🖥 Github: https://github.com/opengvlab/multi-modality-arena
⭐️ Demo: http://vlarena.opengvlab.com/
📕 Paper: https://arxiv.org/abs/2306.09265v1
🔗Dataset: https://paperswithcode.com/dataset/vsr
https://news.1rj.ru/str/DataScienceT
Multi-Modality Arena is an evaluation platform for large multi-modality models.
🖥 Github: https://github.com/opengvlab/multi-modality-arena
⭐️ Demo: http://vlarena.opengvlab.com/
📕 Paper: https://arxiv.org/abs/2306.09265v1
🔗Dataset: https://paperswithcode.com/dataset/vsr
https://news.1rj.ru/str/DataScienceT
❤1❤🔥1
Get started in Data Science with Microsoft's FREE course for beginners.
- 10 weeks
- 20 lessons
- Lecture notes
- 100% FREE
https://microsoft.github.io/Data-Science-For-Beginners/
https://news.1rj.ru/str/DataScienceT
- 10 weeks
- 20 lessons
- Lecture notes
- 100% FREE
https://microsoft.github.io/Data-Science-For-Beginners/
https://news.1rj.ru/str/DataScienceT
👍5❤🔥2❤1
Fine-tuning MMS Adapter Models for Multi-Lingual ASR
MMS' Adapter training is both more memory efficient, more robust and yields better performance for low-resource languages.
🤗 Post: https://huggingface.co/blog/mms_adapters
🖥 Colab: https://colab.research.google.com/github/patrickvonplaten/notebooks/blob/master/Fine_Tune_MMS_on_Common_Voice.ipynb
🖥 Github: https://github.com/facebookresearch/fairseq/tree/main/examples/mms/asr
⭐️ Demo: https://huggingface.co/spaces/facebook/MMS
📕 Paper: https://huggingface.co/papers/2305.13516
https://news.1rj.ru/str/DataScienceT
MMS' Adapter training is both more memory efficient, more robust and yields better performance for low-resource languages.
🤗 Post: https://huggingface.co/blog/mms_adapters
🖥 Colab: https://colab.research.google.com/github/patrickvonplaten/notebooks/blob/master/Fine_Tune_MMS_on_Common_Voice.ipynb
🖥 Github: https://github.com/facebookresearch/fairseq/tree/main/examples/mms/asr
⭐️ Demo: https://huggingface.co/spaces/facebook/MMS
📕 Paper: https://huggingface.co/papers/2305.13516
https://news.1rj.ru/str/DataScienceT
❤🔥3👍3❤1
Building Transformer Models with Attention Crash Course. Build a Neural Machine Translator in 12 Days
https://machinelearningmastery.com/building-transformer-models-with-attention-crash-course-build-a-neural-machine-translator-in-12-days/
https://news.1rj.ru/str/DataScienceT
https://machinelearningmastery.com/building-transformer-models-with-attention-crash-course-build-a-neural-machine-translator-in-12-days/
https://news.1rj.ru/str/DataScienceT
❤2👍2🏆1
This media is not supported in your browser
VIEW IN TELEGRAM
⭐️ Text-Guided Adversarial Makeup 🫣
Novel facial privacy protection via adversarial latent codes. Makeup vs Face Recognition.
🌐 Review: https://t.ly/pBCP
🌐 Paper: arxiv.org/pdf/2306.10008.pdf
🔥 Code: github.com/fahadshamshad/Clip2Protect
https://news.1rj.ru/str/DataScienceT
Novel facial privacy protection via adversarial latent codes. Makeup vs Face Recognition.
🌐 Review: https://t.ly/pBCP
🌐 Paper: arxiv.org/pdf/2306.10008.pdf
🔥 Code: github.com/fahadshamshad/Clip2Protect
https://news.1rj.ru/str/DataScienceT
🏆4👍1
🚀 Fast Segment Anything
Fast Segment Anything Model reaches comparable performance with the SAM method at 50 times higher run-time speed.
git clone https://github.com/CASIA-IVA-Lab/FastSAM.git
🖥 Github: https://github.com/casia-iva-lab/fastsam
⭐️ Demo:https://huggingface.co/spaces/An-619/FastSAM
📕 Paper: https://arxiv.org/pdf/2306.12156.pdf
🔗Dataset: https://paperswithcode.com/dataset/sa-1b
https://news.1rj.ru/str/DataScienceT
Fast Segment Anything Model reaches comparable performance with the SAM method at 50 times higher run-time speed.
git clone https://github.com/CASIA-IVA-Lab/FastSAM.git
🖥 Github: https://github.com/casia-iva-lab/fastsam
⭐️ Demo:https://huggingface.co/spaces/An-619/FastSAM
📕 Paper: https://arxiv.org/pdf/2306.12156.pdf
🔗Dataset: https://paperswithcode.com/dataset/sa-1b
https://news.1rj.ru/str/DataScienceT
👍7❤🔥2❤1