🖥 Chat Downloader
A simple tool used to retrieve chat messages from livestreams, videos, clips and past broadcasts.
- YouTube.com
- Zoom.us
- Facebook.com
- Twitch.tv
🖥 Github
📝 Docs
https://news.1rj.ru/str/DataScienceT
A simple tool used to retrieve chat messages from livestreams, videos, clips and past broadcasts.
- YouTube.com
- Zoom.us
- Facebook.com
- Twitch.tv
$ pip install chat-downloader
Using:
# termimal
$ chat_downloader https://www.youtube.com/watch?v=video_link --output chat.json
# Python noscript
from chat_downloader import ChatDownloader
url = 'https://www.youtube.com/watch?v=video_link'
chat = ChatDownloader().get_chat(url)
for message in chat:
chat.print_formatted(message) 🖥 Github
📝 Docs
https://news.1rj.ru/str/DataScienceT
❤5👍2
🖥 Tkinter Designer
An easy and fast way to create a Python GUI 🐍
🖥 Github
https://news.1rj.ru/str/DataScienceT
An easy and fast way to create a Python GUI 🐍
🖥 Github
https://news.1rj.ru/str/DataScienceT
👍6❤2
Benchmarking Test-Time Adaptation against Distribution Shifts in Image Classification
🖥 Github: https://github.com/yuyongcan/benchmark-tta
⏩ Paper: https://arxiv.org/pdf/2307.03133v1.pdf
💨 Dataset: https://paperswithcode.com/dataset/imagenet
https://news.1rj.ru/str/DataScienceT
🖥 Github: https://github.com/yuyongcan/benchmark-tta
⏩ Paper: https://arxiv.org/pdf/2307.03133v1.pdf
💨 Dataset: https://paperswithcode.com/dataset/imagenet
https://news.1rj.ru/str/DataScienceT
❤2👍2
🔎 DeepOnto: A Python Package for Ontology Engineering with Deep Learning
A package for ontology engineering with deep learning and language model.
pip install deeponto
🖥 Github: https://github.com/KRR-Oxford/DeepOnto
📌 Project: https://krr-oxford.github.io/DeepOnto/
📕 Paper: https://arxiv.org/abs/2307.03067v1
🚀 Dataset: https://paperswithcode.com/dataset/ontolama
https://news.1rj.ru/str/DataScienceT
A package for ontology engineering with deep learning and language model.
pip install deeponto
🖥 Github: https://github.com/KRR-Oxford/DeepOnto
📌 Project: https://krr-oxford.github.io/DeepOnto/
📕 Paper: https://arxiv.org/abs/2307.03067v1
🚀 Dataset: https://paperswithcode.com/dataset/ontolama
https://news.1rj.ru/str/DataScienceT
❤3👍2
Top 6 Algorithms Every Software Engineer Should Know
1) Binary Search Algorithm.
2) Bubble Sort Algorithm.
3) Merge Sort Algorithm
4) Depth-first Search Algorithm
5) Dijkstra’s Algorithm
6) Randomized Algorithm
https://news.1rj.ru/str/DataScienceT
1) Binary Search Algorithm.
2) Bubble Sort Algorithm.
3) Merge Sort Algorithm
4) Depth-first Search Algorithm
5) Dijkstra’s Algorithm
6) Randomized Algorithm
https://news.1rj.ru/str/DataScienceT
❤7👍2
⭐️ InPars Toolkit: A Unified and Reproducible Synthetic Data Generation Pipeline for Neural Information Retrieval.
🖥 Github: https://github.com/zetaalphavector/inpars
📕 Paper: https://arxiv.org/abs/2307.04601v1
🚀 Dataset: https://paperswithcode.com/dataset/beir
https://news.1rj.ru/str/DataScienceT
pip install inpars🖥 Github: https://github.com/zetaalphavector/inpars
📕 Paper: https://arxiv.org/abs/2307.04601v1
🚀 Dataset: https://paperswithcode.com/dataset/beir
https://news.1rj.ru/str/DataScienceT
👍3❤2
👍3🏆2
Django Roadmap
Link 1: https://github.com/HHHMHA/django-roadmap
Link 2:
https://github.com/faresemad/Django-Roadmap
Share this roadmap for your friends
https://news.1rj.ru/str/CodeProgrammer
Link 1: https://github.com/HHHMHA/django-roadmap
Link 2:
https://github.com/faresemad/Django-Roadmap
Share this roadmap for your friends
https://news.1rj.ru/str/CodeProgrammer
👍3
Fourier-Net
🖥 Github: https://github.com/xi-jia/fourier-net
⏩ Paper: https://arxiv.org/pdf/2307.02997v1.pdf
💨 Dataset: https://paperswithcode.com/dataset/learn2reg
https://news.1rj.ru/str/DataScienceT
🖥 Github: https://github.com/xi-jia/fourier-net
⏩ Paper: https://arxiv.org/pdf/2307.02997v1.pdf
💨 Dataset: https://paperswithcode.com/dataset/learn2reg
https://news.1rj.ru/str/DataScienceT
👍2
🔥 Generative Pretraining in Multimodality
Model can take in any single-modality or multimodal data input indiscriminately through a one-model-for-all autoregressive training process.
🖥 Github: https://github.com/baaivision/emu
📕 Paper: https://arxiv.org/abs/2307.05222v1
🚀 Dataset: https://paperswithcode.com/dataset/mmc4
https://news.1rj.ru/str/DataScienceT
Model can take in any single-modality or multimodal data input indiscriminately through a one-model-for-all autoregressive training process.
🖥 Github: https://github.com/baaivision/emu
📕 Paper: https://arxiv.org/abs/2307.05222v1
🚀 Dataset: https://paperswithcode.com/dataset/mmc4
https://news.1rj.ru/str/DataScienceT
👍2❤1
This media is not supported in your browser
VIEW IN TELEGRAM
AnimateDiff
Effective framework to animate most of existing personalized text-to-image models once for all, saving the efforts in model-specific tuning.
🖥 Github: https://github.com/guoyww/animatediff/
🖥 Colab: https://colab.research.google.com/github/camenduru/AnimateDiff-colab/blob/main/AnimateDiff_colab.ipynb
📕 Paper: https://arxiv.org/abs/2307.04725
🚀 Project: https://animatediff.github.io/
https://news.1rj.ru/str/DataScienceT
Effective framework to animate most of existing personalized text-to-image models once for all, saving the efforts in model-specific tuning.
🖥 Github: https://github.com/guoyww/animatediff/
🖥 Colab: https://colab.research.google.com/github/camenduru/AnimateDiff-colab/blob/main/AnimateDiff_colab.ipynb
📕 Paper: https://arxiv.org/abs/2307.04725
🚀 Project: https://animatediff.github.io/
https://news.1rj.ru/str/DataScienceT
👍2