ML Research Hub – Telegram
ML Research Hub
32.7K subscribers
4.01K photos
229 videos
23 files
4.32K links
Advancing research in Machine Learning – practical insights, tools, and techniques for researchers.

Admin: @HusseinSheikho || @Hussein_Sheikho
Download Telegram
🔥Platypus: Quick, Cheap, and Powerful Refinement of LLMs

Family of fine-tuned and merged LLMs that achieves the strongest performance and currently stands at first place in HuggingFace's

git clone https://github.com/lm-sys/FastChat.git
cd FastChat

🖥 Github: https://github.com/arielnlee/Platypus

💻 Project: https://platypus-llm.github.io/

📕 Paper: https://arxiv.org/abs/2308.07317v1

⭐️ Dataset: https://huggingface.co/datasets/garage-bAInd/Open-Platypus

https://news.1rj.ru/str/DataScienceT
👍3
Forwarded from Machine Learning
Encyclopedia of Data Science and Machine Learning (2023)

This book was released two days ago and this book is more than 3400 pages.

With this book, you can become a first-class professional data scientist

The price of the book is $3,400

To get a discount of up to 95%, contact me immediately

Contact @hussein_sheikho
👍8👎4🏆1
This media is not supported in your browser
VIEW IN TELEGRAM
EasyEdit: An Easy-to-use Knowledge Editing Framework for Large Language Models

EasyEdit, demonstrating that knowledge editing surpasses traditional fine-tuning in terms of reliability and generalization.

🖥 Github: https://github.com/zjunlp/easyedit

📕 Paper: https://arxiv.org/abs/2308.07269v1

⭐️ Demo: http://knowlm.zjukg.cn/demo_edit

🎓Online Tutorial: https://colab.research.google.com/drive/1zcj8YgeqttwkpfoHXz9O9_rWxFFufXSO?usp=sharing

☑️ Docs: https://zjunlp.gitbook.io/easyedit

🤓 Dataset: https://drive.google.com/file/d/1IVcf5ikpfKuuuYeedUGomH01i1zaWuI6/view?usp=sharing

https://news.1rj.ru/str/DataScienceT
👍41
🧑‍💻DeciCoder: A new open-source LLM, specialized for generating code in Python, Java, and Javanoscript..

- parameters: 1 B
- dataset: 'The Stack' dataset
- supports: Python, Javanoscript, Java
- context: 2048 tokens

Model
Colab
Dataset

https://news.1rj.ru/str/DataScienceT
👍52
✔️ DeDoDe: Detect, Don't Describe -- Describe, Don't Detect for Local Feature Matching

🖥 Github: https://github.com/parskatt/dedode

☑️ TensorRT: https://github.com/fabio-sim/DeDoDe-ONNX-TensorRT

📕 Paper: https://arxiv.org/abs/2308.08479

⭐️ Demos: https://github.com/Parskatt/DeDoDe/blob/main/demo

https://news.1rj.ru/str/DataScienceT
👍21
❤‍🔥1👍1
☄️Dataset Quantization

DQ is able to generate condensed small datasets for training unseen network architectures with state-of-the-art compression ratios for lossless model training.

git clone https://github.com/vimar-gu/DQ.git
cd DQ


🖥 Github: https://github.com/magic-research/dataset_quantization

📕 Paper: https://arxiv.org/abs/2308.10524v1

☑️ Dataset: https://paperswithcode.com/dataset/gsm8k

https://news.1rj.ru/str/DataScienceT
👍52
Forwarded from Data Science Library
Machine Learning for Data Science Handbook (2023)

This book is available now only in paid channel

Pages: 975 pages
Rate: ⭐️⭐️⭐️⭐️⭐️

Cost of subnoscription in Paid channel is 5$ for one time and forever

Channel link: https://news.1rj.ru/str/+LnCmAFJO3tNmYjUy

Paid channel contain important book and udemy and other courses as zip files

Welcome all
Contact @Hussein_sheikho
👍4
Ske2Grid: Skeleton-to-Grid Representation Learning for Action Recognition

🖥 Github: https://github.com/osvai/ske2grid

📕 Paper: https://arxiv.org/pdf/2308.07571v1.pdf

🔥 Dataset: https://paperswithcode.com/dataset/ucf101

https://news.1rj.ru/str/DataScienceT
👍2
👍31
prompt2model - Generate Deployable Models from Instructions

prompt2model - Generate Deployable Models from Natural Language Instructions


pip install prompt2model

🖥 Github: https://github.com/neulab/prompt2model

📕 Paper: https://arxiv.org/abs/2308.12261v1

⭐️ Demo: https://github.com/facebookresearch/sonar#usage

☑️ Dataset: https://paperswithcode.com/dataset/mconala

https://news.1rj.ru/str/DataScienceT
3👍3
🔥Dense Text-to-Image Generation with Attention Modulation

DenseDiffusion, a training-free method that adapts a pre-trained text-to-image model to handle dense captions while offering control over the scene layout.

🖥 Github: https://github.com/naver-ai/densediffusion

📕 Paper: https://arxiv.org/abs/2308.12964v1

⭐️ Dataset: https://paperswithcode.com/dataset/coco

https://news.1rj.ru/str/DataScienceT
👍3
Dynamic Low-Rank Instance Adaptation for Universal Neural Image Compression

🖥 Github: https://github.com/llvy21/duic

📕 Paper: https://arxiv.org/pdf/2308.07733v1.pdf

🔥 Dataset: https://paperswithcode.com/dataset/pixel-art

https://news.1rj.ru/str/DataScienceT
👍4