This media is not supported in your browser
VIEW IN TELEGRAM
🔥 One of the most beautiful interactive visualizations on how LLMs work.
http://ig.ft.com/generative-ai/
https://news.1rj.ru/str/DataScienceT
http://ig.ft.com/generative-ai/
https://news.1rj.ru/str/DataScienceT
👍6❤3
🚀 Introducing YOLO-NAS Pose : A Game-Changer in Pose Estimation 🚀
This Model is a redefinition of pose estimation's potential.
🖥 Github: https://github.com/Deci-AI/super-gradients
📕 Notebook: https://colab.research.google.com/drive/1O4N5Vbzv0rfkT81LQidPktX8RtoS5A40
🚀 Demo: https://huggingface.co/spaces/Deci/YOLO-NAS-Pose-Demo
🌐 Colab: https://colab.research.google.com/drive/1agLj0aGx48C_rZPrTkeA18kuncack6lF
https://news.1rj.ru/str/DataScienceT
This Model is a redefinition of pose estimation's potential.
🖥 Github: https://github.com/Deci-AI/super-gradients
📕 Notebook: https://colab.research.google.com/drive/1O4N5Vbzv0rfkT81LQidPktX8RtoS5A40
🚀 Demo: https://huggingface.co/spaces/Deci/YOLO-NAS-Pose-Demo
🌐 Colab: https://colab.research.google.com/drive/1agLj0aGx48C_rZPrTkeA18kuncack6lF
https://news.1rj.ru/str/DataScienceT
👍3
Bilingual Corpus Mining and Multistage Fine-Tuning for Improving Machine Translation of Lecture Trannoscripts
🖥 Github: https://github.com/shyyhs/CourseraParallelCorpusMining
📕 Paper: https://arxiv.org/abs/2311.03696v1
🔥 Datasets: https://paperswithcode.com/dataset/aspec
https://news.1rj.ru/str/DataScienceT
🖥 Github: https://github.com/shyyhs/CourseraParallelCorpusMining
📕 Paper: https://arxiv.org/abs/2311.03696v1
🔥 Datasets: https://paperswithcode.com/dataset/aspec
https://news.1rj.ru/str/DataScienceT
👍1
Large Language Models (in 2023)
An excellent summary of the research progress and developments in LLMs.
Hyung Won chung, OpenAI (ex.Google and MIT Alumni) made this content publicly available. It's a great way to catch up on some important themes like scaling and optimizing LLMs.
Watch his talk here and Slides shared here.
https://news.1rj.ru/str/DataScienceT
An excellent summary of the research progress and developments in LLMs.
Hyung Won chung, OpenAI (ex.Google and MIT Alumni) made this content publicly available. It's a great way to catch up on some important themes like scaling and optimizing LLMs.
Watch his talk here and Slides shared here.
https://news.1rj.ru/str/DataScienceT
👍3❤1
🚀 Whisper-V3 / Consistency Decoder
Improved decoding for stable diffusion vaes.
- Whisper paper: https://arxiv.org/abs/2212.04356
- Whisper-V3 checkpoint: https://github.com/openai/whisper/discussions/1762
- Consistency Models: https://arxiv.org/abs/2303.01469
- Consistency Decoder release: https://github.com/openai/consistencydecoder
https://news.1rj.ru/str/DataScienceT
Improved decoding for stable diffusion vaes.
- Whisper paper: https://arxiv.org/abs/2212.04356
- Whisper-V3 checkpoint: https://github.com/openai/whisper/discussions/1762
- Consistency Models: https://arxiv.org/abs/2303.01469
- Consistency Decoder release: https://github.com/openai/consistencydecoder
https://news.1rj.ru/str/DataScienceT
👍2
This media is not supported in your browser
VIEW IN TELEGRAM
NVIDIA just made Pandas 150x faster with zero code changes.
All you have to do is:
Their RAPIDS library will automatically know if you're running on GPU or CPU and speed up your processing.
You can try it in this colab notebook
GitHub repo: https://github.com/rapidsai/cudf
https://news.1rj.ru/str/DataScienceT
All you have to do is:
%load_ext cudf.pandasimport pandas as pd
Their RAPIDS library will automatically know if you're running on GPU or CPU and speed up your processing.
You can try it in this colab notebook
GitHub repo: https://github.com/rapidsai/cudf
https://news.1rj.ru/str/DataScienceT
👍7❤2
🪞 Mirror: A Universal Framework for Various Information Extraction Tasks
🖥 Github: https://github.com/Spico197/Mirror
📕 Paper: https://arxiv.org/abs/2311.05419v1
🌐 Dataset: https://paperswithcode.com/dataset/glue
https://news.1rj.ru/str/DataScienceT
🖥 Github: https://github.com/Spico197/Mirror
📕 Paper: https://arxiv.org/abs/2311.05419v1
🌐 Dataset: https://paperswithcode.com/dataset/glue
https://news.1rj.ru/str/DataScienceT
👍6❤2
⚡️ LCM-LoRA: A Universal Stable-Diffusion Acceleration Module
Latent Consistency Models: Synthesizing High-Resolution Images with Few-Step Inference.
🖥 Github: https://github.com/luosiallen/latent-consistency-model
📕 Paper: https://arxiv.org/abs/2311.05556v1
🌐 Project: https://latent-consistency-models.github.io
🤗 Demo: https://huggingface.co/spaces/SimianLuo/Latent_Consistency_Model
https://news.1rj.ru/str/DataScienceT
Latent Consistency Models: Synthesizing High-Resolution Images with Few-Step Inference.
pip install diffusers transformers accelerate gradio==3.48.0 🖥 Github: https://github.com/luosiallen/latent-consistency-model
📕 Paper: https://arxiv.org/abs/2311.05556v1
🌐 Project: https://latent-consistency-models.github.io
🤗 Demo: https://huggingface.co/spaces/SimianLuo/Latent_Consistency_Model
https://news.1rj.ru/str/DataScienceT
👍3
Quantized Distillation for Driver Activity Recognition
🖥 Github: https://github.com/calvintanama/qd-driver-activity-reco
📕 Paper: https://arxiv.org/pdf/2311.05970v1.pdf
🔥 Datasets: https://paperswithcode.com/dataset/drive-act
✨ Tasks: https://paperswithcode.com/task/activity-recognition
https://news.1rj.ru/str/DataScienceT
🖥 Github: https://github.com/calvintanama/qd-driver-activity-reco
📕 Paper: https://arxiv.org/pdf/2311.05970v1.pdf
🔥 Datasets: https://paperswithcode.com/dataset/drive-act
✨ Tasks: https://paperswithcode.com/task/activity-recognition
https://news.1rj.ru/str/DataScienceT
👍1
Do you enjoy reading this channel?
Perhaps you have thought about placing ads on it?
To do this, follow three simple steps:
1) Sign up: https://telega.io/c/dataScienceT
2) Top up the balance in a convenient way
3) Create an advertising post
If the topic of your post fits our channel, we will publish it with pleasure.
Perhaps you have thought about placing ads on it?
To do this, follow three simple steps:
1) Sign up: https://telega.io/c/dataScienceT
2) Top up the balance in a convenient way
3) Create an advertising post
If the topic of your post fits our channel, we will publish it with pleasure.
👍4
🔊 Qwen-Audio: Advancing Universal Audio Understanding via Unified Large-Scale Audio-Language Models
Сhat & pretrained large audio language model proposed by Alibaba Cloud.
🐱 Github: https://github.com/qwenlm/qwen-audio
🚀 Demo: https://qwen-audio.github.io/Qwen-Audio/
📕 Paper: https://arxiv.org/abs/2311.07919v1
⏩ Dataset: https://paperswithcode.com/dataset/vocalsound
https://news.1rj.ru/str/DataScienceT
Сhat & pretrained large audio language model proposed by Alibaba Cloud.
🐱 Github: https://github.com/qwenlm/qwen-audio
🚀 Demo: https://qwen-audio.github.io/Qwen-Audio/
📕 Paper: https://arxiv.org/abs/2311.07919v1
⏩ Dataset: https://paperswithcode.com/dataset/vocalsound
https://news.1rj.ru/str/DataScienceT
👍3
This media is not supported in your browser
VIEW IN TELEGRAM
🟢 Introducing Emu Video and Emu Edit, our latest generative AI research milestones
🚀 Meta: https://ai.meta.com/blog/emu-text-to-video-generation-image-editing-research/
⭐️Project page: https://emu-edit.metademolab.com
📌Paper: https://emu-edit.metademolab.com/assets/emu_edit.pdf
https://news.1rj.ru/str/DataScienceT
🚀 Meta: https://ai.meta.com/blog/emu-text-to-video-generation-image-editing-research/
⭐️Project page: https://emu-edit.metademolab.com
📌Paper: https://emu-edit.metademolab.com/assets/emu_edit.pdf
https://news.1rj.ru/str/DataScienceT
🌴Data Science A-Z™: Hands-On Exercises & ChatGPT Bonus [2023]🌴
Learn Data Science step by step through real Analytics examples. Data Mining, Modeling, Tableau Visualization and more!
Price :- 120$ - 20$
Price: 20$
Contact @hussein_sheikho
Learn Data Science step by step through real Analytics examples. Data Mining, Modeling, Tableau Visualization and more!
Price: 20$
Contact @hussein_sheikho
👍2
This media is not supported in your browser
VIEW IN TELEGRAM
🌦 Makani: Massively parallel training of machine-learning based weather and climate models
🐱Github: https://github.com/NVIDIA/makani
📕Blog: https://developer.nvidia.com/blog/modeling-earths-atmosphere-with-spherical-fourier-neural-operators/
⏩ Dataset: https://github.com/NVIDIA/makani/tree/main/datasets
🐱Github: https://github.com/NVIDIA/makani
📕Blog: https://developer.nvidia.com/blog/modeling-earths-atmosphere-with-spherical-fourier-neural-operators/
⏩ Dataset: https://github.com/NVIDIA/makani/tree/main/datasets
👍4❤1
Inherently Interpretable Time Series Classification via Multiple Instance Learning (MILLET)
🖥 Github: https://github.com/jaearly/miltimeseriesclassification
📕 Paper: https://arxiv.org/pdf/2311.10049v1.pdf
✨ Tasks: https://paperswithcode.com/task/decision-making
https://news.1rj.ru/str/DataScienceT
🖥 Github: https://github.com/jaearly/miltimeseriesclassification
📕 Paper: https://arxiv.org/pdf/2311.10049v1.pdf
✨ Tasks: https://paperswithcode.com/task/decision-making
https://news.1rj.ru/str/DataScienceT
👍4
➕ SA-Med2D-20M Dataset: Segment Anything in 2D Medical Imaging with 20 Million masks
🖥 Github: https://github.com/OpenGVLab/SAM-Med2D
🖥 Colab: https://colab.research.google.com/github/OpenGVLab/SAM-Med2D/blob/main/predictor_example.ipynb
📕 Paper: https://arxiv.org/abs/2311.11969v1
⭐️ Dataset: https://arxiv.org/abs/2311.11969
🖥 Github: https://github.com/OpenGVLab/SAM-Med2D
🖥 Colab: https://colab.research.google.com/github/OpenGVLab/SAM-Med2D/blob/main/predictor_example.ipynb
📕 Paper: https://arxiv.org/abs/2311.11969v1
⭐️ Dataset: https://arxiv.org/abs/2311.11969
👍7❤2
🐬 ShareGPT4V:Improving Large Multi-Modal Models with Better Captions
🖥 Code: https://github.com/InternLM/InternLM-XComposer/tree/main/projects/ShareGPT4V
🦾 Project: https://sharegpt4v.github.io/
⚡️ Demo: https://huggingface.co/spaces/Lin-Chen/ShareGPT4V-7B
📚 Paper: https://arxiv.org/pdf/2311.12793.pdf
🔗 Dataset: https://huggingface.co/datasets/Lin-Chen/ShareGPT4V
🖥 Code: https://github.com/InternLM/InternLM-XComposer/tree/main/projects/ShareGPT4V
🦾 Project: https://sharegpt4v.github.io/
⚡️ Demo: https://huggingface.co/spaces/Lin-Chen/ShareGPT4V-7B
📚 Paper: https://arxiv.org/pdf/2311.12793.pdf
🔗 Dataset: https://huggingface.co/datasets/Lin-Chen/ShareGPT4V
👍2❤1