ML Research Hub – Telegram
ML Research Hub
32.7K subscribers
4.01K photos
229 videos
23 files
4.32K links
Advancing research in Machine Learning – practical insights, tools, and techniques for researchers.

Admin: @HusseinSheikho || @Hussein_Sheikho
Download Telegram
📑 Ten simple rules for designing graphical abstracts

📕 Journal: Plos Computational Biology (I.F.=4.3)
🗓 Publish year: 2024

📱Authors: Helena Klara Jambor ,Martin Bornhäuser
🏡 University: Universitätsklinikum Carl Gustav Carus an der Technischen Universität Dresden, Germany

📎 Study the paper

Telegram: https://news.1rj.ru/str/DataScienceT
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍3
This media is not supported in your browser
VIEW IN TELEGRAM
👱 Arc2Face: A Foundation Model of Human Faces

TL; DR: a large dataset of high-resolution facial images, as well as a face generation model trained on its basis, which:

capable of creating photorealistic generations in a few seconds
provides complete similarity of generations to the target image compared to other existing models
built on the basis of Stable Diffusion and can be configured for any generation options, for example, different poses / facial expressions, etc.

Github: https://github.com/foivospar/Arc2Face

Project: https://arc2face.github.io

Demo: https://huggingface.co/spaces/FoivosPar/Arc2Face

Paper: https://arxiv.org/abs/2403.11641

Telegram: https://news.1rj.ru/str/DataScienceT
Please open Telegram to view this post
VIEW IN TELEGRAM
👍5❤‍🔥22
📁 Recent Advances in Generative Adversarial Networks for Gene Expression Data: A Comprehensive Review

📕 Journal: Mathematics (I.F.=2.4)
🗓 Publish year: 2023

🧑‍💻Authors: Minhyeok Lee
🏢University: Chung-Ang University, Republic of Korea

📎 Study the paper

Telegram: https://news.1rj.ru/str/DataScienceT
Please open Telegram to view this post
VIEW IN TELEGRAM
👍5
⚡️ LLocalSearch: completely locally running meta search engine using LLM Agents

It is a completely local metasearch engine using LLM agents.

The user can ask a question, and the system will use a chain of AI agents to find the answer. The user can see the progress of the work and the final answer. No OpenAI or Google API keys are required.

Github

Telegram: https://news.1rj.ru/str/DataScienceT
Please open Telegram to view this post
VIEW IN TELEGRAM
👍5
🌉 Financial Datasets is an open source Python library that allows developers to create synthetic financial data sets using large language models (LLMs).

With this library, you can generate realistic financial data sets in 5 lines of code, based on SEC reports such as 10-Ks, 10-Qs and other financial reports.

Such datasets are useful for:
• LLM assessments
• LLM fine tuning
• testing of financial instruments
• and much more

The project is completely open source.

pip financial-datasets.

GitHub : https://github.com/virattt/financial-datasets

Example with code: https://colab.research.google.com/gist/virattt/f9b5a0ae82cc0caab57df5dedc2927c9/intro-financial-datasets.ipynb#scrollTo=K-b_1BPtJsS1

Telegram: https://news.1rj.ru/str/DataScienceT
Please open Telegram to view this post
VIEW IN TELEGRAM
👍52
20240404-11478-1dcz640.gif
13.6 MB
THE MOST PRIVATE GROUP №1
They are robbing Crypto Exchanges for Millions of dollars!
Yesterday profit = 50,000$+

👉 https://news.1rj.ru/str/+VubRJjjSR_o4MzI1
👉 https://news.1rj.ru/str/+VubRJjjSR_o4MzI1
👉 https://news.1rj.ru/str/+VubRJjjSR_o4MzI1

JOIN FAST! First 1000 subs will be accepted! 👀🚀
👍5
🦖 DINO-Tracker: Taming DINO for Self-Supervised Point Tracking in a Single Video

👉 The Weizmann Institute has just released code for a new SOTA for object tracking.

Github: https://github.com/AssafSinger94/dino-tracker

Project: https://dino-tracker.github.io/

Paper: https://arxiv.org/abs/2403.14548

Telegram: https://news.1rj.ru/str/DataScienceT
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍41
This media is not supported in your browser
VIEW IN TELEGRAM
🔥 ECoDepth: SOTA Diffusive Mono-Depth 🔥

🤨 New SIDE model using a diffusion backbone conditioned on ViT embeddings. It's the new SOTA in SIDE. Source Code released 💙

👉 Review: https://t.ly/s2pbB

👉 Paper: https://lnkd.in/eYt5yr_q

😏 Code: https://lnkd.in/eEcyPQcd

Telegram: https://news.1rj.ru/str/DataScienceT
Please open Telegram to view this post
VIEW IN TELEGRAM
👍4
Looking for a Remote Job? 💻🌍

🐍 Python ➡️ https://news.1rj.ru/str/remote_python_jobs

🔮 AI/ML/DS  ➡️ https://news.1rj.ru/str/remote_ai_jobs

☕️Java ➡️ https://news.1rj.ru/str/remote_java_jobs

🐘 PHP ➡️ https://news.1rj.ru/str/remote_php_jobs

♦️ Ruby ➡️ https://news.1rj.ru/str/remote_ruby_job

🧑‍💻GO Lang ➡️ https://news.1rj.ru/str/remote_go_jobs

🚀 DevOPS ➡️ https://news.1rj.ru/str/remote_devops_jobs

💼 FrondEnd  ➡️ https://news.1rj.ru/str/remote_frontend_jobs

📱Mobile ➡️ https://news.1rj.ru/str/remote_mobile_jobs

🐞 QA ➡️ https://news.1rj.ru/str/remote_qa_jobs

Subscribe now and turn your skills into a thriving remote career! 💻🌍
👍3
🧑‍🎓 Study of Tensor Network Applications in Complex Networks

📕 Integrated master's thesis in engineering physics

🗓 Publish year: 2022

📎 Study Thesis: https://repositorio.ul.pt/bitstream/10451/57310/1/TM_Francisco_Costa.pdf

Telegram: https://news.1rj.ru/str/DataScienceT
Please open Telegram to view this post
VIEW IN TELEGRAM
👍3🏆2
20240406-30409-1yz3ns9.gif
13.6 MB
THE MOST PRIVATE GROUP №1
They are robbing Crypto Exchanges for Millions of dollars!
Yesterday profit = 50,000$+

👉 https://news.1rj.ru/str/+VubRJjjSR_o4MzI1
👉 https://news.1rj.ru/str/+VubRJjjSR_o4MzI1
👉 https://news.1rj.ru/str/+VubRJjjSR_o4MzI1

JOIN FAST! First 1000 subs will be accepted! 👀🚀
👍1
This media is not supported in your browser
VIEW IN TELEGRAM
🎥 Camera control for text-to-video.

CameraCtrl is a model that provides precise control of the camera position, which allows you to accurately control camera angles and movements when generating a view.

Github: https://github.com/hehao13/CameraCtrl

Paper: http://arxiv.org/abs/2404.02101

Project: https://hehao13.github.io/projects-CameraCtrl/

Weights: https://huggingface.co/hehao13/CameraCtrl/tree/main

Telegram: https://news.1rj.ru/str/DataScienceT
Please open Telegram to view this post
VIEW IN TELEGRAM
👍71
🔥 RAG From Scratch 🔥

RAG ( Retrieval Augmented Generation ) is a method of working with LLM, in which the user writes his questions, and the developer programmatically supplements information from external sources and submits everything entirely to the input of the language model. In other words, information is added to the language model in the context of the request, based on which the language model can provide the user with a more complete and accurate answer.

This is a huge list of materials that will help you better understand RAG from the ground up, starting with the basics of indexing, searching and generation. The playlist contains short videos (5-10 minutes) and notebooks with code.

📌 Rag from scratch.
Repository:
https://github.com/langchain-ai/rag-from-scratch
Video playlist:
https://youtube.com/playlist?list=PLfaIDFEXuae2LXbO1_PKyVJiQ23ZztA0x&feature=shared

📌 How RAG can change with long context LLMS.
Video: https://youtube.com/watch?v=SsHUNfhF32s

📌 Adaptive Rag
Video:
https://youtu.be/04ighIjMcAI
Code:
https://github.com/langchain-ai/langgraph/blob/main/examples/rag/langgraph_adaptive_rag_cohere.ipynb
Article: https://arxiv.org/abs/2403.14403

📌 Checking the relevance of documents and returning to the search.
Video:
https://youtube.com/watch?v=E2shqsYwxck
Code:
https://github.com/langchain-ai/langgraph/blob/main/examples/rag/langgraph_crag.ipynb
Article: https://arxiv.org/pdf/2401.15884.pdf

📌 Bug fixes in RAG:
Code: https://github.com/langchain-ai/langgraph/blob/main/examples/rag/langgraph_self_rag.ipynb
Article: https://arxiv.org/abs/2310.11511.pdf

📌 Various approaches to direct questions to the right data source:
Video: https://youtu.be/pfpIndq7Fi8
Code: https://github.com/langchain-ai/rag-from-scratch/blob/main/rag_from_scratch_10_and_11.ipynb

📌 Structuring requests
Video: https://youtu.be/kl6NwWYxvbM
Code: https://github.com/langchain-ai/rag-from-scratch/blob/main/rag_from_scratch_10_and_11.ipynb
Blog: https://blog.langchain.dev/query-construction/
2/ Deep dive into graphDBs: https://blog.langchain.dev/enhancing-rag-based-applications-accuracy-by-constructing-and-leveraging-knowledge-graphs/
3/ Query structuring: https://python.langchain.com/docs/use_cases/query_analysis/techniques/structuring
4/ Self-search queries: https://python.langchain.com/docs/modules/data_connection/retrievers/self_query

📌 Multi -Representation Indexing
Video: https://youtu.be/gTCU9I6QqCE
Code: https://github.com/langchain-ai/rag-from-scratch/blob/main/rag_from_scratch_12_to_14.ipynb
Article: https://arxiv.org/pdf/2312.06648.pdf

📌 Grouping documents by similarity.
Video: https://youtu.be/z_6EeA2LDSw
Code: https://github.com/langchain-ai/langchain/blob/master/cookbook/RAPTOR.ipynb
Article: https://arxiv.org/pdf/2401.18059.pdf

📌 ColBERT
Video: https://youtu.be/cN6S0Ehm7_8
Code: https://github.com/langchain-ai/rag-from-scratch/blob/main/rag_from_scratch_12_to_14.ipynb
Article: https://arxiv.org/abs/2004.12832

📌 Query Translation -- Multi Query
Video: https://youtube.com/watch?v=JChPi0CRnDY
Code: https://github.com/langchain-ai/rag-from-scratch/blob/main/rag_from_scratch_5_to_9.ipynb
Article: https://arxiv.org/pdf/2305.14283.pdf

📌 RAG Fusion
Video: https://youtube.com/watch?v=77qELPbNgxA
Code: https://github.com/langchain-ai/rag-from-scratch/blob/main/rag_from_scratch_5_to_9.ipynb
Code: https://github.com/Raudaschl/rag-fusion

📌 Query Translation -- Decomposition
Video: https://youtube.com/watch?v=h0OPWlEOank
Code: https://github.com/langchain-ai/rag-from-scratch/blob/main/rag_from_scratch_5_to_9.ipynb
Articles: https://arxiv.org/pdf/2205.10625.pdf https://arxiv.org/pdf/2212.10509.pdf

📌 Query Translation -- Step Back
Video: https://youtube.com/watch?v=xn1jEjRyJ2U
Code: https://github.com/langchain-ai/rag-from-scratch/blob/main/rag_from_scratch_5_to_9.ipynb
Article: https://arxiv.org/pdf/2310.06117.pdf

Telegram: https://news.1rj.ru/str/DataScienceT
Please open Telegram to view this post
VIEW IN TELEGRAM
👍92
AutoWebGLM: Bootstrap And Reinforce A Large Language Model-based Web Navigating Agent

🖥 Github: https://github.com/thudm/autowebglm

📕 Paper: https://arxiv.org/abs/2404.03648v1

🔥Dataset: https://paperswithcode.com/dataset/mind2web
👍4
This channels is for Programmers, Coders, Software Engineers.

0️⃣ Python
1️⃣ Data Science
2️⃣ Machine Learning
3️⃣ Data Visualization
4️⃣ Artificial Intelligence
5️⃣ Data Analysis
6️⃣ Statistics
7️⃣ Deep Learning
8️⃣ programming Languages

https://news.1rj.ru/str/addlist/8_rRW2scgfRhOTc0

https://news.1rj.ru/str/Python53
Please open Telegram to view this post
VIEW IN TELEGRAM
👍9
📁 Data-centric Graph Learning: A Survey

📕 Journal:  JOURNAL OF LATEX CLASS FILES
🗓 Publish year: 2021

🧑‍💻 Authors: Yuxin Guo, Deyu Bo, Cheng Yang, Zhiyuan Lu, Zhongjian Zhang, Jixi Liu, Yufei Peng, Chuan Shi
🏢 Universities:   Beijing University of Posts and Telecommunications

📎 Study the paper

https://news.1rj.ru/str/DataScienceT
Please open Telegram to view this post
VIEW IN TELEGRAM
👍4
📁 In silico protein function prediction: the rise of machine learning-based approaches

📕 Journal: Medical Review (De Gruyter)
🗓 Publish year: 2023

🧑‍💻 Authors: Jiaxiao Chen , Zhonghui Gu , Luhua Lai, Jianfeng Pei
🏢 University: Peking University, China

📎 Study the paper

https://news.1rj.ru/str/DataScienceT
Please open Telegram to view this post
VIEW IN TELEGRAM
👍4