🔹 Title: On the Expressiveness of Softmax Attention: A Recurrent Neural Network Perspective
🔹 Publication Date: Published on Jul 31
🔹 Abstract: Softmax attention is more expressive than linear attention due to its recurrent form, which can be analyzed using RNN components. AI-generated summary Since its introduction, softmax attention has become the backbone of modern transformer architectures due to its expressiveness and scalability across a wide range of tasks. However, the main drawback of softmax attention is the quadratic memory requirement and computational complexity with respect to the sequence length . By replacing the softmax nonlinearity, linear attention and similar methods have been introduced to avoid the quadratic bottleneck of softmax attention . Despite these linear forms of attention being derived from the original softmax formulation, they typically lag in terms of downstream accuracy. While strong intuition of the softmax nonlinearity on the query and key inner product suggests that it has desirable properties compared to other nonlinearities, the question of why this discrepancy exists still remains unanswered. This work demonstrates that linear attention is an approximation of softmax attention by deriving the recurrent form of softmax attention . Using this form, each part of softmax attention can be described in the language of recurrent neural networks (RNNs) . Describing softmax attention as an RNN allows for the ablation of the components of softmax attention to understand the importance of each part and how they interact. In this way, our work helps explain why softmax attention is more expressive than its counterparts.
🔹 Paper Links:
• arXiv Page: https://arxiv.org/abs/2507.23632
• PDF: https://arxiv.org/pdf/2507.23632
• Github: https://github.com/gmongaras/On-the-Expressiveness-of-Softmax-Attention-A-Recurrent-Neural-Network-Perspective
🔹 Datasets citing this paper:
No datasets found
🔹 Spaces citing this paper:
No spaces found
==================================
For more data science resources:
✓ https://news.1rj.ru/str/DataScienceT
🔹 Publication Date: Published on Jul 31
🔹 Abstract: Softmax attention is more expressive than linear attention due to its recurrent form, which can be analyzed using RNN components. AI-generated summary Since its introduction, softmax attention has become the backbone of modern transformer architectures due to its expressiveness and scalability across a wide range of tasks. However, the main drawback of softmax attention is the quadratic memory requirement and computational complexity with respect to the sequence length . By replacing the softmax nonlinearity, linear attention and similar methods have been introduced to avoid the quadratic bottleneck of softmax attention . Despite these linear forms of attention being derived from the original softmax formulation, they typically lag in terms of downstream accuracy. While strong intuition of the softmax nonlinearity on the query and key inner product suggests that it has desirable properties compared to other nonlinearities, the question of why this discrepancy exists still remains unanswered. This work demonstrates that linear attention is an approximation of softmax attention by deriving the recurrent form of softmax attention . Using this form, each part of softmax attention can be described in the language of recurrent neural networks (RNNs) . Describing softmax attention as an RNN allows for the ablation of the components of softmax attention to understand the importance of each part and how they interact. In this way, our work helps explain why softmax attention is more expressive than its counterparts.
🔹 Paper Links:
• arXiv Page: https://arxiv.org/abs/2507.23632
• PDF: https://arxiv.org/pdf/2507.23632
• Github: https://github.com/gmongaras/On-the-Expressiveness-of-Softmax-Attention-A-Recurrent-Neural-Network-Perspective
🔹 Datasets citing this paper:
No datasets found
🔹 Spaces citing this paper:
No spaces found
==================================
For more data science resources:
✓ https://news.1rj.ru/str/DataScienceT
❤2
🔹 Title: ReasonRank: Empowering Passage Ranking with Strong Reasoning Ability
🔹 Publication Date: Published on Aug 9
🔹 Paper Links:
• arXiv Page: https://arxiv.org/abs/2508.07050
• PDF: https://arxiv.org/pdf/2508.07050
• Project Page: https://github.com/8421BCD/ReasonRank
• Github: https://github.com/8421BCD/ReasonRank
🔹 Datasets citing this paper:
• https://huggingface.co/datasets/liuwenhan/reasonrank_data_13k
• https://huggingface.co/datasets/liuwenhan/reasonrank_data_rl
• https://huggingface.co/datasets/liuwenhan/reasonrank_data_sft
🔹 Spaces citing this paper:
No spaces found
==================================
For more data science resources:
✓ https://news.1rj.ru/str/DataScienceT
🔹 Publication Date: Published on Aug 9
🔹 Paper Links:
• arXiv Page: https://arxiv.org/abs/2508.07050
• PDF: https://arxiv.org/pdf/2508.07050
• Project Page: https://github.com/8421BCD/ReasonRank
• Github: https://github.com/8421BCD/ReasonRank
🔹 Datasets citing this paper:
• https://huggingface.co/datasets/liuwenhan/reasonrank_data_13k
• https://huggingface.co/datasets/liuwenhan/reasonrank_data_rl
• https://huggingface.co/datasets/liuwenhan/reasonrank_data_sft
🔹 Spaces citing this paper:
No spaces found
==================================
For more data science resources:
✓ https://news.1rj.ru/str/DataScienceT
🔹 Title: WideSearch: Benchmarking Agentic Broad Info-Seeking
🔹 Publication Date: Published on Aug 11
🔹 Paper Links:
• arXiv Page: https://arxiv.org/abs/2508.07999
• PDF: https://arxiv.org/pdf/2508.07999
• Project Page: https://widesearch-seed.github.io/
• Github: https://widesearch-seed.github.io/
🔹 Datasets citing this paper:
• https://huggingface.co/datasets/ByteDance-Seed/WideSearch
🔹 Spaces citing this paper:
No spaces found
==================================
For more data science resources:
✓ https://news.1rj.ru/str/DataScienceT
🔹 Publication Date: Published on Aug 11
🔹 Paper Links:
• arXiv Page: https://arxiv.org/abs/2508.07999
• PDF: https://arxiv.org/pdf/2508.07999
• Project Page: https://widesearch-seed.github.io/
• Github: https://widesearch-seed.github.io/
🔹 Datasets citing this paper:
• https://huggingface.co/datasets/ByteDance-Seed/WideSearch
🔹 Spaces citing this paper:
No spaces found
==================================
For more data science resources:
✓ https://news.1rj.ru/str/DataScienceT
❤1
🔹 Title: Omni-Effects: Unified and Spatially-Controllable Visual Effects Generation
🔹 Publication Date: Published on Aug 11
🔹 Paper Links:
• arXiv Page: https://arxiv.org/abs/2508.07981
• PDF: https://arxiv.org/pdf/2508.07981
• Project Page: https://amap-ml.github.io/Omni-Effects.github.io/
• Github: https://github.com/AMAP-ML/Omni-Effects
🔹 Datasets citing this paper:
• https://huggingface.co/datasets/GD-ML/Omni-VFX
🔹 Spaces citing this paper:
No spaces found
==================================
For more data science resources:
✓ https://news.1rj.ru/str/DataScienceT
🔹 Publication Date: Published on Aug 11
🔹 Paper Links:
• arXiv Page: https://arxiv.org/abs/2508.07981
• PDF: https://arxiv.org/pdf/2508.07981
• Project Page: https://amap-ml.github.io/Omni-Effects.github.io/
• Github: https://github.com/AMAP-ML/Omni-Effects
🔹 Datasets citing this paper:
• https://huggingface.co/datasets/GD-ML/Omni-VFX
🔹 Spaces citing this paper:
No spaces found
==================================
For more data science resources:
✓ https://news.1rj.ru/str/DataScienceT
❤1
🔹 Title: Klear-Reasoner: Advancing Reasoning Capability via Gradient-Preserving Clipping Policy Optimization
🔹 Publication Date: Published on Aug 11
🔹 Paper Links:
• arXiv Page: https://arxiv.org/pdf/2508.07629
• PDF: https://arxiv.org/pdf/2508.07629
• Project Page: https://github.com/suu990901/KlearReasoner
• Github: https://github.com/suu990901/KlearReasoner
🔹 Datasets citing this paper:
No datasets found
🔹 Spaces citing this paper:
No spaces found
==================================
For more data science resources:
✓ https://news.1rj.ru/str/DataScienceT
🔹 Publication Date: Published on Aug 11
🔹 Paper Links:
• arXiv Page: https://arxiv.org/pdf/2508.07629
• PDF: https://arxiv.org/pdf/2508.07629
• Project Page: https://github.com/suu990901/KlearReasoner
• Github: https://github.com/suu990901/KlearReasoner
🔹 Datasets citing this paper:
No datasets found
🔹 Spaces citing this paper:
No spaces found
==================================
For more data science resources:
✓ https://news.1rj.ru/str/DataScienceT
❤1
🔹 Title: UserBench: An Interactive Gym Environment for User-Centric Agents
🔹 Publication Date: Published on Jul 29
🔹 Paper Links:
• arXiv Page: https://arxiv.org/abs/2507.22034
• PDF: https://arxiv.org/pdf/2507.22034
• Github: https://github.com/SalesforceAIResearch/UserBench
🔹 Datasets citing this paper:
No datasets found
🔹 Spaces citing this paper:
No spaces found
==================================
For more data science resources:
✓ https://news.1rj.ru/str/DataScienceT
🔹 Publication Date: Published on Jul 29
🔹 Paper Links:
• arXiv Page: https://arxiv.org/abs/2507.22034
• PDF: https://arxiv.org/pdf/2507.22034
• Github: https://github.com/SalesforceAIResearch/UserBench
🔹 Datasets citing this paper:
No datasets found
🔹 Spaces citing this paper:
No spaces found
==================================
For more data science resources:
✓ https://news.1rj.ru/str/DataScienceT
❤1
🔹 Title: BrowseComp-Plus: A More Fair and Transparent Evaluation Benchmark of Deep-Research Agent
🔹 Publication Date: Published on Aug 8
🔹 Paper Links:
• arXiv Page: https://arxiv.org/abs/2508.06600
• PDF: https://arxiv.org/pdf/2508.06600
• Project Page: https://texttron.github.io/BrowseComp-Plus/
• Github: https://github.com/texttron/BrowseComp-Plus
🔹 Datasets citing this paper:
• https://huggingface.co/datasets/Tevatron/browsecomp-plus-corpus
• https://huggingface.co/datasets/Tevatron/browsecomp-plus
🔹 Spaces citing this paper:
• https://huggingface.co/spaces/Tevatron/BrowseComp-Plus
==================================
For more data science resources:
✓ https://news.1rj.ru/str/DataScienceT
🔹 Publication Date: Published on Aug 8
🔹 Paper Links:
• arXiv Page: https://arxiv.org/abs/2508.06600
• PDF: https://arxiv.org/pdf/2508.06600
• Project Page: https://texttron.github.io/BrowseComp-Plus/
• Github: https://github.com/texttron/BrowseComp-Plus
🔹 Datasets citing this paper:
• https://huggingface.co/datasets/Tevatron/browsecomp-plus-corpus
• https://huggingface.co/datasets/Tevatron/browsecomp-plus
🔹 Spaces citing this paper:
• https://huggingface.co/spaces/Tevatron/BrowseComp-Plus
==================================
For more data science resources:
✓ https://news.1rj.ru/str/DataScienceT
❤1
🔹 Title: OmniEAR: Benchmarking Agent Reasoning in Embodied Tasks
🔹 Publication Date: Published on Aug 7
🔹 Paper Links:
• arXiv Page: https://arxiv.org/abs/2508.05614
• PDF: https://arxiv.org/pdf/2508.05614
• Project Page: https://zju-real.github.io/OmniEmbodied/
• Github: https://zju-real.github.io/OmniEmbodied/
🔹 Datasets citing this paper:
• https://huggingface.co/datasets/wangzx1210/OmniEAR
🔹 Spaces citing this paper:
No spaces found
==================================
For more data science resources:
✓ https://news.1rj.ru/str/DataScienceT
🔹 Publication Date: Published on Aug 7
🔹 Paper Links:
• arXiv Page: https://arxiv.org/abs/2508.05614
• PDF: https://arxiv.org/pdf/2508.05614
• Project Page: https://zju-real.github.io/OmniEmbodied/
• Github: https://zju-real.github.io/OmniEmbodied/
🔹 Datasets citing this paper:
• https://huggingface.co/datasets/wangzx1210/OmniEAR
🔹 Spaces citing this paper:
No spaces found
==================================
For more data science resources:
✓ https://news.1rj.ru/str/DataScienceT
❤1
🔹 Title: MolmoAct: Action Reasoning Models that can Reason in Space
🔹 Publication Date: Published on Aug 11
🔹 Paper Links:
• arXiv Page: https://arxiv.org/abs/2508.07917
• PDF: https://arxiv.org/pdf/2508.07917
🔹 Datasets citing this paper:
No datasets found
🔹 Spaces citing this paper:
No spaces found
==================================
For more data science resources:
✓ https://news.1rj.ru/str/DataScienceT
🔹 Publication Date: Published on Aug 11
🔹 Paper Links:
• arXiv Page: https://arxiv.org/abs/2508.07917
• PDF: https://arxiv.org/pdf/2508.07917
🔹 Datasets citing this paper:
No datasets found
🔹 Spaces citing this paper:
No spaces found
==================================
For more data science resources:
✓ https://news.1rj.ru/str/DataScienceT
❤2
🔹 Title: Temporal Self-Rewarding Language Models: Decoupling Chosen-Rejected via Past-Future
🔹 Publication Date: Published on Aug 8
🔹 Paper Links:
• arXiv Page: https://arxiv.org/abs/2508.06026
• PDF: https://arxiv.org/pdf/2508.06026
🔹 Datasets citing this paper:
No datasets found
🔹 Spaces citing this paper:
No spaces found
==================================
For more data science resources:
✓ https://news.1rj.ru/str/DataScienceT
🔹 Publication Date: Published on Aug 8
🔹 Paper Links:
• arXiv Page: https://arxiv.org/abs/2508.06026
• PDF: https://arxiv.org/pdf/2508.06026
🔹 Datasets citing this paper:
No datasets found
🔹 Spaces citing this paper:
No spaces found
==================================
For more data science resources:
✓ https://news.1rj.ru/str/DataScienceT
❤1
🔹 Title: Reinforcement Learning in Vision: A Survey
🔹 Publication Date: Published on Aug 11
🔹 Paper Links:
• arXiv Page: https://arxiv.org/abs/2508.08189
• PDF: https://arxiv.org/pdf/2508.08189
• Github: https://github.com/weijiawu/Awesome-Visual-Reinforcement-Learning
🔹 Datasets citing this paper:
No datasets found
🔹 Spaces citing this paper:
No spaces found
==================================
For more data science resources:
✓ https://news.1rj.ru/str/DataScienceT
🔹 Publication Date: Published on Aug 11
🔹 Paper Links:
• arXiv Page: https://arxiv.org/abs/2508.08189
• PDF: https://arxiv.org/pdf/2508.08189
• Github: https://github.com/weijiawu/Awesome-Visual-Reinforcement-Learning
🔹 Datasets citing this paper:
No datasets found
🔹 Spaces citing this paper:
No spaces found
==================================
For more data science resources:
✓ https://news.1rj.ru/str/DataScienceT
❤1
🔹 Title: SONAR-LLM: Autoregressive Transformer that Thinks in Sentence Embeddings and Speaks in Tokens
🔹 Publication Date: Published on Aug 7
🔹 Paper Links:
• arXiv Page: https://arxiv.org/abs/2508.05305
• PDF: https://arxiv.org/pdf/2508.05305
• Github: https://github.com/FusionBrainLab/SONAR-LLM/tree/main
🔹 Datasets citing this paper:
No datasets found
🔹 Spaces citing this paper:
No spaces found
==================================
For more data science resources:
✓ https://news.1rj.ru/str/DataScienceT
🔹 Publication Date: Published on Aug 7
🔹 Paper Links:
• arXiv Page: https://arxiv.org/abs/2508.05305
• PDF: https://arxiv.org/pdf/2508.05305
• Github: https://github.com/FusionBrainLab/SONAR-LLM/tree/main
🔹 Datasets citing this paper:
No datasets found
🔹 Spaces citing this paper:
No spaces found
==================================
For more data science resources:
✓ https://news.1rj.ru/str/DataScienceT
❤1
🔹 Title: Part I: Tricks or Traps? A Deep Dive into RL for LLM Reasoning
🔹 Publication Date: Published on Aug 11
🔹 Paper Links:
• arXiv Page: https://arxiv.org/abs/2508.08221
• PDF: https://arxiv.org/pdf/2508.08221
🔹 Datasets citing this paper:
No datasets found
🔹 Spaces citing this paper:
No spaces found
==================================
For more data science resources:
✓ https://news.1rj.ru/str/DataScienceT
🔹 Publication Date: Published on Aug 11
🔹 Paper Links:
• arXiv Page: https://arxiv.org/abs/2508.08221
• PDF: https://arxiv.org/pdf/2508.08221
🔹 Datasets citing this paper:
No datasets found
🔹 Spaces citing this paper:
No spaces found
==================================
For more data science resources:
✓ https://news.1rj.ru/str/DataScienceT
❤1
🔹 Title: Follow-Your-Shape: Shape-Aware Image Editing via Trajectory-Guided Region Control
🔹 Publication Date: Published on Aug 11
🔹 Paper Links:
• arXiv Page: https://arxiv.org/abs/2508.08134
• PDF: https://arxiv.org/pdf/2508.08134
• Github: https://github.com/mayuelala/FollowYourShape
🔹 Datasets citing this paper:
No datasets found
🔹 Spaces citing this paper:
No spaces found
==================================
For more data science resources:
✓ https://news.1rj.ru/str/DataScienceT
🔹 Publication Date: Published on Aug 11
🔹 Paper Links:
• arXiv Page: https://arxiv.org/abs/2508.08134
• PDF: https://arxiv.org/pdf/2508.08134
• Github: https://github.com/mayuelala/FollowYourShape
🔹 Datasets citing this paper:
No datasets found
🔹 Spaces citing this paper:
No spaces found
==================================
For more data science resources:
✓ https://news.1rj.ru/str/DataScienceT
❤1
🔹 Title: Less Is More: Training-Free Sparse Attention with Global Locality for Efficient Reasoning
🔹 Publication Date: Published on Aug 9
🔹 Paper Links:
• arXiv Page: https://arxiv.org/abs/2508.07101
• PDF: https://arxiv.org/pdf/2508.07101
• Github: https://github.com/DerrickYLJ/LessIsMore
🔹 Datasets citing this paper:
No datasets found
🔹 Spaces citing this paper:
No spaces found
==================================
For more data science resources:
✓ https://news.1rj.ru/str/DataScienceT
🔹 Publication Date: Published on Aug 9
🔹 Paper Links:
• arXiv Page: https://arxiv.org/abs/2508.07101
• PDF: https://arxiv.org/pdf/2508.07101
• Github: https://github.com/DerrickYLJ/LessIsMore
🔹 Datasets citing this paper:
No datasets found
🔹 Spaces citing this paper:
No spaces found
==================================
For more data science resources:
✓ https://news.1rj.ru/str/DataScienceT
❤1
🔹 Title: VisR-Bench: An Empirical Study on Visual Retrieval-Augmented Generation for Multilingual Long Document Understanding
🔹 Publication Date: Published on Aug 10
🔹 Paper Links:
• arXiv Page: https://arxiv.org/abs/2508.07493
• PDF: https://arxiv.org/pdf/2508.07493
• Github: https://github.com/puar-playground/VisR-Bench
🔹 Datasets citing this paper:
• https://huggingface.co/datasets/puar-playground/VisR-Bench
🔹 Spaces citing this paper:
No spaces found
==================================
For more data science resources:
✓ https://news.1rj.ru/str/DataScienceT
🔹 Publication Date: Published on Aug 10
🔹 Paper Links:
• arXiv Page: https://arxiv.org/abs/2508.07493
• PDF: https://arxiv.org/pdf/2508.07493
• Github: https://github.com/puar-playground/VisR-Bench
🔹 Datasets citing this paper:
• https://huggingface.co/datasets/puar-playground/VisR-Bench
🔹 Spaces citing this paper:
No spaces found
==================================
For more data science resources:
✓ https://news.1rj.ru/str/DataScienceT
❤1
🔹 Title: GLiClass: Generalist Lightweight Model for Sequence Classification Tasks
🔹 Publication Date: Published on Aug 11
🔹 Paper Links:
• arXiv Page: https://arxiv.org/abs/2508.07662
• PDF: https://arxiv.org/pdf/2508.07662
🔹 Datasets citing this paper:
No datasets found
🔹 Spaces citing this paper:
No spaces found
==================================
For more data science resources:
✓ https://news.1rj.ru/str/DataScienceT
🔹 Publication Date: Published on Aug 11
🔹 Paper Links:
• arXiv Page: https://arxiv.org/abs/2508.07662
• PDF: https://arxiv.org/pdf/2508.07662
🔹 Datasets citing this paper:
No datasets found
🔹 Spaces citing this paper:
No spaces found
==================================
For more data science resources:
✓ https://news.1rj.ru/str/DataScienceT
❤1
🔹 Title: Deep Ignorance: Filtering Pretraining Data Builds Tamper-Resistant Safeguards into Open-Weight LLMs
🔹 Publication Date: Published on Aug 8
🔹 Paper Links:
• arXiv Page: https://arxiv.org/abs/2508.06601
• PDF: https://arxiv.org/pdf/2508.06601
🔹 Datasets citing this paper:
• https://huggingface.co/datasets/EleutherAI/deep-ignorance-pretraining-mix
• https://huggingface.co/datasets/EleutherAI/deep-ignorance-annealing-mix
🔹 Spaces citing this paper:
No spaces found
==================================
For more data science resources:
✓ https://news.1rj.ru/str/DataScienceT
🔹 Publication Date: Published on Aug 8
🔹 Paper Links:
• arXiv Page: https://arxiv.org/abs/2508.06601
• PDF: https://arxiv.org/pdf/2508.06601
🔹 Datasets citing this paper:
• https://huggingface.co/datasets/EleutherAI/deep-ignorance-pretraining-mix
• https://huggingface.co/datasets/EleutherAI/deep-ignorance-annealing-mix
🔹 Spaces citing this paper:
No spaces found
==================================
For more data science resources:
✓ https://news.1rj.ru/str/DataScienceT
❤1
🔹 Title: Bifrost-1: Bridging Multimodal LLMs and Diffusion Models with Patch-level CLIP Latents
🔹 Publication Date: Published on Aug 8
🔹 Paper Links:
• arXiv Page: https://arxiv.org/abs/2508.05954
• PDF: https://arxiv.org/pdf/2508.05954
• Project Page: https://bifrost-1.github.io/
• Github: https://github.com/HL-hanlin/Bifrost-1
🔹 Datasets citing this paper:
No datasets found
🔹 Spaces citing this paper:
No spaces found
==================================
For more data science resources:
✓ https://news.1rj.ru/str/DataScienceT
🔹 Publication Date: Published on Aug 8
🔹 Paper Links:
• arXiv Page: https://arxiv.org/abs/2508.05954
• PDF: https://arxiv.org/pdf/2508.05954
• Project Page: https://bifrost-1.github.io/
• Github: https://github.com/HL-hanlin/Bifrost-1
🔹 Datasets citing this paper:
No datasets found
🔹 Spaces citing this paper:
No spaces found
==================================
For more data science resources:
✓ https://news.1rj.ru/str/DataScienceT
❤1
🔹 Title: When Good Sounds Go Adversarial: Jailbreaking Audio-Language Models with Benign Inputs
🔹 Publication Date: Published on Aug 5
🔹 Paper Links:
• arXiv Page: https://arxiv.org/abs/2508.03365
• PDF: https://arxiv.org/pdf/2508.03365
🔹 Datasets citing this paper:
No datasets found
🔹 Spaces citing this paper:
No spaces found
==================================
For more data science resources:
✓ https://news.1rj.ru/str/DataScienceT
🔹 Publication Date: Published on Aug 5
🔹 Paper Links:
• arXiv Page: https://arxiv.org/abs/2508.03365
• PDF: https://arxiv.org/pdf/2508.03365
🔹 Datasets citing this paper:
No datasets found
🔹 Spaces citing this paper:
No spaces found
==================================
For more data science resources:
✓ https://news.1rj.ru/str/DataScienceT
❤1
🔹 Title: Speech-to-LaTeX: New Models and Datasets for Converting Spoken Equations and Sentences
🔹 Publication Date: Published on Aug 5
🔹 Paper Links:
• arXiv Page: https://arxiv.org/abs/2508.03542
• PDF: https://arxiv.org/pdf/2508.03542
🔹 Datasets citing this paper:
No datasets found
🔹 Spaces citing this paper:
No spaces found
==================================
For more data science resources:
✓ https://news.1rj.ru/str/DataScienceT
🔹 Publication Date: Published on Aug 5
🔹 Paper Links:
• arXiv Page: https://arxiv.org/abs/2508.03542
• PDF: https://arxiv.org/pdf/2508.03542
🔹 Datasets citing this paper:
No datasets found
🔹 Spaces citing this paper:
No spaces found
==================================
For more data science resources:
✓ https://news.1rj.ru/str/DataScienceT
❤2