🔹 Title: Goedel-Prover-V2: Scaling Formal Theorem Proving with Scaffolded Data Synthesis and Self-Correction
🔹 Publication Date: Published on Aug 5
🔹 Abstract: Goedel-Prover-V2, a series of open-source language models, achieves state-of-the-art performance in automated theorem proving through scaffolded data synthesis, verifier-guided self-correction, and model averaging. AI-generated summary We introduce Goedel-Prover-V2, a series of open-source language models that set a new state-of-the-art in automated theorem proving . Built on the standard expert iteration and reinforcement learning pipeline, our approach incorporates three key innovations: (1) Scaffolded data synthesis : We generate synthetic tasks of increasing difficulty to train the model to master increasingly complex theorems; (2) Verifier-guided self-correction : We enable the model to iteratively revise its proofs by leveraging feedback from the Lean compiler; (3) Model averaging : We merge model checkpoints to mitigate the decrease in model output diversity in later stages of training. Our small model, Goedel-Prover-V2-8B, reaches 84.6% pass@32 on MiniF2F and outperforms DeepSeek-Prover-V2-671B under the same metric, despite being 80X smaller. Our flagship model, Goedel-Prover-V2-32B, achieves 88.1% on MiniF2F at pass@32 in standard mode and 90.4% in self-correction mode, outperforming prior SOTA by a large margin. Additionally, our flagship model solves 86 problems on PutnamBench at pass@184 , securing the first place among open-source models on the leaderboard, surpassing DeepSeek-Prover-V2-671B's record of solving 47 problems by pass@1024 with a significantly smaller model size and compute budget. At the time of its release (July-August 2025), Goedel-Prover-V2 achieves the strongest overall performance among all open-source theorem provers. It also ranks among the top-performing models--including closed-source systems with publicly reported performance--under a constrained test-time compute budget. Our models, code, and data are released at https://github.com/Goedel-LM/Goedel-Prover-V2.
🔹 Paper Links:
• arXiv Page: https://arxiv.org/abs/2508.03613
• PDF: https://arxiv.org/pdf/2508.03613
🔹 Datasets citing this paper:
No datasets found
🔹 Spaces citing this paper:
No spaces found
==================================
For more data science resources:
✓ https://news.1rj.ru/str/DataScienceT
🔹 Publication Date: Published on Aug 5
🔹 Abstract: Goedel-Prover-V2, a series of open-source language models, achieves state-of-the-art performance in automated theorem proving through scaffolded data synthesis, verifier-guided self-correction, and model averaging. AI-generated summary We introduce Goedel-Prover-V2, a series of open-source language models that set a new state-of-the-art in automated theorem proving . Built on the standard expert iteration and reinforcement learning pipeline, our approach incorporates three key innovations: (1) Scaffolded data synthesis : We generate synthetic tasks of increasing difficulty to train the model to master increasingly complex theorems; (2) Verifier-guided self-correction : We enable the model to iteratively revise its proofs by leveraging feedback from the Lean compiler; (3) Model averaging : We merge model checkpoints to mitigate the decrease in model output diversity in later stages of training. Our small model, Goedel-Prover-V2-8B, reaches 84.6% pass@32 on MiniF2F and outperforms DeepSeek-Prover-V2-671B under the same metric, despite being 80X smaller. Our flagship model, Goedel-Prover-V2-32B, achieves 88.1% on MiniF2F at pass@32 in standard mode and 90.4% in self-correction mode, outperforming prior SOTA by a large margin. Additionally, our flagship model solves 86 problems on PutnamBench at pass@184 , securing the first place among open-source models on the leaderboard, surpassing DeepSeek-Prover-V2-671B's record of solving 47 problems by pass@1024 with a significantly smaller model size and compute budget. At the time of its release (July-August 2025), Goedel-Prover-V2 achieves the strongest overall performance among all open-source theorem provers. It also ranks among the top-performing models--including closed-source systems with publicly reported performance--under a constrained test-time compute budget. Our models, code, and data are released at https://github.com/Goedel-LM/Goedel-Prover-V2.
🔹 Paper Links:
• arXiv Page: https://arxiv.org/abs/2508.03613
• PDF: https://arxiv.org/pdf/2508.03613
🔹 Datasets citing this paper:
No datasets found
🔹 Spaces citing this paper:
No spaces found
==================================
For more data science resources:
✓ https://news.1rj.ru/str/DataScienceT
❤1
🔹 Title: Compressing Chain-of-Thought in LLMs via Step Entropy
🔹 Publication Date: Published on Aug 5
🔹 Paper Links:
• arXiv Page: https://arxiv.org/abs/2508.03346
• PDF: https://arxiv.org/pdf/2508.03346
🔹 Datasets citing this paper:
No datasets found
🔹 Spaces citing this paper:
No spaces found
==================================
For more data science resources:
✓ https://news.1rj.ru/str/DataScienceT
🔹 Publication Date: Published on Aug 5
🔹 Paper Links:
• arXiv Page: https://arxiv.org/abs/2508.03346
• PDF: https://arxiv.org/pdf/2508.03346
🔹 Datasets citing this paper:
No datasets found
🔹 Spaces citing this paper:
No spaces found
==================================
For more data science resources:
✓ https://news.1rj.ru/str/DataScienceT
❤2
🔹 Title: Fact2Fiction: Targeted Poisoning Attack to Agentic Fact-checking System
🔹 Publication Date: Published on Aug 8
🔹 Paper Links:
• arXiv Page: https://arxiv.org/abs/2508.06059
• PDF: https://arxiv.org/pdf/2508.06059
🔹 Datasets citing this paper:
No datasets found
🔹 Spaces citing this paper:
No spaces found
==================================
For more data science resources:
✓ https://news.1rj.ru/str/DataScienceT
🔹 Publication Date: Published on Aug 8
🔹 Paper Links:
• arXiv Page: https://arxiv.org/abs/2508.06059
• PDF: https://arxiv.org/pdf/2508.06059
🔹 Datasets citing this paper:
No datasets found
🔹 Spaces citing this paper:
No spaces found
==================================
For more data science resources:
✓ https://news.1rj.ru/str/DataScienceT
❤3
🔹 Title: TextQuests: How Good are LLMs at Text-Based Video Games?
🔹 Publication Date: Published on Jul 31
🔹 Paper Links:
• arXiv Page: https://arxiv.org/abs/2507.23701
• PDF: https://arxiv.org/pdf/2507.23701
• Project Page: https://textquests.ai
• Github: https://github.com/centerforaisafety/textquests
🔹 Datasets citing this paper:
No datasets found
🔹 Spaces citing this paper:
No spaces found
==================================
For more data science resources:
✓ https://news.1rj.ru/str/DataScienceT
🔹 Publication Date: Published on Jul 31
🔹 Paper Links:
• arXiv Page: https://arxiv.org/abs/2507.23701
• PDF: https://arxiv.org/pdf/2507.23701
• Project Page: https://textquests.ai
• Github: https://github.com/centerforaisafety/textquests
🔹 Datasets citing this paper:
No datasets found
🔹 Spaces citing this paper:
No spaces found
==================================
For more data science resources:
✓ https://news.1rj.ru/str/DataScienceT
❤5
🔹 Title: Spectrum Projection Score: Aligning Retrieved Summaries with Reader Models in Retrieval-Augmented Generation
🔹 Publication Date: Published on Aug 8
🔹 Paper Links:
• arXiv Page: https://arxiv.org/abs/2508.05909
• PDF: https://arxiv.org/pdf/2508.05909
🔹 Datasets citing this paper:
No datasets found
🔹 Spaces citing this paper:
No spaces found
==================================
For more data science resources:
✓ https://news.1rj.ru/str/DataScienceT
🔹 Publication Date: Published on Aug 8
🔹 Paper Links:
• arXiv Page: https://arxiv.org/abs/2508.05909
• PDF: https://arxiv.org/pdf/2508.05909
🔹 Datasets citing this paper:
No datasets found
🔹 Spaces citing this paper:
No spaces found
==================================
For more data science resources:
✓ https://news.1rj.ru/str/DataScienceT
❤1
🔹 Title: Anatomy of a Machine Learning Ecosystem: 2 Million Models on Hugging Face
🔹 Publication Date: Published on Aug 9
🔹 Paper Links:
• arXiv Page: https://arxiv.org/abs/2508.06811
• PDF: https://arxiv.org/pdf/2508.06811
🔹 Datasets citing this paper:
No datasets found
🔹 Spaces citing this paper:
No spaces found
==================================
For more data science resources:
✓ https://news.1rj.ru/str/DataScienceT
🔹 Publication Date: Published on Aug 9
🔹 Paper Links:
• arXiv Page: https://arxiv.org/abs/2508.06811
• PDF: https://arxiv.org/pdf/2508.06811
🔹 Datasets citing this paper:
No datasets found
🔹 Spaces citing this paper:
No spaces found
==================================
For more data science resources:
✓ https://news.1rj.ru/str/DataScienceT
❤1
🔹 Title: Matrix-3D: Omnidirectional Explorable 3D World Generation
🔹 Publication Date: Published on Aug 11
🔹 Paper Links:
• arXiv Page: https://arxiv.org/abs/2508.08086
• PDF: https://arxiv.org/pdf/2508.08086
🔹 Datasets citing this paper:
No datasets found
🔹 Spaces citing this paper:
No spaces found
==================================
For more data science resources:
✓ https://news.1rj.ru/str/DataScienceT
🔹 Publication Date: Published on Aug 11
🔹 Paper Links:
• arXiv Page: https://arxiv.org/abs/2508.08086
• PDF: https://arxiv.org/pdf/2508.08086
🔹 Datasets citing this paper:
No datasets found
🔹 Spaces citing this paper:
No spaces found
==================================
For more data science resources:
✓ https://news.1rj.ru/str/DataScienceT
❤1
🔹 Title: Test-Time Reinforcement Learning for GUI Grounding via Region Consistency
🔹 Publication Date: Published on Aug 7
🔹 Paper Links:
• arXiv Page: https://arxiv.org/abs/2508.05615
• PDF: https://arxiv.org/pdf/2508.05615
• Project Page: https://zju-real.github.io/gui-rcpo/
• Github: https://github.com/zju-real/gui-rcpo
🔹 Datasets citing this paper:
No datasets found
🔹 Spaces citing this paper:
No spaces found
==================================
For more data science resources:
✓ https://news.1rj.ru/str/DataScienceT
🔹 Publication Date: Published on Aug 7
🔹 Paper Links:
• arXiv Page: https://arxiv.org/abs/2508.05615
• PDF: https://arxiv.org/pdf/2508.05615
• Project Page: https://zju-real.github.io/gui-rcpo/
• Github: https://github.com/zju-real/gui-rcpo
🔹 Datasets citing this paper:
No datasets found
🔹 Spaces citing this paper:
No spaces found
==================================
For more data science resources:
✓ https://news.1rj.ru/str/DataScienceT
🔹 Title: UNCAGE: Contrastive Attention Guidance for Masked Generative Transformers in Text-to-Image Generation
🔹 Publication Date: Published on Aug 7
🔹 Paper Links:
• arXiv Page: https://arxiv.org/abs/2508.05399
• PDF: https://arxiv.org/pdf/2508.05399
🔹 Datasets citing this paper:
No datasets found
🔹 Spaces citing this paper:
No spaces found
==================================
For more data science resources:
✓ https://news.1rj.ru/str/DataScienceT
🔹 Publication Date: Published on Aug 7
🔹 Paper Links:
• arXiv Page: https://arxiv.org/abs/2508.05399
• PDF: https://arxiv.org/pdf/2508.05399
🔹 Datasets citing this paper:
No datasets found
🔹 Spaces citing this paper:
No spaces found
==================================
For more data science resources:
✓ https://news.1rj.ru/str/DataScienceT
❤1
🔹 Title: Time Is a Feature: Exploiting Temporal Dynamics in Diffusion Language Models
🔹 Publication Date: Published on Aug 12
🔹 Paper Links:
• arXiv Page: https://arxiv.org/abs/2508.09138
• PDF: https://arxiv.org/pdf/2508.09138
• Project Page: https://aim-uofa.github.io/dLLM-MidTruth/
• Github: https://github.com/aim-uofa/dLLM-MidTruth
🔹 Datasets citing this paper:
No datasets found
🔹 Spaces citing this paper:
No spaces found
==================================
For more data science resources:
✓ https://news.1rj.ru/str/DataScienceT
🔹 Publication Date: Published on Aug 12
🔹 Paper Links:
• arXiv Page: https://arxiv.org/abs/2508.09138
• PDF: https://arxiv.org/pdf/2508.09138
• Project Page: https://aim-uofa.github.io/dLLM-MidTruth/
• Github: https://github.com/aim-uofa/dLLM-MidTruth
🔹 Datasets citing this paper:
No datasets found
🔹 Spaces citing this paper:
No spaces found
==================================
For more data science resources:
✓ https://news.1rj.ru/str/DataScienceT
❤1
🔹 Title: Beyond Ten Turns: Unlocking Long-Horizon Agentic Search with Large-Scale Asynchronous RL
🔹 Publication Date: Published on Aug 11
🔹 Paper Links:
• arXiv Page: https://arxiv.org/abs/2508.07976v1
• PDF: https://arxiv.org/pdf/2508.07976
• Github: https://github.com/inclusionAI/ASearcher
🔹 Datasets citing this paper:
No datasets found
🔹 Spaces citing this paper:
No spaces found
==================================
For more data science resources:
✓ https://news.1rj.ru/str/DataScienceT
🔹 Publication Date: Published on Aug 11
🔹 Paper Links:
• arXiv Page: https://arxiv.org/abs/2508.07976v1
• PDF: https://arxiv.org/pdf/2508.07976
• Github: https://github.com/inclusionAI/ASearcher
🔹 Datasets citing this paper:
No datasets found
🔹 Spaces citing this paper:
No spaces found
==================================
For more data science resources:
✓ https://news.1rj.ru/str/DataScienceT
❤1
🔹 Title: HierSearch: A Hierarchical Enterprise Deep Search Framework Integrating Local and Web Searches
🔹 Publication Date: Published on Aug 11
🔹 Paper Links:
• arXiv Page: https://arxiv.org/abs/2508.08088
• PDF: https://arxiv.org/pdf/2508.08088
• Github: https://github.com/plageon/HierSearch
🔹 Datasets citing this paper:
• https://huggingface.co/datasets/zstanjj/HierSearch-Datasets
🔹 Spaces citing this paper:
No spaces found
==================================
For more data science resources:
✓ https://news.1rj.ru/str/DataScienceT
🔹 Publication Date: Published on Aug 11
🔹 Paper Links:
• arXiv Page: https://arxiv.org/abs/2508.08088
• PDF: https://arxiv.org/pdf/2508.08088
• Github: https://github.com/plageon/HierSearch
🔹 Datasets citing this paper:
• https://huggingface.co/datasets/zstanjj/HierSearch-Datasets
🔹 Spaces citing this paper:
No spaces found
==================================
For more data science resources:
✓ https://news.1rj.ru/str/DataScienceT
❤1
🔹 Title: AutoCodeBench: Large Language Models are Automatic Code Benchmark Generators
🔹 Publication Date: Published on Aug 12
🔹 Paper Links:
• arXiv Page: https://arxiv.org/abs/2508.09101
• PDF: https://arxiv.org/pdf/2508.09101
🔹 Datasets citing this paper:
No datasets found
🔹 Spaces citing this paper:
No spaces found
==================================
For more data science resources:
✓ https://news.1rj.ru/str/DataScienceT
🔹 Publication Date: Published on Aug 12
🔹 Paper Links:
• arXiv Page: https://arxiv.org/abs/2508.09101
• PDF: https://arxiv.org/pdf/2508.09101
🔹 Datasets citing this paper:
No datasets found
🔹 Spaces citing this paper:
No spaces found
==================================
For more data science resources:
✓ https://news.1rj.ru/str/DataScienceT
🔹 Title: WebWatcher: Breaking New Frontier of Vision-Language Deep Research Agent
🔹 Publication Date: Published on Aug 7
🔹 Paper Links:
• arXiv Page: https://arxiv.org/abs/2508.05748
• PDF: https://arxiv.org/pdf/2508.05748
• Github: https://github.com/Alibaba-NLP/WebAgent
🔹 Datasets citing this paper:
No datasets found
🔹 Spaces citing this paper:
No spaces found
==================================
For more data science resources:
✓ https://news.1rj.ru/str/DataScienceT
🔹 Publication Date: Published on Aug 7
🔹 Paper Links:
• arXiv Page: https://arxiv.org/abs/2508.05748
• PDF: https://arxiv.org/pdf/2508.05748
• Github: https://github.com/Alibaba-NLP/WebAgent
🔹 Datasets citing this paper:
No datasets found
🔹 Spaces citing this paper:
No spaces found
==================================
For more data science resources:
✓ https://news.1rj.ru/str/DataScienceT
❤1
🔹 Title: Feedback-Driven Tool-Use Improvements in Large Language Models via Automated Build Environments
🔹 Publication Date: Published on Aug 12
🔹 Paper Links:
• arXiv Page: https://arxiv.org/abs/2508.08791
• PDF: https://arxiv.org/pdf/2508.08791
• Github: https://github.com/bytedance/FTRL
🔹 Datasets citing this paper:
No datasets found
🔹 Spaces citing this paper:
No spaces found
==================================
For more data science resources:
✓ https://news.1rj.ru/str/DataScienceT
🔹 Publication Date: Published on Aug 12
🔹 Paper Links:
• arXiv Page: https://arxiv.org/abs/2508.08791
• PDF: https://arxiv.org/pdf/2508.08791
• Github: https://github.com/bytedance/FTRL
🔹 Datasets citing this paper:
No datasets found
🔹 Spaces citing this paper:
No spaces found
==================================
For more data science resources:
✓ https://news.1rj.ru/str/DataScienceT
❤1
🔹 Title: CharacterShot: Controllable and Consistent 4D Character Animation
🔹 Publication Date: Published on Aug 10
🔹 Paper Links:
• arXiv Page: https://arxiv.org/abs/2508.07409
• PDF: https://arxiv.org/pdf/2508.07409
• Github: https://github.com/Jeoyal/CharacterShot
🔹 Datasets citing this paper:
No datasets found
🔹 Spaces citing this paper:
No spaces found
==================================
For more data science resources:
✓ https://news.1rj.ru/str/DataScienceT
🔹 Publication Date: Published on Aug 10
🔹 Paper Links:
• arXiv Page: https://arxiv.org/abs/2508.07409
• PDF: https://arxiv.org/pdf/2508.07409
• Github: https://github.com/Jeoyal/CharacterShot
🔹 Datasets citing this paper:
No datasets found
🔹 Spaces citing this paper:
No spaces found
==================================
For more data science resources:
✓ https://news.1rj.ru/str/DataScienceT
❤1
🔹 Title: Cut2Next: Generating Next Shot via In-Context Tuning
🔹 Publication Date: Published on Aug 11
🔹 Paper Links:
• arXiv Page: https://arxiv.org/abs/2508.08244
• PDF: https://arxiv.org/pdf/2508.08244
• Project Page: https://vchitect.github.io/Cut2Next-project/
🔹 Datasets citing this paper:
No datasets found
🔹 Spaces citing this paper:
No spaces found
==================================
For more data science resources:
✓ https://news.1rj.ru/str/DataScienceT
🔹 Publication Date: Published on Aug 11
🔹 Paper Links:
• arXiv Page: https://arxiv.org/abs/2508.08244
• PDF: https://arxiv.org/pdf/2508.08244
• Project Page: https://vchitect.github.io/Cut2Next-project/
🔹 Datasets citing this paper:
No datasets found
🔹 Spaces citing this paper:
No spaces found
==================================
For more data science resources:
✓ https://news.1rj.ru/str/DataScienceT
❤1
🔹 Title: Bridging Theory and Practice in Quantum Game Theory: Optimized Implementation of the Battle of the Sexes with Error Mitigation on NISQ Hardware
🔹 Publication Date: Published on Aug 12
🔹 Paper Links:
• arXiv Page: https://arxiv.org/abs/2508.09050
• PDF: https://arxiv.org/pdf/2508.09050
🔹 Datasets citing this paper:
No datasets found
🔹 Spaces citing this paper:
No spaces found
==================================
For more data science resources:
✓ https://news.1rj.ru/str/DataScienceT
🔹 Publication Date: Published on Aug 12
🔹 Paper Links:
• arXiv Page: https://arxiv.org/abs/2508.09050
• PDF: https://arxiv.org/pdf/2508.09050
🔹 Datasets citing this paper:
No datasets found
🔹 Spaces citing this paper:
No spaces found
==================================
For more data science resources:
✓ https://news.1rj.ru/str/DataScienceT
🔹 Title: Train Long, Think Short: Curriculum Learning for Efficient Reasoning
🔹 Publication Date: Published on Aug 12
🔹 Paper Links:
• arXiv Page: https://arxiv.org/abs/2508.08940
• PDF: https://arxiv.org/pdf/2508.08940
• Github: https://github.com/hammoudhasan/
🔹 Datasets citing this paper:
No datasets found
🔹 Spaces citing this paper:
No spaces found
==================================
For more data science resources:
✓ https://news.1rj.ru/str/DataScienceT
🔹 Publication Date: Published on Aug 12
🔹 Paper Links:
• arXiv Page: https://arxiv.org/abs/2508.08940
• PDF: https://arxiv.org/pdf/2508.08940
• Github: https://github.com/hammoudhasan/
🔹 Datasets citing this paper:
No datasets found
🔹 Spaces citing this paper:
No spaces found
==================================
For more data science resources:
✓ https://news.1rj.ru/str/DataScienceT
🔹 Title: OpenCUA: Open Foundations for Computer-Use Agents
🔹 Publication Date: Published on Aug 12
🔹 Paper Links:
• arXiv Page: https://arxiv.org/abs/2508.09123
• PDF: https://arxiv.org/pdf/2508.09123
🔹 Datasets citing this paper:
• https://huggingface.co/datasets/xlangai/AgentNet
🔹 Spaces citing this paper:
No spaces found
==================================
For more data science resources:
✓ https://news.1rj.ru/str/DataScienceT
🔹 Publication Date: Published on Aug 12
🔹 Paper Links:
• arXiv Page: https://arxiv.org/abs/2508.09123
• PDF: https://arxiv.org/pdf/2508.09123
🔹 Datasets citing this paper:
• https://huggingface.co/datasets/xlangai/AgentNet
🔹 Spaces citing this paper:
No spaces found
==================================
For more data science resources:
✓ https://news.1rj.ru/str/DataScienceT
🔹 Title: Aryabhata: An exam-focused language model for JEE Math
🔹 Publication Date: Published on Aug 12
🔹 Paper Links:
• arXiv Page: https://arxiv.org/abs/2508.08665
• PDF: https://arxiv.org/pdf/2508.08665
🔹 Datasets citing this paper:
No datasets found
🔹 Spaces citing this paper:
• https://huggingface.co/spaces/PhysicsWallahAI/Aryabhata-Demo
==================================
For more data science resources:
✓ https://news.1rj.ru/str/DataScienceT
🔹 Publication Date: Published on Aug 12
🔹 Paper Links:
• arXiv Page: https://arxiv.org/abs/2508.08665
• PDF: https://arxiv.org/pdf/2508.08665
🔹 Datasets citing this paper:
No datasets found
🔹 Spaces citing this paper:
• https://huggingface.co/spaces/PhysicsWallahAI/Aryabhata-Demo
==================================
For more data science resources:
✓ https://news.1rj.ru/str/DataScienceT
❤1