Data Analytics & AI | SQL Interviews | Power BI Resources – Telegram
Data Analytics & AI | SQL Interviews | Power BI Resources
25.9K subscribers
309 photos
2 videos
151 files
322 links
🔓Explore the fascinating world of Data Analytics & Artificial Intelligence

💻 Best AI tools, free resources, and expert advice to land your dream tech job.

Admin: @coderfun

Buy ads: https://telega.io/c/Data_Visual
Download Telegram
𝐒𝐢𝐦𝐩𝐥𝐞 𝐆𝐮𝐢𝐝𝐞 𝐭𝐨 𝐋𝐞𝐚𝐫𝐧 𝐌𝐚𝐜𝐡𝐢𝐧𝐞 𝐋𝐞𝐚𝐫𝐧𝐢𝐧𝐠 𝐟𝐨𝐫 𝐃𝐚𝐭𝐚 𝐀𝐧𝐚𝐥𝐲𝐭𝐢𝐜𝐬 😃

🙄 𝐖𝐡𝐚𝐭 𝐢𝐬 𝐌𝐚𝐜𝐡𝐢𝐧𝐞 𝐋𝐞𝐚𝐫𝐧𝐢𝐧𝐠?
Imagine you're teaching a child to recognize fruits. You show them an apple, tell them it’s an apple, and next time they know it. That’s what Machine Learning does! But instead of a child, it’s a computer, and instead of fruits, it learns from data.
Machine Learning is about teaching computers to learn from past data so they can make smart decisions or predictions on their own, improving over time without needing new instructions.

🤔 𝐖𝐡𝐲 𝐢𝐬 𝐌𝐚𝐜𝐡𝐢𝐧𝐞 𝐋𝐞𝐚𝐫𝐧𝐢𝐧𝐠 𝐈𝐦𝐩𝐨𝐫𝐭𝐚𝐧𝐭 𝐟𝐨𝐫 𝐃𝐚𝐭𝐚 𝐀𝐧𝐚𝐥𝐲𝐭𝐢𝐜𝐬?

Machine Learning makes data analytics super powerful. Instead of just looking at past data, it can help predict future trends, find patterns we didn’t notice, and make decisions that help businesses grow!

😮 𝐇𝐨𝐰 𝐭𝐨 𝐋𝐞𝐚𝐫𝐧 𝐌𝐚𝐜𝐡𝐢𝐧𝐞 𝐋𝐞𝐚𝐫𝐧𝐢𝐧𝐠 𝐟𝐨𝐫 𝐃𝐚𝐭𝐚 𝐀𝐧𝐚𝐥𝐲𝐭𝐢𝐜𝐬?

𝐋𝐞𝐚𝐫𝐧 𝐏𝐲𝐭𝐡𝐨𝐧: Python is the most commonly used language in ML. Start by getting comfortable with basic Python, then move on to ML-specific libraries like:
𝐩𝐚𝐧𝐝𝐚𝐬: For data manipulation.
𝐍𝐮𝐦𝐏𝐲: For numerical calculations.
𝐬𝐜𝐢𝐤𝐢𝐭-𝐥𝐞𝐚𝐫𝐧: For implementing basic ML algorithms.

𝐔𝐧𝐝𝐞𝐫𝐬𝐭𝐚𝐧𝐝 𝐭𝐡𝐞 𝐁𝐚𝐬𝐢𝐜𝐬 𝐨𝐟 𝐒𝐭𝐚𝐭𝐢𝐬𝐭𝐢𝐜𝐬: ML relies heavily on concepts like probability, distributions, and hypothesis testing. Understanding basic statistics will help you grasp how models work.

𝐏𝐫𝐚𝐜𝐭𝐢𝐜𝐞 𝐨𝐧 𝐑𝐞𝐚𝐥 𝐃𝐚𝐭𝐚𝐬𝐞𝐭𝐬: Platforms like Kaggle offer datasets and ML competitions. Start by analyzing small datasets to understand how machine learning models make predictions.

𝐋𝐞𝐚𝐫𝐧 𝐕𝐢𝐬𝐮𝐚𝐥𝐢𝐳𝐚𝐭𝐢𝐨𝐧: Use tools like Matplotlib or Seaborn to visualize data. This will help you understand patterns in the data and how machine learning models interpret them.

𝐖𝐨𝐫𝐤 𝐨𝐧 𝐒𝐢𝐦𝐩𝐥𝐞 𝐏𝐫𝐨𝐣𝐞𝐜𝐭𝐬: Start with basic ML projects such as:
-Predicting house prices.
-Classifying emails as spam or not spam.
-Clustering customers based on their purchasing habits.

I have curated the best interview resources to crack Data Science Interviews
👇👇
https://whatsapp.com/channel/0029VaGgzAk72WTmQFERKh02

Like if you need similar content 😄👍
👍1🔥1
5 Data Analytics Project Ideas to boost your resume:

1. Stock Market Portfolio Optimization

2. YouTube Data Collection & Analysis

3. Elections Ad Spending & Voting Patterns Analysis

4. EV Market Size Analysis

5. Metro Operations Optimization
👍1
Bill Gates warns young people of four major global threats, including AI

In a recent interview, Bill Gates warned young people about four major global threats: climate change, bioterrorism or pandemics, the risk of nuclear war, and unchecked artificial intelligence (AI). While he acknowledges that concerns about nuclear war persist, he emphasizes that younger generations must also contend with the potential dangers of advanced AI, which could outsmart humans and pose existential risks. Gates is not against AI; he believes it can be beneficial, particularly in addressing skill shortages.

Despite these threats, he remains optimistic about the future, predicting advancements in healthcare and innovation that could significantly improve global conditions. Gates encourages the younger generation to take action to mitigate these risks.
How do you start AI and ML ?

Where do you go to learn these skills? What courses are the best?

There’s no best answer🥺. Everyone’s path will be different. Some people learn better with books, others learn better through videos.

What’s more important than how you start is why you start.

Start with why.

Why do you want to learn these skills?
Do you want to make money?
Do you want to build things?
Do you want to make a difference?
Again, no right reason. All are valid in their own way.

Start with why because having a why is more important than how. Having a why means when it gets hard and it will get hard, you’ve got something to turn to. Something to remind you why you started.

Got a why? Good. Time for some hard skills.

I can only recommend what I’ve tried every week new course lauch better than others its difficult to recommend any course

You can completed courses from (in order):

Treehouse / youtube( free) - Introduction to Python

Udacity - Deep Learning & AI Nanodegree

fast.ai - Part 1and Part 2

They’re all world class. I’m a visual learner. I learn better seeing things being done/explained to me on. So all of these courses reflect that.

If you’re an absolute beginner, start with some introductory Python courses and when you’re a bit more confident, move into data science, machine learning and AI.

Join for more: https://news.1rj.ru/str/machinelearning_deeplearning

👉Telegram Link: https://news.1rj.ru/str/addlist/4q2PYC0pH_VjZDk5

Like for more ❤️

All the best 👍👍
👍4
Forwarded from Generative AI
Important Generative AI Terms
🔥2