Data Analytics & AI | SQL Interviews | Power BI Resources – Telegram
Data Analytics & AI | SQL Interviews | Power BI Resources
25.9K subscribers
309 photos
2 videos
151 files
322 links
🔓Explore the fascinating world of Data Analytics & Artificial Intelligence

💻 Best AI tools, free resources, and expert advice to land your dream tech job.

Admin: @coderfun

Buy ads: https://telega.io/c/Data_Visual
Download Telegram
Here are 5 key Python libraries/ concepts that are particularly important for data analysts:

1. Pandas: Pandas is a powerful library for data manipulation and analysis in Python. It provides data structures like DataFrames and Series that make it easy to work with structured data. Pandas offers functions for reading and writing data, cleaning and transforming data, and performing data analysis tasks like filtering, grouping, and aggregating.

2. NumPy: NumPy is a fundamental package for scientific computing in Python. It provides support for large, multi-dimensional arrays and matrices, along with a collection of mathematical functions to operate on these arrays efficiently. NumPy is often used in conjunction with Pandas for numerical computations and data manipulation.

3. Matplotlib and Seaborn: Matplotlib is a popular plotting library in Python that allows you to create a wide variety of static, interactive, and animated visualizations. Seaborn is built on top of Matplotlib and provides a higher-level interface for creating attractive and informative statistical graphics. These libraries are essential for data visualization in data analysis projects.

4. Scikit-learn: Scikit-learn is a machine learning library in Python that provides simple and efficient tools for data mining and data analysis tasks. It includes a wide range of algorithms for classification, regression, clustering, dimensionality reduction, and more. Scikit-learn also offers tools for model evaluation, hyperparameter tuning, and model selection.

5. Data Cleaning and Preprocessing: Data cleaning and preprocessing are crucial steps in any data analysis project. Python offers libraries like Pandas and NumPy for handling missing values, removing duplicates, standardizing data types, scaling numerical features, encoding categorical variables, and more. Understanding how to clean and preprocess data effectively is essential for accurate analysis and modeling.

By mastering these Python concepts and libraries, data analysts can efficiently manipulate and analyze data, create insightful visualizations, apply machine learning techniques, and derive valuable insights from their datasets.

Credits: https://news.1rj.ru/str/free4unow_backup

ENJOY LEARNING 👍👍
👍2
𝗜𝗻𝗳𝗼𝘀𝘆𝘀 𝟭𝟬𝟬% 𝗙𝗥𝗘𝗘 𝗖𝗲𝗿𝘁𝗶𝗳𝗶𝗰𝗮𝘁𝗶𝗼𝗻 𝗖𝗼𝘂𝗿𝘀𝗲𝘀😍

Infosys Springboard is offering a wide range of 100% free courses with certificates to help you upskill and boost your resume—at no cost.

Whether you’re a student, graduate, or working professional, this platform has something valuable for everyone.

𝐋𝐢𝐧𝐤 👇:-

https://pdlink.in/4jsHZXf

Enroll For FREE & Get Certified 🎓
AI is playing a critical role in advancing cybersecurity by enhancing threat detection, response, and overall security posture. Here are some key AI trends in cybersecurity:

1. Advanced Threat Detection:
- Anomaly Detection: AI systems analyze network traffic and user behavior to detect anomalies that may indicate a security breach or insider threat.
- Real-Time Monitoring: AI-powered tools provide real-time monitoring and analysis of security events, identifying and mitigating threats as they occur.

2. Behavioral Analytics:
- User Behavior Analytics (UBA): AI models profile user behavior to detect deviations that could signify compromised accounts or malicious insiders.
- Entity Behavior Analytics (EBA): Similar to UBA but focuses on the behavior of devices and applications within the network to identify potential threats.

3. Automated Incident Response:
- Security Orchestration, Automation, and Response (SOAR): AI automates routine security tasks, such as threat hunting and incident response, to reduce response times and improve efficiency.
- Playbook Automation: AI-driven playbooks guide incident response actions based on predefined protocols, ensuring consistent and rapid responses to threats.

4. Predictive Threat Intelligence:
- Threat Prediction: AI predicts potential cyber threats by analyzing historical data, threat intelligence feeds, and emerging threat patterns.
- Proactive Defense: AI enables proactive defense strategies by identifying and mitigating potential vulnerabilities before they can be exploited.

5. Enhanced Malware Detection:
- Signatureless Detection: AI identifies malware based on behavior and characteristics rather than relying solely on known signatures, improving detection of zero-day threats.
- Dynamic Analysis: AI analyzes the behavior of files and applications in a sandbox environment to detect malicious activity.

6. Fraud Detection and Prevention:
- Transaction Monitoring: AI detects fraudulent transactions in real-time by analyzing transaction patterns and flagging anomalies.
- Identity Verification: AI enhances identity verification processes by analyzing biometric data and other authentication factors.

7. Phishing Detection:
- Email Filtering: AI analyzes email content and metadata to detect phishing attempts and prevent them from reaching users.
- URL Analysis: AI examines URLs and associated content to identify and block malicious websites used in phishing attacks.

8. Vulnerability Management:
- Automated Vulnerability Scanning: AI continuously scans systems and applications for vulnerabilities, prioritizing them based on risk and impact.
- Patch Management: AI recommends and automates the deployment of security patches to mitigate vulnerabilities.

9. Natural Language Processing (NLP) in Security:
- Threat Intelligence Analysis: AI-powered NLP tools analyze and extract relevant information from threat intelligence reports and security feeds.
- Chatbot Integration: AI chatbots assist with security-related queries and provide real-time support for incident response teams.

10. Deception Technology:
- AI-Driven Honeypots: AI enhances honeypot technologies by creating realistic decoys that attract and analyze attacker behavior.
- Deceptive Environments: AI generates deceptive network environments to mislead attackers and gather intelligence on their tactics.

11. Continuous Authentication:
- Behavioral Biometrics: AI continuously monitors user behavior, such as typing patterns and mouse movements, to authenticate users and detect anomalies.
- Adaptive Authentication: AI adjusts authentication requirements based on the risk profile of user activities and contextual factors.

Cybersecurity Resources: https://news.1rj.ru/str/EthicalHackingToday

Join for more: t.me/AI_Best_Tools
👍1
𝟱 𝗙𝗥𝗘𝗘 𝗧𝗲𝗰𝗵 𝗖𝗲𝗿𝘁𝗶𝗳𝗶𝗰𝗮𝘁𝗶𝗼𝗻 𝗖𝗼𝘂𝗿𝘀𝗲𝘀 𝗙𝗿𝗼𝗺 𝗠𝗶𝗰𝗿𝗼𝘀𝗼𝗳𝘁, 𝗔𝗪𝗦, 𝗜𝗕𝗠, 𝗖𝗶𝘀𝗰𝗼, 𝗮𝗻𝗱 𝗦𝘁𝗮𝗻𝗳𝗼𝗿𝗱. 😍

- Python
- Artificial Intelligence,
- Cybersecurity
- Cloud Computing, and
- Machine Learning

𝐋𝐢𝐧𝐤 👇:-

https://pdlink.in/3E2wYNr

Enroll For FREE & Get Certified 🎓
Please go through this top 10 SQL projects with Datasets that you can practice and can add in your resume

📌1. Social Media Analytics:
(https://www.kaggle.com/amanajmera1/framingham-heart-study-dataset)

🚀2. Web Analytics:
(https://www.kaggle.com/zynicide/wine-reviews)

📌3. HR Analytics:
(https://www.kaggle.com/pavansubhasht/ibm-hr-analytics-
attrition-dataset)

🚀4. Healthcare Data Analysis:
(https://www.kaggle.com/cdc/mortality)

📌5. E-commerce Analysis:
(https://www.kaggle.com/olistbr/brazilian-ecommerce)

🚀6. Inventory Management:
(https://www.kaggle.com/datasets?
search=inventory+management)

📌 7.Customer Relationship Management:
(https://www.kaggle.com/pankajjsh06/ibm-watson-
marketing-customer-value-data)

🚀8. Financial Data Analysis:
(https://www.kaggle.com/awaiskalia/banking-database)

📌9. Supply Chain Management:
(https://www.kaggle.com/shashwatwork/procurement-analytics)

🚀10. Analysis of Sales Data:
(https://www.kaggle.com/kyanyoga/sample-sales-data)

Small suggestion from my side for non tech students: kindly pick those datasets which you like the subject in general, that way you will be more excited to practice it, instead of just doing it for the sake of resume, you will learn SQL more passionately, since it’s a programming language try to make it more exciting for yourself.

Join for more: https://news.1rj.ru/str/DataPortfolio

Hope this piece of information helps you
👍1
𝟯 𝗙𝗥𝗘𝗘 𝗚𝗲𝗻𝗲𝗿𝗮𝘁𝗶𝘃𝗲 𝗔𝗜 𝗖𝗲𝗿𝘁𝗶𝗳𝗶𝗰𝗮𝘁𝗶𝗼𝗻 𝗖𝗼𝘂𝗿𝘀𝗲𝘀 𝟮𝟬𝟮𝟱😍

Taught by industry leaders (like Microsoft - 100% online and beginner-friendly

* Generative AI for Data Analysts
* Generative AI: Enhance Your Data Analytics Career
* Microsoft Generative AI for Data Analysis 

𝐋𝐢𝐧𝐤 👇:-

https://pdlink.in/3R7asWB

Enroll Now & Get Certified 🎓
👍1
AI Myths vs. Reality

1️⃣ AI Can Think Like Humans – Myth
🤖 AI doesn’t "think" or "understand" like humans. It predicts based on patterns in data but lacks reasoning or emotions.

2️⃣ AI Will Replace All Jobs – Myth
👨‍💻 AI automates repetitive tasks but creates new job opportunities in AI development, ethics, and oversight.

3️⃣ AI is 100% Accurate – Myth
AI can generate incorrect or biased outputs because it learns from imperfect human data.

4️⃣ AI is the Same as AGI – Myth
🧠 Generative AI is task-specific, while AGI (which doesn’t exist yet) would have human-like intelligence.

5️⃣ AI is Only for Big Tech – Myth
💡 Startups, small businesses, and individuals use AI for marketing, automation, and content creation.

6️⃣ AI Models Don’t Need Human Supervision – Myth
🔍 AI requires human oversight to ensure ethical use and prevent misinformation.

7️⃣ AI Will Keep Getting Smarter Forever – Myth
📉 AI is limited by its training data and doesn’t improve on its own without new data and updates.

AI is powerful but not magic. Knowing its limits helps us use it wisely. 🚀
👍2
Q. Explain the data preprocessing steps in data analysis.

Ans. Data preprocessing transforms the data into a format that is more easily and effectively processed in data mining, machine learning and other data science tasks.
1. Data profiling.
2. Data cleansing.
3. Data reduction.
4. Data transformation.
5. Data enrichment.
6. Data validation.

Q. What Are the Three Stages of Building a Model in Machine Learning?

Ans. The three stages of building a machine learning model are:

Model Building: Choosing a suitable algorithm for the model and train it according to the requirement

Model Testing: Checking the accuracy of the model through the test data

Applying the Model: Making the required changes after testing and use the final model for real-time projects


Q. What are the subsets of SQL?

Ans. The following are the four significant subsets of the SQL:

Data definition language (DDL): It defines the data structure that consists of commands like CREATE, ALTER, DROP, etc.

Data manipulation language (DML): It is used to manipulate existing data in the database. The commands in this category are SELECT, UPDATE, INSERT, etc.

Data control language (DCL): It controls access to the data stored in the database. The commands in this category include GRANT and REVOKE.

Transaction Control Language (TCL): It is used to deal with the transaction operations in the database. The commands in this category are COMMIT, ROLLBACK, SET TRANSACTION, SAVEPOINT, etc.


Q. What is a Parameter in Tableau? Give an Example.

Ans. A parameter is a dynamic value that a customer could select, and you can use it to replace constant values in calculations, filters, and reference lines.
For example, when creating a filter to show the top 10 products based on total profit instead of the fixed value, you can update the filter to show the top 10, 20, or 30 products using a parameter.
👍1
Machine Learning (17.4%)
Models: Linear Regression, Logistic Regression, Decision Trees, Random Forests, Support Vector Machines (SVMs), K-Nearest Neighbors (KNN), Naive Bayes, Neural Networks (including Deep Learning)

Techniques: Training/testing data splitting, cross-validation, feature scaling, model evaluation metrics (accuracy, precision, recall, F1-score)

Data Manipulation (13.9%)
Techniques: Data cleaning (handling missing values, outliers), data wrangling (sorting, filtering, aggregating), data transformation (scaling, normalization), merging datasets

Programming Skills (11.7%)
Languages: Python (widely used in data science for its libraries like pandas, NumPy, scikit-learn), R (another popular choice for statistical computing), SQL (for querying relational databases)

Statistics and Probability (11.7%)
Concepts: Denoscriptive statistics (mean, median, standard deviation), hypothesis testing, probability distributions (normal, binomial, Poisson), statistical inference

Big Data Technologies (9.3%)
Tools: Apache Spark, Hadoop, Kafka (for handling large and complex datasets)

Data Visualization (9.3%)
Techniques: Creating charts and graphs (scatter plots, bar charts, heatmaps), storytelling with data, choosing the right visualizations for the data

Model Deployment (9.3%)
Techniques: Cloud platforms (AWS SageMaker, Google Cloud AI Platform, Microsoft Azure Machine Learning), containerization (Docker), model monitoring
👍1
Choose the Visualization tool that fits your business needs

𝗦𝗲𝗰𝘂𝗿𝗶𝘁𝘆 & 𝗔𝗰𝗰𝗲𝘀𝘀 𝗖𝗼𝗻𝘁𝗿𝗼𝗹 (𝗧𝗼𝗽 𝗣𝗿𝗶𝗼𝗿𝗶𝘁𝘆)
✓ Row-Level Security (RLS)
✓ Column-Level Security (CLS)
✓ Plot-Level Security
✓ Dashboard-Level Security
✓ Data Masking & Anonymization
✓ Audit Logging & User Activity Tracking

𝗙𝗶𝗹𝘁𝗲𝗿𝗶𝗻𝗴 𝗖𝗮𝗽𝗮𝗯𝗶𝗹𝗶𝘁𝗶𝗲𝘀
✓ Global Filters
✓ Local Filters
✓ Cross-Filtering
✓ Cascading Filters – One filter should dynamically adjust available options in other filters.
✓ Consistent Coloring After Filtering – Colors inside plots should remain the same after applying filters.

𝗔𝗹𝗲𝗿𝘁𝗶𝗻𝗴 & 𝗡𝗼𝘁𝗶𝗳𝗶𝗰𝗮𝘁𝗶𝗼𝗻 𝗦𝘆𝘀𝘁𝗲𝗺
✓ Threshold-Based Alerts
✓ Anomaly Detection Alerts
✓ Scheduled Reports & Notifications
✓ Real-Time Alerts – Instant notifications for critical data updates.

𝗘𝗺𝗯𝗲𝗱𝗱𝗶𝗻𝗴 & 𝗜𝗻𝘁𝗲𝗴𝗿𝗮𝘁𝗶𝗼𝗻 𝗖𝗮𝗽𝗮𝗯𝗶𝗹𝗶𝘁𝗶𝗲𝘀
✓ Embedding in Web Apps – Ability to integrate dashboards in external applications.
✓ APIs for Custom Queries – Fetch & manipulate visualization data programmatically.
✓ SSO & Authentication Integration – Support for OAuth, SAML, LDAP for secure embedding.
✓ SDK or iFrame Support – Ease of embedding with minimal coding.

𝗩𝗶𝘀𝘂𝗮𝗹𝗶𝘇𝗮𝘁𝗶𝗼𝗻 𝗖𝗮𝗽𝗮𝗯𝗶𝗹𝗶𝘁𝗶𝗲𝘀
✓ Wide Range of Chart Types
✓ Custom Chart Creation – Ability to extend with JavaScript/Python based visualizations.
✓ Interactive & Drill-Down Support – Clicking on elements should allow further exploration.
✓ Time-Series & Forecasting Support – Built-in trend analysis and forecasting models.

𝗙𝘂𝘁𝘂𝗿𝗲-𝗣𝗿𝗼𝗼𝗳𝗶𝗻𝗴 & 𝗦𝗰𝗮𝗹𝗮𝗯𝗶𝗹𝗶𝘁𝘆
✓ Cloud vs. On-Premise Support – Flexibility to deploy on different infrastructures.
✓ Multi-Tenant Support – Ability to manage multiple client environments separately.
✓ Performance on Large Datasets – Efficient handling of millions/billions of rows.
✓ AI & ML Capabilities – Support for AI-driven insights and predictive analytics.

Benefits of Metabase
1. Affordable Pricing
↳ On-Prem: Free | Starter: $85 | Pro: $500
2. Easy to Get Started
↳ Only SQL knowledge required
3. Built-in Alerts
↳ Supports Email and Slack notifications
4. Conditional Formatting
↳ Customize table row/cell colors based on conditions
5. Drill-Through Charts
↳ Click data points to explore deeper insights
6. User-Friendly Interface


Limitations
1. Filters Placement
↳ Only available at the top of dashboards
2. Limited Selection for Filtering
↳ Can select only a single cell; global/local filters update based on that value
👍2
𝗝𝗣 𝗠𝗼𝗿𝗴𝗮𝗻 𝗙𝗥𝗘𝗘 𝗩𝗶𝗿𝘁𝘂𝗮𝗹 𝗜𝗻𝘁𝗲𝗿𝗻𝘀𝗵𝗶𝗽 𝗣𝗿𝗼𝗴𝗿𝗮𝗺𝘀😍

JPMorgan offers free virtual internships to help you develop industry-specific tech, finance, and research skills. 

- Software Engineering Internship
- Investment Banking Program
- Quantitative Research Internship
 
𝐋𝐢𝐧𝐤 👇:- 

https://pdlink.in/4gHGofl

Enroll For FREE & Get Certified 🎓
👍1
Jupyter Notebooks are essential for data analysts working with Python.

Here’s how to make the most of this great tool:

1. 𝗢𝗿𝗴𝗮𝗻𝗶𝘇𝗲 𝗬𝗼𝘂𝗿 𝗖𝗼𝗱𝗲 𝘄𝗶𝘁𝗵 𝗖𝗹𝗲𝗮𝗿 𝗦𝘁𝗿𝘂𝗰𝘁𝘂𝗿𝗲:

Break your notebook into logical sections using markdown headers. This helps you and your colleagues navigate the notebook easily and understand the flow of analysis. You could use headings (#, ##, ###) and bullet points to create a table of contents.


2. 𝗗𝗼𝗰𝘂𝗺𝗲𝗻𝘁 𝗬𝗼𝘂𝗿 𝗣𝗿𝗼𝗰𝗲𝘀𝘀:

Add markdown cells to explain your methodology, code, and guidelines for the user. This Enhances the readability and makes your notebook a great reference for future projects. You might want to include links to relevant resources and detailed docs where necessary.


3. 𝗨𝘀𝗲 𝗜𝗻𝘁𝗲𝗿𝗮𝗰𝘁𝗶𝘃𝗲 𝗪𝗶𝗱𝗴𝗲𝘁𝘀:

Leverage ipywidgets to create interactive elements like sliders, dropdowns, and buttons. With those, you can make your analysis more dynamic and allow users to explore different scenarios without changing the code. Create widgets for parameter tuning and real-time data visualization.


𝟰. 𝗞𝗲𝗲𝗽 𝗜𝘁 𝗖𝗹𝗲𝗮𝗻 𝗮𝗻𝗱 𝗠𝗼𝗱𝘂𝗹𝗮𝗿:

Write reusable functions and classes instead of long, monolithic code blocks. This will improve the code maintainability and efficiency of your notebook. You should store frequently used functions in separate Python noscripts and import them when needed.


5. 𝗩𝗶𝘀𝘂𝗮𝗹𝗶𝘇𝗲 𝗬𝗼𝘂𝗿 𝗗𝗮𝘁𝗮 𝗘𝗳𝗳𝗲𝗰𝘁𝗶𝘃𝗲𝗹𝘆:

Utilize libraries like Matplotlib, Seaborn, and Plotly for your data visualizations. These clear and insightful visuals will help you to communicate your findings. Make sure to customize your plots with labels, noscripts, and legends to make them more informative.


6. 𝗩𝗲𝗿𝘀𝗶𝗼𝗻 𝗖𝗼𝗻𝘁𝗿𝗼𝗹 𝗬𝗼𝘂𝗿 𝗡𝗼𝘁𝗲𝗯𝗼𝗼𝗸𝘀:

Jupyter Notebooks are great for exploration, but they often lack systematic version control. Use tools like Git and nbdime to track changes, collaborate effectively, and ensure that your work is reproducible.

7. 𝗣𝗿𝗼𝘁𝗲𝗰𝘁 𝗬𝗼𝘂𝗿 𝗡𝗼𝘁𝗲𝗯𝗼𝗼𝗸𝘀:

Clean and secure your notebooks by removing sensitive information before sharing. This helps to prevent the leakage of private data. You should consider using environment variables for credentials.


Keeping these techniques in mind will help to transform your Jupyter Notebooks into great tools for analysis and communication.

I have curated the best interview resources to crack Python Interviews 👇👇
https://whatsapp.com/channel/0029VaiM08SDuMRaGKd9Wv0L

Hope you'll like it

Like this post if you need more resources like this 👍❤️
👍1