Data Analytics & AI | SQL Interviews | Power BI Resources – Telegram
Data Analytics & AI | SQL Interviews | Power BI Resources
25.9K subscribers
309 photos
2 videos
151 files
322 links
🔓Explore the fascinating world of Data Analytics & Artificial Intelligence

💻 Best AI tools, free resources, and expert advice to land your dream tech job.

Admin: @coderfun

Buy ads: https://telega.io/c/Data_Visual
Download Telegram
Forwarded from Generative AI
𝟯 𝗙𝗿𝗲𝗲 𝗢𝗿𝗮𝗰𝗹𝗲 𝗖𝗲𝗿𝘁𝗶𝗳𝗶𝗰𝗮𝘁𝗶𝗼𝗻𝘀 𝘁𝗼 𝗙𝘂𝘁𝘂𝗿𝗲-𝗣𝗿𝗼𝗼𝗳 𝗬𝗼𝘂𝗿 𝗧𝗲𝗰𝗵 𝗖𝗮𝗿𝗲𝗲𝗿 𝗶𝗻 𝟮𝟬𝟮𝟱😍

Oracle, one of the world’s most trusted tech giants, offers free training and globally recognized certifications to help you build expertise in cloud computing, Java, and enterprise applications.👨‍🎓📌

𝐋𝐢𝐧𝐤👇:-

https://pdlink.in/3GZZUXi

All at zero cost!🎊✅️
👍3
Top 10 machine Learning algorithms for beginners 👇👇

1. Linear Regression: A simple algorithm used for predicting a continuous value based on one or more input features.

2. Logistic Regression: Used for binary classification problems, where the output is a binary value (0 or 1).

3. Decision Trees: A versatile algorithm that can be used for both classification and regression tasks, based on a tree-like structure of decisions.

4. Random Forest: An ensemble learning method that combines multiple decision trees to improve the accuracy and robustness of the model.

5. Support Vector Machines (SVM): Used for both classification and regression tasks, with the goal of finding the hyperplane that best separates the classes.

6. K-Nearest Neighbors (KNN): A simple algorithm that classifies a new data point based on the majority class of its k nearest neighbors in the feature space.

7. Naive Bayes: A probabilistic algorithm based on Bayes' theorem that is commonly used for text classification and spam filtering.

8. K-Means Clustering: An unsupervised learning algorithm used for clustering data points into k distinct groups based on similarity.

9. Principal Component Analysis (PCA): A dimensionality reduction technique used to reduce the number of features in a dataset while preserving the most important information.

10. Gradient Boosting Machines (GBM): An ensemble learning method that builds a series of weak learners to create a strong predictive model through iterative optimization.

Best Data Science & Machine Learning Resources: https://topmate.io/coding/914624

Credits: https://news.1rj.ru/str/datasciencefun

Like if you need similar content 😄👍
👍2
𝗠𝗮𝘀𝘁𝗲𝗿 𝗣𝘆𝘁𝗵𝗼𝗻 𝗙𝘂𝗻𝗱𝗮𝗺𝗲𝗻𝘁𝗮𝗹𝘀 𝗳𝗼𝗿 𝗧𝗲𝗰𝗵 & 𝗗𝗮𝘁𝗮 𝗥𝗼𝗹𝗲𝘀 – 𝗙𝗿𝗲𝗲 𝗕𝗲𝗴𝗶𝗻𝗻𝗲𝗿 𝗚𝘂𝗶𝗱𝗲😍

If you’re aiming for a role in tech, data analytics, or software development, one of the most valuable skills you can master is Python🎯

𝐋𝐢𝐧𝐤👇:-

https://pdlink.in/4jg88I8

All The Best 🎊
👍1
SQL Tricks to Level Up Your Database Skills 🚀

SQL is a powerful language, but mastering a few clever tricks can make your queries faster, cleaner, and more efficient. Here are some cool SQL hacks to boost your skills:

1️⃣ Use COALESCE Instead of CASE
Instead of writing a long CASE statement to handle NULL values, use COALESCE():
SELECT COALESCE(name, 'Unknown') FROM users;

This returns the first non-null value in the list.

2️⃣ Generate Sequential Numbers Without a Table
Need a sequence of numbers but don’t have a numbers table? Use GENERATE_SERIES (PostgreSQL) or WITH RECURSIVE (MySQL 8+):
SELECT generate_series(1, 10);


3️⃣ Find Duplicates Quickly
Easily identify duplicate values with GROUP BY and HAVING:
SELECT email, COUNT(*) 
FROM users
GROUP BY email
HAVING COUNT(*) > 1;


4️⃣ Randomly Select Rows
Want a random sample of data? Use:
- PostgreSQL: ORDER BY RANDOM()
- MySQL: ORDER BY RAND()
- SQL Server: ORDER BY NEWID()

5️⃣ Pivot Data Without PIVOT (For Databases Without It)
Use CASE with SUM() to pivot data manually:
SELECT 
user_id,
SUM(CASE WHEN status = 'active' THEN 1 ELSE 0 END) AS active_count,
SUM(CASE WHEN status = 'inactive' THEN 1 ELSE 0 END) AS inactive_count
FROM users
GROUP BY user_id;


6️⃣ Efficiently Get the Last Inserted ID
Instead of running a separate SELECT, use:
- MySQL: SELECT LAST_INSERT_ID();
- PostgreSQL: RETURNING id;
- SQL Server: SELECT SCOPE_IDENTITY();

Like for more ❤️
👍51
𝟯 𝗕𝗲𝗴𝗶𝗻𝗻𝗲𝗿-𝗙𝗿𝗶𝗲𝗻𝗱𝗹𝘆 𝗗𝗮𝘁𝗮 𝗦𝗰𝗶𝗲𝗻𝗰𝗲 𝗣𝗿𝗼𝗷𝗲𝗰𝘁𝘀 𝘁𝗼 𝗕𝘂𝗶𝗹𝗱 𝗬𝗼𝘂𝗿 𝗣𝗼𝗿𝘁𝗳𝗼𝗹𝗶𝗼 𝗶𝗻 𝟮𝟬𝟮𝟱😍

👩‍💻 Want to Break into Data Science but Don’t Know Where to Start?🚀

The best way to begin your data science journey is with hands-on projects using real-world datasets.👨‍💻📌

𝐋𝐢𝐧𝐤👇:-

https://pdlink.in/44LoViW

Enjoy Learning ✅️
Data Analyst Roadmap:

- Tier 1: Learn Excel & SQL
- Tier 2: Data Cleaning & Exploratory Data Analysis (EDA)
- Tier 3: Data Visualization & Business Intelligence (BI) Tools
- Tier 4: Statistical Analysis & Machine Learning Basics

Then build projects that include:

- Data Collection
- Data Cleaning
- Data Analysis
- Data Visualization

And if you want to make your portfolio stand out more:

- Solve real business problems
- Provide clear, impactful insights
- Create a presentation
- Record a video presentation
- Target specific industries
- Reach out to companies

Hope this helps you 😊
👍21
Forwarded from Artificial Intelligence
𝗚𝗼𝗼𝗴𝗹𝗲 𝗧𝗼𝗽 𝗙𝗥𝗘𝗘 𝗖𝗲𝗿𝘁𝗶𝗳𝗶𝗰𝗮𝘁𝗶𝗼𝗻 𝗖𝗼𝘂𝗿𝘀𝗲𝘀😍

If you’re job hunting, switching careers, or just want to upgrade your skill set — Google Skillshop is your go-to platform in 2025!

Google offers completely free certifications that are globally recognized and valued by employers in tech, digital marketing, business, and analytics📊

𝐋𝐢𝐧𝐤👇:-

https://pdlink.in/4dwlDT2

Enroll For FREE & Get Certified 🎓️
1
DATA SCIENCE INTERVIEW QUESTIONS WITH ANSWERS


1. What are the assumptions required for linear regression? What if some of these assumptions are violated?

Ans: The assumptions are as follows:

The sample data used to fit the model is representative of the population

The relationship between X and the mean of Y is linear

The variance of the residual is the same for any value of X (homoscedasticity)

Observations are independent of each other

For any value of X, Y is normally distributed.

Extreme violations of these assumptions will make the results redundant. Small violations of these assumptions will result in a greater bias or variance of the estimate.


2.What is multicollinearity and how to remove it?

Ans: Multicollinearity exists when an independent variable is highly correlated with another independent variable in a multiple regression equation. This can be problematic because it undermines the statistical significance of an independent variable.

You could use the Variance Inflation Factors (VIF) to determine if there is any multicollinearity between independent variables — a standard benchmark is that if the VIF is greater than 5 then multicollinearity exists.


3. What is overfitting and how to prevent it?

Ans: Overfitting is an error where the model ‘fits’ the data too well, resulting in a model with high variance and low bias. As a consequence, an overfit model will inaccurately predict new data points even though it has a high accuracy on the training data.

Few approaches to prevent overfitting are:

- Cross-Validation:Cross-validation is a powerful preventative measure against overfitting. Here we use our initial training data to generate multiple mini train-test splits. Now we use these splits to tune our model.

- Train with more data: It won’t work every time, but training with more data can help algorithms detect the signal better or it can help my model to understand general trends in particular.

- We can remove irrelevant information or the noise from our dataset.

- Early Stopping: When you’re training a learning algorithm iteratively, you can measure how well each iteration of the model performs.

Up until a certain number of iterations, new iterations improve the model. After that point, however, the model’s ability to generalize can weaken as it begins to overfit the training data.

Early stopping refers stopping the training process before the learner passes that point.

- Regularization: It refers to a broad range of techniques for artificially forcing your model to be simpler. There are mainly 3 types of Regularization techniques:L1, L2,&,Elastic- net.

- Ensembling : Here we take number of learners and using these we get strong model. They are of two types : Bagging and Boosting.


4. Given two fair dices, what is the probability of getting scores that sum to 4 and 8?

Ans: There are 4 combinations of rolling a 4 (1+3, 3+1, 2+2):
P(rolling a 4) = 3/36 = 1/12

There are 5 combinations of rolling an 8 (2+6, 6+2, 3+5, 5+3, 4+4):
P(rolling an 8) = 5/36

ENJOY LEARNING 👍👍
2👍1
Forwarded from Artificial Intelligence
𝟳 𝗕𝗲𝘀𝘁 𝗪𝗲𝗯𝘀𝗶𝘁𝗲𝘀 𝘁𝗼 𝗟𝗲𝗮𝗿𝗻 𝗗𝗮𝘁𝗮 𝗦𝗰𝗶𝗲𝗻𝗰𝗲 𝗳𝗼𝗿 𝗙𝗥𝗘𝗘 𝗶𝗻 𝟮𝟬𝟮𝟱 (𝗡𝗼 𝗖𝗼𝘀𝘁, 𝗡𝗼 𝗖𝗮𝘁𝗰𝗵!)😍

Want to become a Data Scientist in 2025 without spending a single rupee? You’re in the right place📌

From Python and machine learning to hands-on projects and challenges🎯

𝐋𝐢𝐧𝐤👇:-

https://pdlink.in/4dAuymr

Enjoy Learning ✅️
Machine learning is a subset of artificial intelligence that involves developing algorithms and models that enable computers to learn from and make predictions or decisions based on data. In machine learning, computers are trained on large datasets to identify patterns, relationships, and trends without being explicitly programmed to do so.

There are three main types of machine learning: supervised learning, unsupervised learning, and reinforcement learning. In supervised learning, the algorithm is trained on labeled data, where the correct output is provided along with the input data. Unsupervised learning involves training the algorithm on unlabeled data, allowing it to identify patterns and relationships on its own. Reinforcement learning involves training an algorithm to make decisions by rewarding or punishing it based on its actions.

Machine learning algorithms can be used for a wide range of applications, including image and speech recognition, natural language processing, recommendation systems, predictive analytics, and more. These algorithms can be trained using various techniques such as neural networks, decision trees, support vector machines, and clustering algorithms.

Join for more: t.me/datasciencefun
2
Forwarded from Artificial Intelligence
𝗕𝗿𝗲𝗮𝗸 𝗜𝗻𝘁𝗼 𝗗𝗲𝗲𝗽 𝗟𝗲𝗮𝗿𝗻𝗶𝗻𝗴 𝗶𝗻 𝟮𝟬𝟮𝟱 𝘄𝗶𝘁𝗵 𝗧𝗵𝗶𝘀 𝗙𝗥𝗘𝗘 𝗠𝗜𝗧 𝗖𝗼𝘂𝗿𝘀𝗲😍

If you’re serious about AI, you can’t skip Deep Learning—and this FREE course from MIT is one of the best ways to start👨‍💻📌

Offered by MIT’s top researchers and engineers, this online course is open to everyone, no matter where you live or work🎯

𝐋𝐢𝐧𝐤👇:-

https://pdlink.in/3H6cggR

Why wait to get started when you can learn from MIT for free?✅️
Preparing for a SQL interview?

Focus on mastering these essential topics:

1. Joins: Get comfortable with inner, left, right, and outer joins.
Knowing when to use what kind of join is important!

2. Window Functions: Understand when to use
ROW_NUMBER, RANK(), DENSE_RANK(), LAG, and LEAD for complex analytical queries.

3. Query Execution Order: Know the sequence from FROM to
ORDER BY. This is crucial for writing efficient, error-free queries.

4. Common Table Expressions (CTEs): Use CTEs to simplify and structure complex queries for better readability.

5. Aggregations & Window Functions: Combine aggregate functions with window functions for in-depth data analysis.

6. Subqueries: Learn how to use subqueries effectively within main SQL statements for complex data manipulations.

7. Handling NULLs: Be adept at managing NULL values to ensure accurate data processing and avoid potential pitfalls.

8. Indexing: Understand how proper indexing can significantly boost query performance.

9. GROUP BY & HAVING: Master grouping data and filtering groups with HAVING to refine your query results.

10. String Manipulation Functions: Get familiar with string functions like CONCAT, SUBSTRING, and REPLACE to handle text data efficiently.

11. Set Operations: Know how to use UNION, INTERSECT, and EXCEPT to combine or compare result sets.

12. Optimizing Queries: Learn techniques to optimize your queries for performance, especially with large datasets.

If we master/ Practice in these topics we can track any SQL interviews..

Like this post if you need more 👍❤️

Hope it helps :)
👍1
Forwarded from Artificial Intelligence
𝗙𝗥𝗘𝗘 𝗖𝗲𝗿𝘁𝗶𝗳𝗶𝗰𝗮𝘁𝗶𝗼𝗻 𝗖𝗼𝘂𝗿𝘀𝗲𝘀 𝗧𝗼 𝗘𝗻𝗿𝗼𝗹𝗹 𝗜𝗻 𝟮𝟬𝟮𝟱 😍

Data Analytics :- https://pdlink.in/3Fq7E4p

Data Science :- https://pdlink.in/4iSWjaP

SQL :- https://pdlink.in/3EyjUPt

Python :- https://pdlink.in/4c7hGDL

Web Dev :- https://bit.ly/4ffFnJZ

AI :- https://pdlink.in/4d0SrTG

Enroll For FREE & Get Certified 🎓
1
I've compiled a list of important SQL interview questions to help you prepare for your next data analytics interview. These questions cover everything from basic to advanced topics. Let’s dive in!👇

1. What is the purpose of the GROUP BY clause in SQL? Provide an example.
2. Explain the difference between an INNER JOIN and a LEFT JOIN with examples.
3. Discuss the role of the WHERE clause in SQL queries and provide examples of its usage.
4. Explain the concept of database transactions and the ACID properties.
5. Describe the benefits of using subqueries in SQL and provide a scenario where they would be useful.
6. Discuss the differences between the CHAR and VARCHAR data types in SQL.
7. Explain the purpose of the ORDER BY clause in SQL queries and provide examples.
8. Describe the importance of data integrity constraints such as NOT NULL, UNIQUE, and CHECK constraints in SQL databases.
9. Discuss the advantages and disadvantages of using stored procedures
Explain the difference between an aggregate function and a scalar function in SQL, with examples.
10. Discuss the role of the COMMIT and ROLLBACK statements in SQL transactions.
11. Explain the purpose of the LIKE operator in SQL and provide examples of its usage.
12. Describe the concept of normalization forms (1NF, 2NF, 3NF) and why they are important in database design.
13. Discuss the differences between a clustered and non-clustered index in SQL.
14. Explain the concept of data warehousing and how it differs from traditional relational databases.
15. Describe the benefits of using database triggers and provide examples of their usage.
16. Discuss the concept of database concurrency control and how it is achieved in SQL databases.
17. Explain the role of the SELECT INTO statement in SQL and provide examples of its usage.
18. Describe the differences between a database view and a materialized view in SQL.
19. Discuss the advantages of using parameterized queries in SQL applications.
20. Write a query to retrieve all employees who have a salary greater than $100,000.
21. Create a query to display the total number of orders placed in the last month.
22. Write a query to find the average order value for each customer.
23. Create a query to count the number of distinct products sold in the past week.
24. Write a query to find the top 10 customers with the highest total order amount.

Here you can find SQL Interview Resources👇
t.me/mysqldata

Hope it helps :)
👍21
Forwarded from Artificial Intelligence
𝟰 𝗙𝗿𝗲𝗲 𝗣𝘆𝘁𝗵𝗼𝗻 𝗖𝗼𝘂𝗿𝘀𝗲𝘀 𝘁𝗼 𝗦𝘁𝗮𝗿𝘁 𝗖𝗼𝗱𝗶𝗻𝗴 𝗟𝗶𝗸𝗲 𝗮 𝗣𝗿𝗼 𝗶𝗻 𝟮𝟬𝟮𝟱😍

Looking to kickstart your coding journey with Python? 🐍

Whether you’re an aspiring data analyst, a student, or preparing for tech roles, these free Python courses are perfect for beginners!📊📌

𝐋𝐢𝐧𝐤👇:-

https://pdlink.in/4jtpf9M

These platforms offer high-quality learning — no fees, no catch✅️
Power BI Learning Plan in 2025

|-- Week 1: Introduction to Power BI
|   |-- Power BI Basics
|   |   |-- What is Power BI?
|   |   |-- Components of Power BI
|   |   |-- Power BI Desktop vs. Power BI Service
|   |-- Setting up Power BI
|   |   |-- Installing Power BI Desktop
|   |   |-- Overview of the Interface
|   |   |-- Connecting to Data Sources
|   |-- First Power BI Report
|   |   |-- Creating a Simple Report
|   |   |-- Basic Visualizations
|
|-- Week 2: Data Transformation and Modeling
|   |-- Power Query Editor
|   |   |-- Importing and Shaping Data
|   |   |-- Applied Steps
|   |-- Data Modeling
|   |   |-- Relationships
|   |   |-- Calculated Columns and Measures
|   |   |-- DAX Basics
|   |-- Data Cleaning
|   |   |-- Handling Missing Data
|   |   |-- Data Types and Formatting
|
|-- Week 3: Advanced DAX and Data Modeling
|   |-- Advanced DAX Functions
|   |   |-- Time Intelligence
|   |   |-- Iterators
|   |   |-- Filter Functions
|   |-- Advanced Data Modeling
|   |   |-- Star and Snowflake Schemas
|   |   |-- Role-playing Dimensions
|   |-- Performance Optimization
|   |   |-- Query Performance
|   |   |-- Model Performance
|
|-- Week 4: Visualizations and Reports
|   |-- Advanced Visualizations
|   |   |-- Custom Visuals
|   |   |-- Conditional Formatting
|   |   |-- Interactive Elements
|   |-- Report Design
|   |   |-- Designing for Clarity
|   |   |-- Using Themes
|   |   |-- Report Navigation
|   |-- Power BI Service
|   |   |-- Publishing Reports
|   |   |-- Workspaces and Apps
|   |   |-- Sharing and Collaboration
|
|-- Week 5: Dashboards and Data Analysis
|   |-- Creating Dashboards
|   |   |-- Pinning Visuals
|   |   |-- Dashboard Tiles
|   |   |-- Alerts
|   |-- Data Analysis Techniques
|   |   |-- Drillthrough
|   |   |-- Bookmarks
|   |   |-- What-If Parameters
|   |-- Advanced Analytics
|   |   |-- Quick Insights
|   |   |-- AI Visuals
|
|-- Week 6-8: Power BI and Other Tools
|   |-- Power BI and Excel
|   |   |-- Excel Integration
|   |   |-- PowerPivot and PowerQuery
|   |   |-- Publishing from Excel
|   |-- Power BI and R
|   |   |-- Using R Scripts in Power BI
|   |   |-- R Visuals
|   |-- Power BI and Python
|   |   |-- Using Python Scripts
|   |   |-- Python Visuals
|   |-- Power Automate and Power BI
|   |   |-- Automating Workflows
|   |   |-- Data Alerts and Actions
|
|-- Week 9-11: Real-world Applications and Projects
|   |-- Capstone Project
|   |   |-- Project Planning
|   |   |-- Data Collection and Preparation
|   |   |-- Building and Optimizing the Model
|   |   |-- Creating and Publishing Reports
|   |-- Case Studies
|   |   |-- Business Use Cases
|   |   |-- Industry-specific Solutions
|   |-- Integration with Other Tools
|   |   |-- SQL Databases
|   |   |-- Azure Data Services
|
|-- Week 12: Post-Project Learning
|   |-- Power BI Administration
|   |   |-- Data Governance
|   |   |-- Security
|   |   |-- Monitoring and Auditing
|   |-- Power BI in the Cloud
|   |   |-- Power BI Premium
|   |   |-- Power BI Embedded
|   |-- Continuing Education
|   |   |-- Advanced Power BI Topics
|   |   |-- Community and Forums
|   |   |-- Keeping Up with Updates
|
|-- Resources and Community
|   |-- Online Courses (Coursera, edX, Udacity)
|   |-- Books (The Definitive Guide to DAX, Microsoft Power BI Cookbook)
|   |-- GitHub Repositories
|   |-- Power BI Communities (Microsoft Power BI Community, Reddit)

You can refer these Power BI Interview Resources to learn more: https://whatsapp.com/channel/0029VaGgzAk72WTmQFERKh02

Like this post if you want me to continue this Power BI series 👍♥️

Share with credits: https://news.1rj.ru/str/sqlspecialist

Hope it helps :)
3
𝗧𝗼𝗽 𝗠𝗡𝗖𝘀 𝗢𝗳𝗳𝗲𝗿𝗶𝗻𝗴 𝗙𝗥𝗘𝗘 𝗖𝗲𝗿𝘁𝗶𝗳𝗶𝗰𝗮𝘁𝗶𝗼𝗻 𝗖𝗼𝘂𝗿𝘀𝗲𝘀 😍

Google :- https://pdlink.in/3H2YJX7

Microsoft :- https://pdlink.in/4iq8QlM

Infosys :- https://pdlink.in/4jsHZXf

IBM :- https://pdlink.in/3QyJyqk

Cisco :- https://pdlink.in/4fYr1xO

Enroll For FREE & Get Certified 🎓
10 Ways to Speed Up Your Python Code

1. List Comprehensions
numbers = [x**2 for x in range(100000) if x % 2 == 0]
instead of
numbers = []
for x in range(100000):
if x % 2 == 0:
numbers.append(x**2)

2. Use the Built-In Functions
Many of Python’s built-in functions are written in C, which makes them much faster than a pure python solution.

3. Function Calls Are Expensive
Function calls are expensive in Python. While it is often good practice to separate code into functions, there are times where you should be cautious about calling functions from inside of a loop. It is better to iterate inside a function than to iterate and call a function each iteration.

4. Lazy Module Importing
If you want to use the time.sleep() function in your code, you don't necessarily need to import the entire time package. Instead, you can just do from time import sleep and avoid the overhead of loading basically everything.

5. Take Advantage of Numpy
Numpy is a highly optimized library built with C. It is almost always faster to offload complex math to Numpy rather than relying on the Python interpreter.

6. Try Multiprocessing
Multiprocessing can bring large performance increases to a Python noscript, but it can be difficult to implement properly compared to other methods mentioned in this post.

7. Be Careful with Bulky Libraries
One of the advantages Python has over other programming languages is the rich selection of third-party libraries available to developers. But, what we may not always consider is the size of the library we are using as a dependency, which could actually decrease the performance of your Python code.

8. Avoid Global Variables
Python is slightly faster at retrieving local variables than global ones. It is simply best to avoid global variables when possible.

9. Try Multiple Solutions
Being able to solve a problem in multiple ways is nice. But, there is often a solution that is faster than the rest and sometimes it comes down to just using a different method or data structure.

10. Think About Your Data Structures
Searching a dictionary or set is insanely fast, but lists take time proportional to the length of the list. However, sets and dictionaries do not maintain order. If you care about the order of your data, you can’t make use of dictionaries or sets.

Best Programming Resources: https://topmate.io/coding/898340

All the best 👍👍
1
Forwarded from Artificial Intelligence
𝗙𝗥𝗘𝗘 𝗠𝗶𝗰𝗿𝗼𝘀𝗼𝗳𝘁 𝗧𝗲𝗰𝗵 𝗖𝗲𝗿𝘁𝗶𝗳𝗶𝗰𝗮𝘁𝗶𝗼𝗻 𝗖𝗼𝘂𝗿𝘀𝗲𝘀😍

🚀 Learn In-Demand Tech Skills for Free — Certified by Microsoft!

These free Microsoft-certified online courses are perfect for beginners, students, and professionals looking to upskill

𝐋𝐢𝐧𝐤👇:-

https://pdlink.in/3Hio2Vg

Enroll For FREE & Get Certified🎓️
1
𝗙𝗥𝗘𝗘 𝗧𝗔𝗧𝗔 𝗗𝗮𝘁𝗮 𝗔𝗻𝗮𝗹𝘆𝘁𝗶𝗰𝘀 𝗩𝗶𝗿𝘁𝘂𝗮𝗹 𝗜𝗻𝘁𝗲𝗿𝗻𝘀𝗵𝗶𝗽😍

Gain Real-World Data Analytics Experience with TATA – 100% Free!

This free TATA Data Analytics Virtual Internship on Forage lets you step into the shoes of a data analyst — no experience required!

𝐋𝐢𝐧𝐤👇:-

https://pdlink.in/3FyjDgp

Enroll For FREE & Get Certified🎓️
1
5 misconceptions about data analytics (and what's actually true):

The more sophisticated the tool, the better the analyst
Many analysts do their jobs with "basic" tools like Excel

You're just there to crunch the numbers
You need to be able to tell a story with the data

You need super advanced math skills
Understanding basic math and statistics is a good place to start

Data is always clean and accurate
Data is never clean and 100% accurate (without lots of prep work)

You'll work in isolation and not talk to anyone
Communication with your team and your stakeholders is essential
2