Forwarded from Artificial Intelligence
𝗧𝗼𝗽 𝗖𝗼𝗺𝗽𝗮𝗻𝗶𝗲𝘀 𝗛𝗶𝗿𝗶𝗻𝗴 𝗗𝗮𝘁𝗮 𝗔𝗻𝗮𝗹𝘆𝘀𝘁𝘀😍
𝗔𝗽𝗽𝗹𝘆 𝗟𝗶𝗻𝗸𝘀:-👇
S&P Global :- https://pdlink.in/3ZddwVz
IBM :- https://pdlink.in/4kDmMKE
TVS Credit :- https://pdlink.in/4mI0JVc
Sutherland :- https://pdlink.in/4mGYBgg
Other Jobs :- https://pdlink.in/44qEIDu
Apply before the link expires 💫
𝗔𝗽𝗽𝗹𝘆 𝗟𝗶𝗻𝗸𝘀:-👇
S&P Global :- https://pdlink.in/3ZddwVz
IBM :- https://pdlink.in/4kDmMKE
TVS Credit :- https://pdlink.in/4mI0JVc
Sutherland :- https://pdlink.in/4mGYBgg
Other Jobs :- https://pdlink.in/44qEIDu
Apply before the link expires 💫
30 Days Python Roadmap for Data Analysts 👆
❤3
𝟰 𝗙𝗿𝗲𝗲 𝗣𝘆𝘁𝗵𝗼𝗻 𝗖𝗼𝘂𝗿𝘀𝗲𝘀 𝘁𝗼 𝗕𝗼𝗼𝘀𝘁 𝗬𝗼𝘂𝗿 𝗥𝗲𝘀𝘂𝗺𝗲 𝗶𝗻 𝟮𝟬𝟮𝟱😍
Want to Boost Your Resume with In-Demand Python Skills?👨💻
In today’s tech-driven world, Python is one of the most in-demand programming languages across data science, software development, and machine learning📊📌
𝐋𝐢𝐧𝐤👇:-
https://pdlink.in/3Hnx3wh
Enjoy Learning ✅️
Want to Boost Your Resume with In-Demand Python Skills?👨💻
In today’s tech-driven world, Python is one of the most in-demand programming languages across data science, software development, and machine learning📊📌
𝐋𝐢𝐧𝐤👇:-
https://pdlink.in/3Hnx3wh
Enjoy Learning ✅️
Hey guys!
I’ve been getting a lot of requests from you all asking for solid Data Analytics projects that can help you boost resume and build real skills.
So here you go —
These aren’t just “for practice,” they’re portfolio-worthy projects that show recruiters you’re ready for real-world work.
1. Sales Performance Dashboard
Tools: Excel / Power BI / Tableau
You’ll take raw sales data and turn it into a clean, interactive dashboard. Show key metrics like revenue, profit, top products, and regional trends.
Skills you build: Data cleaning, slicing & filtering, dashboard creation, business storytelling.
2. Customer Churn Analysis
Tools: Python (Pandas, Seaborn)
Work with a telecom or SaaS dataset to identify which customers are likely to leave and why.
Skills you build: Exploratory data analysis, visualization, correlation, and basic machine learning.
3. E-commerce Product Insights using SQL
Tools: SQL + Power BI
Analyze product categories, top-selling items, and revenue trends from a sample e-commerce dataset.
Skills you build: Joins, GROUP BY, aggregation, data modeling, and visual storytelling.
4. HR Analytics Dashboard
Tools: Excel / Power BI
Dive into employee data to find patterns in attrition, hiring trends, average salaries by department, etc.
Skills you build: Data summarization, calculated fields, visual formatting, DAX basics.
5. Movie Trends Analysis (Netflix or IMDb Dataset)
Tools: Python (Pandas, Matplotlib)
Explore trends across genres, ratings, and release years. Great for people who love entertainment and want to show creativity.
Skills you build: Data wrangling, time-series plots, filtering techniques.
6. Marketing Campaign Analysis
Tools: Excel / Power BI / SQL
Analyze data from a marketing campaign to measure ROI, conversion rates, and customer engagement. Identify which channels or strategies worked best and suggest improvements.
Skills you build: Data blending, KPI calculation, segmentation, and actionable insights.
7. Financial Expense Analysis & Budget Forecasting
Tools: Excel / Power BI / Python
Work on a company’s expense data to analyze spending patterns, categorize expenses, and create a forecasting model to predict future budgets.
Skills you build: Time series analysis, forecasting, budgeting, and financial storytelling.
Pick 2–3 projects. Don’t just show the final visuals — explain your process on LinkedIn or GitHub. That’s what sets you apart.
Like for more useful content ❤️
I’ve been getting a lot of requests from you all asking for solid Data Analytics projects that can help you boost resume and build real skills.
So here you go —
These aren’t just “for practice,” they’re portfolio-worthy projects that show recruiters you’re ready for real-world work.
1. Sales Performance Dashboard
Tools: Excel / Power BI / Tableau
You’ll take raw sales data and turn it into a clean, interactive dashboard. Show key metrics like revenue, profit, top products, and regional trends.
Skills you build: Data cleaning, slicing & filtering, dashboard creation, business storytelling.
2. Customer Churn Analysis
Tools: Python (Pandas, Seaborn)
Work with a telecom or SaaS dataset to identify which customers are likely to leave and why.
Skills you build: Exploratory data analysis, visualization, correlation, and basic machine learning.
3. E-commerce Product Insights using SQL
Tools: SQL + Power BI
Analyze product categories, top-selling items, and revenue trends from a sample e-commerce dataset.
Skills you build: Joins, GROUP BY, aggregation, data modeling, and visual storytelling.
4. HR Analytics Dashboard
Tools: Excel / Power BI
Dive into employee data to find patterns in attrition, hiring trends, average salaries by department, etc.
Skills you build: Data summarization, calculated fields, visual formatting, DAX basics.
5. Movie Trends Analysis (Netflix or IMDb Dataset)
Tools: Python (Pandas, Matplotlib)
Explore trends across genres, ratings, and release years. Great for people who love entertainment and want to show creativity.
Skills you build: Data wrangling, time-series plots, filtering techniques.
6. Marketing Campaign Analysis
Tools: Excel / Power BI / SQL
Analyze data from a marketing campaign to measure ROI, conversion rates, and customer engagement. Identify which channels or strategies worked best and suggest improvements.
Skills you build: Data blending, KPI calculation, segmentation, and actionable insights.
7. Financial Expense Analysis & Budget Forecasting
Tools: Excel / Power BI / Python
Work on a company’s expense data to analyze spending patterns, categorize expenses, and create a forecasting model to predict future budgets.
Skills you build: Time series analysis, forecasting, budgeting, and financial storytelling.
Pick 2–3 projects. Don’t just show the final visuals — explain your process on LinkedIn or GitHub. That’s what sets you apart.
Like for more useful content ❤️
❤5
Forwarded from Artificial Intelligence
𝗠𝗮𝘀𝘁𝗲𝗿 𝟲 𝗜𝗻-𝗗𝗲𝗺𝗮𝗻𝗱 𝗦𝗸𝗶𝗹𝗹𝘀 𝗳𝗼𝗿 𝗙𝗥𝗘𝗘!😍
Want to boost your career with highly sought-after tech skills? These 6 YouTube channels will help you learn from scratch!👨💻
No need for expensive courses—start learning for FREE today!🚀
𝐋𝐢𝐧𝐤👇:-
https://pdlink.in/3Ddxd7P
Don’t miss this opportunity—start learning today and take your skills to the next level!✅️
Want to boost your career with highly sought-after tech skills? These 6 YouTube channels will help you learn from scratch!👨💻
No need for expensive courses—start learning for FREE today!🚀
𝐋𝐢𝐧𝐤👇:-
https://pdlink.in/3Ddxd7P
Don’t miss this opportunity—start learning today and take your skills to the next level!✅️
Data Analytics Projects for Beginners 👇
Web Scraping
https://github.com/shreyaswankhede/IMDb-Web-Scraping-and-Sentiment-Analysis
Product Price Scraping and Analysis
https://github.com/CodesdaLu/Web-Scrapping
News Scraping
https://github.com/rohit-yadav/scraping-news-articles
Real Time Stock Price Scraping with Python
https://youtu.be/rONhdonaWUo?si=A3oDEVbLIAP78cCz
Zomato Analysis
https://youtu.be/fFi_TBw27is?si=E0iLd3J06YHfQkRk
IPL Analysis
https://github.com/Yashmenaria1/IPL-Data-Exploration
https://www.youtube.com/watch?v=ur-v0dv0Qtw
https://www.youtube.com/watch?v=ur-v0dv0Qtw
Football Data Analysis
https://youtu.be/yat7soj__4w?si=h5CLIvVFzzKm8IEP
Market Basket Analysis
https://youtu.be/Ne8Sbp2hJIk?si=ThEuvdOnRrpcVjOg
Customer Churn Prediction
https://github.com/Pradnya1208/Telecom-Customer-Churn-prediction
Employee’s Performance for HR Analytics
https://www.kaggle.com/code/rajatraj0502/employee-s-performance-for-hr-analytics
Food Price Prediction
https://github.com/VectorInstitute/foodprice-forecasting
Web Scraping
https://github.com/shreyaswankhede/IMDb-Web-Scraping-and-Sentiment-Analysis
Product Price Scraping and Analysis
https://github.com/CodesdaLu/Web-Scrapping
News Scraping
https://github.com/rohit-yadav/scraping-news-articles
Real Time Stock Price Scraping with Python
https://youtu.be/rONhdonaWUo?si=A3oDEVbLIAP78cCz
Zomato Analysis
https://youtu.be/fFi_TBw27is?si=E0iLd3J06YHfQkRk
IPL Analysis
https://github.com/Yashmenaria1/IPL-Data-Exploration
https://www.youtube.com/watch?v=ur-v0dv0Qtw
https://www.youtube.com/watch?v=ur-v0dv0Qtw
Football Data Analysis
https://youtu.be/yat7soj__4w?si=h5CLIvVFzzKm8IEP
Market Basket Analysis
https://youtu.be/Ne8Sbp2hJIk?si=ThEuvdOnRrpcVjOg
Customer Churn Prediction
https://github.com/Pradnya1208/Telecom-Customer-Churn-prediction
Employee’s Performance for HR Analytics
https://www.kaggle.com/code/rajatraj0502/employee-s-performance-for-hr-analytics
Food Price Prediction
https://github.com/VectorInstitute/foodprice-forecasting
❤1
𝗦𝗤𝗟 𝗙𝗥𝗘𝗘 𝗖𝗲𝗿𝘁𝗶𝗳𝗶𝗰𝗮𝘁𝗶𝗼𝗻 𝗙𝗼𝗿 𝗗𝗮𝘁𝗮 𝗔𝗻𝗮𝗹𝘆𝘁𝗶𝗰𝘀😍
SQL is the backbone of data analytics. Whether you’re cleaning data, generating reports, or exploring trends—SQL helps you turn raw information into actionable insights.
𝐋𝐢𝐧𝐤👇:-
https://pdlink.in/43lI7CO
Use ChatGPT like a developer — not just a casual user✅️
SQL is the backbone of data analytics. Whether you’re cleaning data, generating reports, or exploring trends—SQL helps you turn raw information into actionable insights.
𝐋𝐢𝐧𝐤👇:-
https://pdlink.in/43lI7CO
Use ChatGPT like a developer — not just a casual user✅️
👍2
⚡️ Stanford Released a Free Course on Language Modeling from Scratch
The university is currently teaching CS336: Language Modeling from Scratch - and uploading the full course to YouTube for everyone in real time.
Here’s why it’s a big deal:
• Anyone can learn to build their own language models from zero - completely free
• Full course: from architecture and tokenizers to RL training and scaling
• Explained step-by-step, beginner-friendly (even if you’re new to coding)
• Each lecture includes extra reading, assignments, and slides
📚 Course site: https://web.stanford.edu/class/cs336
▶️ YouTube playlist: Watch here
The university is currently teaching CS336: Language Modeling from Scratch - and uploading the full course to YouTube for everyone in real time.
Here’s why it’s a big deal:
• Anyone can learn to build their own language models from zero - completely free
• Full course: from architecture and tokenizers to RL training and scaling
• Explained step-by-step, beginner-friendly (even if you’re new to coding)
• Each lecture includes extra reading, assignments, and slides
📚 Course site: https://web.stanford.edu/class/cs336
▶️ YouTube playlist: Watch here
❤2
Sber500 is now accepting applications for its 6th batch — an international accelerator for tech startups in AI, DeepTech, FinTech, and beyond.
This fully online, 12-week program is designed for early-stage teams — whether you’ve got an MVP or a product ready to scale. Open to founders worldwide, with a special focus on BRICS countries. The participation is totally free!
🚀 What’s in it for you:
• Mentors from 17+ countries, including experts from Google, Amazon, Oracle
• Access to VCs, corporate partners, and pilot opportunities
• PR visibility in a fast-growing ecosystem
• Strategic entry into the Russian market
The top 25 teams will pitch live at Demo Day in Moscow to investors, corporates, and Sber leadership.
Yes, the application form is detailed — and that’s intentional. The more effort you put in now, the greater your chances of joining. Don’t rush it — this is your gateway to major opportunities.
📅 Deadline extended: June 9
Apply now → https://tinyurl.com/6wunzste
If you’re building something bold and ambitious — this is your moment. Join us!
This fully online, 12-week program is designed for early-stage teams — whether you’ve got an MVP or a product ready to scale. Open to founders worldwide, with a special focus on BRICS countries. The participation is totally free!
🚀 What’s in it for you:
• Mentors from 17+ countries, including experts from Google, Amazon, Oracle
• Access to VCs, corporate partners, and pilot opportunities
• PR visibility in a fast-growing ecosystem
• Strategic entry into the Russian market
The top 25 teams will pitch live at Demo Day in Moscow to investors, corporates, and Sber leadership.
Yes, the application form is detailed — and that’s intentional. The more effort you put in now, the greater your chances of joining. Don’t rush it — this is your gateway to major opportunities.
📅 Deadline extended: June 9
Apply now → https://tinyurl.com/6wunzste
If you’re building something bold and ambitious — this is your moment. Join us!
❤2
Forwarded from Python Projects & Resources
𝟱 𝗠𝘂𝘀𝘁-𝗙𝗼𝗹𝗹𝗼𝘄 𝗬𝗼𝘂𝗧𝘂𝗯𝗲 𝗖𝗵𝗮𝗻𝗻𝗲𝗹𝘀 𝗳𝗼𝗿 𝗔𝘀𝗽𝗶𝗿𝗶𝗻𝗴 𝗗𝗮𝘁𝗮 𝗦𝗰𝗶𝗲𝗻𝘁𝗶𝘀𝘁𝘀 𝗶𝗻 𝟮𝟬𝟮𝟱😍
Want to Become a Data Scientist in 2025? Start Here!🎯
If you’re serious about becoming a Data Scientist in 2025, the learning doesn’t have to be expensive — or boring!🚀
𝐋𝐢𝐧𝐤👇:-
https://pdlink.in/4kfBR5q
Perfect for beginners and aspiring pros✅️
Want to Become a Data Scientist in 2025? Start Here!🎯
If you’re serious about becoming a Data Scientist in 2025, the learning doesn’t have to be expensive — or boring!🚀
𝐋𝐢𝐧𝐤👇:-
https://pdlink.in/4kfBR5q
Perfect for beginners and aspiring pros✅️
👍1
🚀 Complete Roadmap to Become a Data Scientist in 5 Months
📅 Week 1-2: Fundamentals
✅ Day 1-3: Introduction to Data Science, its applications, and roles.
✅ Day 4-7: Brush up on Python programming 🐍.
✅ Day 8-10: Learn basic statistics 📊 and probability 🎲.
🔍 Week 3-4: Data Manipulation & Visualization
📝 Day 11-15: Master Pandas for data manipulation.
📈 Day 16-20: Learn Matplotlib & Seaborn for data visualization.
🤖 Week 5-6: Machine Learning Foundations
🔬 Day 21-25: Introduction to scikit-learn.
📊 Day 26-30: Learn Linear & Logistic Regression.
🏗 Week 7-8: Advanced Machine Learning
🌳 Day 31-35: Explore Decision Trees & Random Forests.
📌 Day 36-40: Learn Clustering (K-Means, DBSCAN) & Dimensionality Reduction.
🧠 Week 9-10: Deep Learning
🤖 Day 41-45: Basics of Neural Networks with TensorFlow/Keras.
📸 Day 46-50: Learn CNNs & RNNs for image & text data.
🏛 Week 11-12: Data Engineering
🗄 Day 51-55: Learn SQL & Databases.
🧹 Day 56-60: Data Preprocessing & Cleaning.
📊 Week 13-14: Model Evaluation & Optimization
📏 Day 61-65: Learn Cross-validation & Hyperparameter Tuning.
📉 Day 66-70: Understand Evaluation Metrics (Accuracy, Precision, Recall, F1-score).
🏗 Week 15-16: Big Data & Tools
🐘 Day 71-75: Introduction to Big Data Technologies (Hadoop, Spark).
☁️ Day 76-80: Learn Cloud Computing (AWS, GCP, Azure).
🚀 Week 17-18: Deployment & Production
🛠 Day 81-85: Deploy models using Flask or FastAPI.
📦 Day 86-90: Learn Docker & Cloud Deployment (AWS, Heroku).
🎯 Week 19-20: Specialization
📝 Day 91-95: Choose NLP or Computer Vision, based on your interest.
🏆 Week 21-22: Projects & Portfolio
📂 Day 96-100: Work on Personal Data Science Projects.
💬 Week 23-24: Soft Skills & Networking
🎤 Day 101-105: Improve Communication & Presentation Skills.
🌐 Day 106-110: Attend Online Meetups & Forums.
🎯 Week 25-26: Interview Preparation
💻 Day 111-115: Practice Coding Interviews (LeetCode, HackerRank).
📂 Day 116-120: Review your projects & prepare for discussions.
👨💻 Week 27-28: Apply for Jobs
📩 Day 121-125: Start applying for Entry-Level Data Scientist positions.
🎤 Week 29-30: Interviews
📝 Day 126-130: Attend Interviews & Practice Whiteboard Problems.
🔄 Week 31-32: Continuous Learning
📰 Day 131-135: Stay updated with the Latest Data Science Trends.
🏆 Week 33-34: Accepting Offers
📝 Day 136-140: Evaluate job offers & Negotiate Your Salary.
🏢 Week 35-36: Settling In
🎯 Day 141-150: Start your New Data Science Job, adapt & keep learning!
🎉 Enjoy Learning & Build Your Dream Career in Data Science! 🚀🔥
📅 Week 1-2: Fundamentals
✅ Day 1-3: Introduction to Data Science, its applications, and roles.
✅ Day 4-7: Brush up on Python programming 🐍.
✅ Day 8-10: Learn basic statistics 📊 and probability 🎲.
🔍 Week 3-4: Data Manipulation & Visualization
📝 Day 11-15: Master Pandas for data manipulation.
📈 Day 16-20: Learn Matplotlib & Seaborn for data visualization.
🤖 Week 5-6: Machine Learning Foundations
🔬 Day 21-25: Introduction to scikit-learn.
📊 Day 26-30: Learn Linear & Logistic Regression.
🏗 Week 7-8: Advanced Machine Learning
🌳 Day 31-35: Explore Decision Trees & Random Forests.
📌 Day 36-40: Learn Clustering (K-Means, DBSCAN) & Dimensionality Reduction.
🧠 Week 9-10: Deep Learning
🤖 Day 41-45: Basics of Neural Networks with TensorFlow/Keras.
📸 Day 46-50: Learn CNNs & RNNs for image & text data.
🏛 Week 11-12: Data Engineering
🗄 Day 51-55: Learn SQL & Databases.
🧹 Day 56-60: Data Preprocessing & Cleaning.
📊 Week 13-14: Model Evaluation & Optimization
📏 Day 61-65: Learn Cross-validation & Hyperparameter Tuning.
📉 Day 66-70: Understand Evaluation Metrics (Accuracy, Precision, Recall, F1-score).
🏗 Week 15-16: Big Data & Tools
🐘 Day 71-75: Introduction to Big Data Technologies (Hadoop, Spark).
☁️ Day 76-80: Learn Cloud Computing (AWS, GCP, Azure).
🚀 Week 17-18: Deployment & Production
🛠 Day 81-85: Deploy models using Flask or FastAPI.
📦 Day 86-90: Learn Docker & Cloud Deployment (AWS, Heroku).
🎯 Week 19-20: Specialization
📝 Day 91-95: Choose NLP or Computer Vision, based on your interest.
🏆 Week 21-22: Projects & Portfolio
📂 Day 96-100: Work on Personal Data Science Projects.
💬 Week 23-24: Soft Skills & Networking
🎤 Day 101-105: Improve Communication & Presentation Skills.
🌐 Day 106-110: Attend Online Meetups & Forums.
🎯 Week 25-26: Interview Preparation
💻 Day 111-115: Practice Coding Interviews (LeetCode, HackerRank).
📂 Day 116-120: Review your projects & prepare for discussions.
👨💻 Week 27-28: Apply for Jobs
📩 Day 121-125: Start applying for Entry-Level Data Scientist positions.
🎤 Week 29-30: Interviews
📝 Day 126-130: Attend Interviews & Practice Whiteboard Problems.
🔄 Week 31-32: Continuous Learning
📰 Day 131-135: Stay updated with the Latest Data Science Trends.
🏆 Week 33-34: Accepting Offers
📝 Day 136-140: Evaluate job offers & Negotiate Your Salary.
🏢 Week 35-36: Settling In
🎯 Day 141-150: Start your New Data Science Job, adapt & keep learning!
🎉 Enjoy Learning & Build Your Dream Career in Data Science! 🚀🔥
❤3
🎓 𝗟𝗲𝗮𝗿𝗻 𝗖𝗼𝗺𝗽𝘂𝘁𝗲𝗿 𝗦𝗰𝗶𝗲𝗻𝗰𝗲 𝗳𝗼𝗿 𝗙𝗿𝗲𝗲 𝗳𝗿𝗼𝗺 𝗛𝗮𝗿𝘃𝗮𝗿𝗱, 𝗦𝘁𝗮𝗻𝗳𝗼𝗿𝗱, 𝗠𝗜𝗧 & 𝗚𝗼𝗼𝗴𝗹𝗲😍
Why pay thousands when you can access world-class Computer Science courses for free? 🌐
Top institutions like Harvard, Stanford, MIT, and Google offer high-quality learning resources to help you master in-demand tech skills👨🎓📌
𝐋𝐢𝐧𝐤👇:-
https://pdlink.in/3ZyQpFd
Perfect for students, self-learners, and career switchers✅️
Why pay thousands when you can access world-class Computer Science courses for free? 🌐
Top institutions like Harvard, Stanford, MIT, and Google offer high-quality learning resources to help you master in-demand tech skills👨🎓📌
𝐋𝐢𝐧𝐤👇:-
https://pdlink.in/3ZyQpFd
Perfect for students, self-learners, and career switchers✅️
❤1
Forwarded from Artificial Intelligence
𝗟𝗲𝗮𝗿𝗻 𝗗𝗮𝘁𝗮 𝗔𝗻𝗮𝗹𝘆𝘁𝗶𝗰𝘀 𝗳𝗼𝗿 𝗙𝗿𝗲𝗲 𝗼𝗻 𝗬𝗼𝘂𝗧𝘂𝗯𝗲 – 𝗖𝗼𝗺𝗽𝗹𝗲𝘁𝗲 𝗣𝗹𝗮𝘆𝗹𝗶𝘀𝘁 𝗚𝘂𝗶𝗱𝗲😍
🎥 YouTube is the ultimate free classroom—and this is your Data Analytics syllabus in one post!👨💻
From Python and SQL to Power BI, Machine Learning, and Data Science, these carefully curated playlists will take you from complete beginner to job-ready✨️📌
𝐋𝐢𝐧𝐤👇:-
https://pdlink.in/4jzVggc
Enjoy Learning ✅️
🎥 YouTube is the ultimate free classroom—and this is your Data Analytics syllabus in one post!👨💻
From Python and SQL to Power BI, Machine Learning, and Data Science, these carefully curated playlists will take you from complete beginner to job-ready✨️📌
𝐋𝐢𝐧𝐤👇:-
https://pdlink.in/4jzVggc
Enjoy Learning ✅️
Are you looking to become a machine learning engineer? 🤖
The algorithm brought you to the right place! 🚀
I created a free and comprehensive roadmap. Let’s go through this thread and explore what you need to know to become an expert machine learning engineer:
📚 Math & Statistics
Just like most other data roles, machine learning engineering starts with strong foundations from math, especially in linear algebra, probability, and statistics. Here’s what you need to focus on:
- Basic probability concepts 🎲
- Inferential statistics 📊
- Regression analysis 📈
- Experimental design & A/B testing 🔍
- Bayesian statistics 🔢
- Calculus 🧮
- Linear algebra 🔠
🐍 Python
You can choose Python, R, Julia, or any other language, but Python is the most versatile and flexible language for machine learning.
- Variables, data types, and basic operations ✏️
- Control flow statements (e.g., if-else, loops) 🔄
- Functions and modules 🔧
- Error handling and exceptions ❌
- Basic data structures (e.g., lists, dictionaries, tuples) 🗂️
- Object-oriented programming concepts 🧱
- Basic work with APIs 🌐
- Detailed data structures and algorithmic thinking 🧠
🧪 Machine Learning Prerequisites
- Exploratory Data Analysis (EDA) with NumPy and Pandas 🔍
- Data visualization techniques to visualize variables 📉
- Feature extraction & engineering 🛠️
- Encoding data (different types) 🔐
⚙️ Machine Learning Fundamentals
Use the scikit-learn library along with other Python libraries for:
- Supervised Learning: Linear Regression, K-Nearest Neighbors, Decision Trees 📊
- Unsupervised Learning: K-Means Clustering, Principal Component Analysis, Hierarchical Clustering 🧠
- Reinforcement Learning: Q-Learning, Deep Q Network, Policy Gradients 🕹️
Solve two types of problems:
- Regression 📈
- Classification 🧩
🧠 Neural Networks
Neural networks are like computer brains that learn from examples 🧠, made up of layers of "neurons" that handle data. They learn without explicit instructions.
Types of Neural Networks:
- Feedforward Neural Networks: Simplest form, with straight connections and no loops 🔄
- Convolutional Neural Networks (CNNs): Great for images, learning visual patterns 🖼️
- Recurrent Neural Networks (RNNs): Good for sequences like text or time series 📚
In Python, use TensorFlow and Keras, as well as PyTorch for more complex neural network systems.
🕸️ Deep Learning
Deep learning is a subset of machine learning that can learn unsupervised from data that is unstructured or unlabeled.
- CNNs 🖼️
- RNNs 📝
- LSTMs ⏳
🚀 Machine Learning Project Deployment
Machine learning engineers should dive into MLOps and project deployment.
Here are the must-have skills:
- Version Control for Data and Models 🗃️
- Automated Testing and Continuous Integration (CI) 🔄
- Continuous Delivery and Deployment (CD) 🚚
- Monitoring and Logging 🖥️
- Experiment Tracking and Management 🧪
- Feature Stores 🗂️
- Data Pipeline and Workflow Orchestration 🛠️
- Infrastructure as Code (IaC) 🏗️
- Model Serving and APIs 🌐
Best Data Science & Machine Learning Resources: https://topmate.io/coding/914624
ENJOY LEARNING 👍👍
The algorithm brought you to the right place! 🚀
I created a free and comprehensive roadmap. Let’s go through this thread and explore what you need to know to become an expert machine learning engineer:
📚 Math & Statistics
Just like most other data roles, machine learning engineering starts with strong foundations from math, especially in linear algebra, probability, and statistics. Here’s what you need to focus on:
- Basic probability concepts 🎲
- Inferential statistics 📊
- Regression analysis 📈
- Experimental design & A/B testing 🔍
- Bayesian statistics 🔢
- Calculus 🧮
- Linear algebra 🔠
🐍 Python
You can choose Python, R, Julia, or any other language, but Python is the most versatile and flexible language for machine learning.
- Variables, data types, and basic operations ✏️
- Control flow statements (e.g., if-else, loops) 🔄
- Functions and modules 🔧
- Error handling and exceptions ❌
- Basic data structures (e.g., lists, dictionaries, tuples) 🗂️
- Object-oriented programming concepts 🧱
- Basic work with APIs 🌐
- Detailed data structures and algorithmic thinking 🧠
🧪 Machine Learning Prerequisites
- Exploratory Data Analysis (EDA) with NumPy and Pandas 🔍
- Data visualization techniques to visualize variables 📉
- Feature extraction & engineering 🛠️
- Encoding data (different types) 🔐
⚙️ Machine Learning Fundamentals
Use the scikit-learn library along with other Python libraries for:
- Supervised Learning: Linear Regression, K-Nearest Neighbors, Decision Trees 📊
- Unsupervised Learning: K-Means Clustering, Principal Component Analysis, Hierarchical Clustering 🧠
- Reinforcement Learning: Q-Learning, Deep Q Network, Policy Gradients 🕹️
Solve two types of problems:
- Regression 📈
- Classification 🧩
🧠 Neural Networks
Neural networks are like computer brains that learn from examples 🧠, made up of layers of "neurons" that handle data. They learn without explicit instructions.
Types of Neural Networks:
- Feedforward Neural Networks: Simplest form, with straight connections and no loops 🔄
- Convolutional Neural Networks (CNNs): Great for images, learning visual patterns 🖼️
- Recurrent Neural Networks (RNNs): Good for sequences like text or time series 📚
In Python, use TensorFlow and Keras, as well as PyTorch for more complex neural network systems.
🕸️ Deep Learning
Deep learning is a subset of machine learning that can learn unsupervised from data that is unstructured or unlabeled.
- CNNs 🖼️
- RNNs 📝
- LSTMs ⏳
🚀 Machine Learning Project Deployment
Machine learning engineers should dive into MLOps and project deployment.
Here are the must-have skills:
- Version Control for Data and Models 🗃️
- Automated Testing and Continuous Integration (CI) 🔄
- Continuous Delivery and Deployment (CD) 🚚
- Monitoring and Logging 🖥️
- Experiment Tracking and Management 🧪
- Feature Stores 🗂️
- Data Pipeline and Workflow Orchestration 🛠️
- Infrastructure as Code (IaC) 🏗️
- Model Serving and APIs 🌐
Best Data Science & Machine Learning Resources: https://topmate.io/coding/914624
ENJOY LEARNING 👍👍
🔥2❤1