Data Analytics & AI | SQL Interviews | Power BI Resources – Telegram
Data Analytics & AI | SQL Interviews | Power BI Resources
25.9K subscribers
309 photos
2 videos
151 files
322 links
🔓Explore the fascinating world of Data Analytics & Artificial Intelligence

💻 Best AI tools, free resources, and expert advice to land your dream tech job.

Admin: @coderfun

Buy ads: https://telega.io/c/Data_Visual
Download Telegram
80% of people who start learning data analytics never land a job.

Not because they lack skill

but because they get stuck in "preparation mode."

I was almost one of them.

I spent months:
-Taking courses.
-Watching YouTube tutorials.
-Practicing SQL and Power BI.

But when it came time to publish a project or apply for jobs
I hesitated.

“I need to learn more first.”
“My portfolio isn’t ready.”
“Maybe next month.”

Sound familiar?

You don’t need more knowledge
you need more execution.

Data analysts who build & share projects are 3X more likely to get hired.

The best analysts aren’t the smartest.
They’re the ones who take action.

-They publish dashboards, even if they aren’t perfect.
-They post case studies, even when they feel like imposters.
-They apply for jobs before they "feel ready"

Stop overthinking.

Pick a dataset, build something, and share it today.

One messy project is worth more than 100 courses you never use.
5👍1
Forwarded from Artificial Intelligence
𝟱 𝗙𝗥𝗘𝗘 𝗛𝗮𝗿𝘃𝗮𝗿𝗱 𝗗𝗮𝘁𝗮 𝗖𝗼𝘂𝗿𝘀𝗲𝘀 𝘁𝗼 𝗞𝗶𝗰𝗸𝘀𝘁𝗮𝗿𝘁 𝗬𝗼𝘂𝗿 𝗗𝗮𝘁𝗮 𝗔𝗻𝗮𝗹𝘆𝘁𝗶𝗰𝘀 & 𝗗𝗮𝘁𝗮 𝗦𝗰𝗶𝗲𝗻𝗰𝗲 𝗝𝗼𝘂𝗿𝗻𝗲𝘆😍

Want to break into Data Analytics or Data Science—but don’t know where to begin?🚀

Harvard University offers 5 completely free online courses that will build your foundation in Python, statistics, machine learning, and data visualization — no prior experience or degree required!👨‍🎓💫

𝐋𝐢𝐧𝐤👇:-

https://pdlink.in/3T3ZhPu

These Harvard-certified courses will boost your resume, LinkedIn profile, and skills✅️
1
Beyond Data Analytics: Expanding Your Career Horizons

Once you've mastered core and advanced analytics skills, it's time to explore career growth opportunities beyond traditional data analyst roles. Here are some potential paths:

1️⃣ Data Science & AI Specialist 🤖

Dive deeper into machine learning, deep learning, and AI-powered analytics.

Learn advanced Python libraries like TensorFlow, PyTorch, and Scikit-Learn.

Work on predictive modeling, NLP, and AI automation.


2️⃣ Data Engineering 🏗️

Shift towards building scalable data infrastructure.

Master ETL pipelines, cloud databases (BigQuery, Snowflake, Redshift), and Apache Spark.

Learn Docker, Kubernetes, and Airflow for workflow automation.


3️⃣ Business Intelligence & Data Strategy 📊

Transition into high-level decision-making roles.

Become a BI Consultant or Data Strategist, focusing on storytelling and business impact.

Lead data-driven transformation projects in organizations.


4️⃣ Product Analytics & Growth Strategy 📈

Work closely with product managers to optimize user experience and engagement.

Use A/B testing, cohort analysis, and customer segmentation to drive product decisions.

Learn Mixpanel, Amplitude, and Google Analytics.


5️⃣ Data Governance & Privacy Expert 🔐

Specialize in data compliance, security, and ethical AI.

Learn about GDPR, CCPA, and industry regulations.

Work on data quality, lineage, and metadata management.


6️⃣ AI-Powered Automation & No-Code Analytics 🚀

Explore AutoML tools, AI-assisted analytics, and no-code platforms like Alteryx and DataRobot.

Automate repetitive tasks and create self-service analytics solutions for businesses.


7️⃣ Freelancing & Consulting 💼

Offer data analytics services as an independent consultant.

Build a personal brand through LinkedIn, Medium, or YouTube.

Monetize your expertise via online courses, coaching, or workshops.


8️⃣ Transitioning to Leadership Roles

Become a Data Science Manager, Head of Analytics, or Chief Data Officer.

Focus on mentoring teams, driving data strategy, and influencing business decisions.

Develop stakeholder management, communication, and leadership skills.


Mastering data analytics opens up multiple career pathways—whether in AI, business strategy, engineering, or leadership. Choose your path, keep learning, and stay ahead of industry trends! 🚀

#dataanalytics
3
𝟱 𝗙𝗥𝗘𝗘 𝗣𝘆𝘁𝗵𝗼𝗻 𝗖𝗼𝘂𝗿𝘀𝗲𝘀 𝗳𝗼𝗿 𝗕𝗲𝗴𝗶𝗻𝗻𝗲𝗿𝘀 𝗯𝘆 𝗛𝗮𝗿𝘃𝗮𝗿𝗱, 𝗜𝗕𝗠, 𝗨𝗱𝗮𝗰𝗶𝘁𝘆 & 𝗠𝗼𝗿𝗲😍

Looking to learn Python from scratch—without spending a rupee? 💻

Offered by trusted platforms like Harvard University, IBM, Udacity, freeCodeCamp, and OpenClassrooms, each course is self-paced, easy to follow, and includes a certificate of completion🔥👨‍🎓

𝐋𝐢𝐧𝐤👇:-

https://pdlink.in/3HNeyBQ

Kickstart your career✅️
1
10 AI Trends to Watch in 2025

Open-Source LLM Boom – Models like Mistral, LLaMA, and Mixtral rivaling proprietary giants
Multi-Agent AI Systems – AIs collaborating with each other to complete complex tasks
Edge AI – Smarter AI running directly on mobile & IoT devices, no cloud needed
AI Legislation & Ethics – Governments setting global AI rules and ethical frameworks
Personalized AI Companions – Customizable chatbots for productivity, learning, and therapy
AI in Robotics – Real-world actions powered by vision-language models
AI-Powered Search – Tools like Perplexity and You.com reshaping how we explore the web
Generative Video & 3D – Text-to-video and image-to-3D tools going mainstream
AI-Native Programming – Entire codebases generated and managed by AI agents
Sustainable AI – Focus on reducing model training energy & creating green AI systems
React if you're following any of these trends closely!

#genai
1
Forwarded from Artificial Intelligence
𝟰 𝗙𝗥𝗘𝗘 𝗠𝗶𝗰𝗿𝗼𝘀𝗼𝗳𝘁 & 𝗦𝘁𝗮𝗻𝗳𝗼𝗿𝗱 𝗖𝗼𝘂𝗿𝘀𝗲𝘀 𝗧𝗵𝗮𝘁 𝗪𝗶𝗹𝗹 𝗔𝗰𝘁𝘂𝗮𝗹𝗹𝘆 𝗨𝗽𝗴𝗿𝗮𝗱𝗲 𝗬𝗼𝘂𝗿 𝗥𝗲𝘀𝘂𝗺𝗲😍

I failed my first data interview — and here’s why:⬇️

No structured learning
No real projects
Just random YouTube tutorials and half-read blogs

If this sounds like you, don’t repeat my mistake✨️
Recruiters want proof of skills, not just buzzwords📊

𝐋𝐢𝐧𝐤👇:-

https://pdlink.in/4ka1ZOl

All The Best 🎊
2
The best doesn't come from working more.

It comes from working smarter.

The most common mistakes people make,
With practical tips to avoid each:

1) Working late every night.

• Prioritize quality time with loved ones.

Understand that long hours won't be remembered as fondly as time spent with family and friends.

2) Believing more hours mean more productivity.

• Focus on efficiency.

Complete tasks in less time to free up hours for personal activities and rest.

3) Ignoring the need for breaks.

• Take regular breaks to rejuvenate your mind.

Creativity and productivity suffer without proper rest.

4) Sacrificing personal well-being.

• Maintain a healthy work-life balance.

Ensure you don't compromise your health or relationships for work.

5) Feeling pressured to constantly produce.

• Quality over quantity.

6) Neglecting hobbies and interests.

• Engage in activities you love outside of work.

This helps to keep your mind fresh and inspired.

7) Failing to set boundaries.

• Set clear work hours and stick to them.

This helps to prevent overworking and ensures you have time for yourself.

8) Not delegating tasks.

• Delegate when possible.

Sharing the workload can enhance productivity and give you more free time.

9) Overlooking the importance of sleep.

• Prioritize sleep for better performance.

A well-rested mind is more creative and effective.

10) Underestimating the impact of overworking.

• Recognize the long-term effects.

👉WhatsApp Channel: https://whatsapp.com/channel/0029VaGgzAk72WTmQFERKh02

👉 Biggest Data Analytics Telegram Channel: https://news.1rj.ru/str/sqlspecialist

Like for more ❤️

All the best 👍 👍
1
𝗟𝗲𝗮𝗿𝗻𝗶𝗻𝗴 𝗦𝗤𝗟 𝗖𝗮𝗻 𝗕𝗲 𝗙𝘂𝗻! 𝟰 𝗜𝗻𝘁𝗲𝗿𝗮𝗰𝘁𝗶𝘃𝗲 𝗣𝗹𝗮𝘁𝗳𝗼𝗿𝗺𝘀 𝗧𝗵𝗮𝘁 𝗙𝗲𝗲𝗹 𝗟𝗶𝗸𝗲 𝗮 𝗚𝗮𝗺𝗲😍

Think SQL is all about dry syntax and boring tutorials? Think again.🤔

These 4 gamified SQL websites turn learning into an adventure — from solving murder mysteries to exploring virtual islands, you’ll write real SQL queries while cracking clues and completing missions📊📌

𝐋𝐢𝐧𝐤👇:-

https://pdlink.in/4nh6PMv

These platforms make SQL interactive, practical, and fun✅️
Hey guys,

Today, I’m covering some Excel interview questions that often pop up in data analyst roles 👇👇

1. What are the most common functions used in Excel for data analysis?

- SUM(): Adds up values in a range.
- AVERAGE(): Finds the mean of a range of numbers.
- VLOOKUP() / XLOOKUP(): Searches for a value in a table and returns a related value.
- INDEX-MATCH: A more flexible alternative to VLOOKUP, allowing lookups in any direction.
- IF(): Performs logical tests and returns one value if TRUE, another if FALSE.
- COUNTIF(): Counts the number of cells that meet a specific condition.
- PivotTables: For summarizing, analyzing, and exploring large datasets.

2. What is the difference between VLOOKUP and XLOOKUP?

- VLOOKUP is an older function used to find data in a vertical column and return a value from another column to the right.

Example:

  =VLOOKUP("A2", B2:D10, 3, FALSE)

- XLOOKUP is more powerful, offering the flexibility to search both vertically and horizontally, and it doesn’t require the lookup value to be in the first column.

Example:

  =XLOOKUP(A2, B2:B10, C2:C10)

Tip: Explain the limitations of VLOOKUP (like not being able to search left or needing sorted data for approximate matches) and how XLOOKUP overcomes them.

3. How do you create a PivotTable in Excel, and why is it useful?

A PivotTable allows you to summarize large amounts of data quickly. Here’s how to create one:

1. Select your data.
2. Go to the Insert tab and click on PivotTable.
3. Choose where to place the PivotTable.
4. Drag and drop fields into the Rows, Columns, Values, and Filters sections.

4. What is conditional formatting, and how do you use it?

Conditional formatting is used to change the appearance of cells based on their content. It helps highlight trends, patterns, and outliers.

For example, to highlight cells greater than 1000:
1. Select the range of cells.
2. Go to the Home tab, click on Conditional Formatting.
3. Choose Highlight Cell Rules > Greater Than and enter 1000.
4. Choose a format (e.g., cell color) to apply.

5. How do you handle large datasets in Excel without slowing it down?

Here are some strategies to improve efficiency:

- Turn off automatic calculations: Use manual recalculation to prevent Excel from recalculating formulas every time you make a change.


  File > Options > Formulas > Calculation Options > Manual

- Use fewer volatile functions: Functions like NOW(), TODAY(), and INDIRECT() recalculate every time a change is made.

- Use tables instead of ranges: Structured references in tables are more efficient.

- Split large datasets: If feasible, split your data across multiple sheets or workbooks.

- Remove unnecessary formatting: Too much formatting can bloat file size and slow down processing.

6. How do you use Excel for data cleaning?

Data cleaning is one of the first and most important steps in data analysis, and Excel provides multiple ways to do this:

- Remove duplicates: Easily eliminate duplicate entries.
  

- Text to Columns: Split data in one column into multiple columns (e.g., splitting full names into first and last names).
  

- TRIM(): Remove extra spaces from text.
  

- FIND() and SUBSTITUTE(): For locating and replacing specific characters or substrings.

7. What are some advanced Excel functions you’ve used for data analysis?

Aside from the basics, some advanced Excel functions you might mention include:

- ARRAYFORMULA(): Allows multiple calculations to be performed at once.
- OFFSET(): Returns a range that is offset from a starting point.
- FORECAST(): Predicts future values based on historical data.
- POWER QUERY: For data extraction, transformation, and loading (ETL) tasks.

I have curated best 80+ top-notch Data Analytics Resources 👇👇
https://news.1rj.ru/str/DataSimplifier

Like for more Interview Resources ♥️

Share with credits: https://news.1rj.ru/str/sqlspecialist

Hope it helps :)
2
𝗗𝗮𝘁𝗮 𝗔𝗻𝗮𝗹𝘆𝘁𝗶𝗰𝘀 𝗙𝗥𝗘𝗘 𝗖𝗲𝗿𝘁𝗶𝗳𝗶𝗰𝗮𝘁𝗶𝗼𝗻 𝗣𝗿𝗼𝗴𝗿𝗮𝗺😍

Learn essential skills: Excel, SQL, Power BI, Python & more
Gain industry-recognized certification
Get government incentives post-completion

🎓 Boost Your Career with Data Analytics – 100% Free!

𝐋𝐢𝐧𝐤 👇:- 
 
https://pdlink.in/4l3nFx0
 
Enroll For FREE & Get Certified 🎓
𝗙𝗥𝗘𝗘 𝗧𝗲𝗰𝗵 𝗖𝗼𝘂𝗿𝘀𝗲𝘀 𝗧𝗼 𝗜𝗺𝗽𝗿𝗼𝘃𝗲 𝗬𝗼𝘂𝗿 𝗦𝗸𝗶𝗹𝗹𝘀𝗲𝘁 😍

 Artificial Intelligence – Master AI & Machine Learning
 Blockchain – Understand decentralization & smart contracts💰
 Cloud Computing – Learn AWS, Azure&cloud infrastructure
 Web 3.0 – Explore the future of the Internet &Apps 🌐

𝐋𝐢𝐧𝐤 👇:- 

https://pdlink.in/4aM1QO0

Enroll For FREE & Get Certified 🎓
Step-by-step guide to become a Data Analyst in 2025📊

1. Learn the Fundamentals:
Start with Excel, basic statistics, and data visualization concepts.

2. Pick Up Key Tools & Languages:
Master SQL, Python (or R), and data visualization tools like Tableau or Power BI.

3. Get Formal Education or Certification:
A bachelor’s degree in a relevant field (like Computer Science, Math, or Economics) helps, but you can also do online courses or certifications in data analytics.

4. Build Hands-on Experience:
Work on real-world projects—use Kaggle datasets, internships, or freelance gigs to practice data cleaning, analysis, and visualization.

5. Create a Portfolio:
Showcase your projects on GitHub or a personal website. Include dashboards, reports, and code samples.

6. Develop Soft Skills:
Focus on communication, problem-solving, teamwork, and attention to detail—these are just as important as technical skills.

7. Apply for Entry-Level Jobs:
Look for roles like “Junior Data Analyst” or “Business Analyst.” Tailor your resume to highlight your skills and portfolio.

8. Keep Learning:
Stay updated with new tools (like AI-driven analytics), trends, and advanced topics such as machine learning or domain-specific analytics.

React ❤️ for more
1
𝗧𝗼𝗽 𝗖𝗼𝗺𝗽𝗮𝗻𝗶𝗲𝘀 𝗢𝗳𝗳𝗲𝗿𝗶𝗻𝗴 𝗙𝗥𝗘𝗘 𝗖𝗲𝗿𝘁𝗶𝗳𝗶𝗰𝗮𝘁𝗶𝗼𝗻𝘀 😍

TCS :- https://pdlink.in/4cHavCa

Infosys :- https://pdlink.in/4jsHZXf

Cisco :- https://pdlink.in/4fYr1xO

HP :- https://pdlink.in/3DrNsxI

IBM :- https://pdlink.in/44GsWoC

Google:- https://pdlink.in/3YsujTV

Microsoft :- https://pdlink.in/40OgK1w

Enroll For FREE & Get Certified 🎓
1
Forwarded from Artificial Intelligence
🚀 𝗧𝗼𝗽 𝗗𝗮𝘁𝗮 𝗔𝗻𝗮𝗹𝘆𝘁𝗶𝗰𝘀 𝗩𝗶𝗿𝘁𝘂𝗮𝗹 𝗜𝗻𝘁𝗲𝗿𝗻𝘀𝗵𝗶𝗽𝘀 – 𝗙𝗥𝗘𝗘 & 𝗢𝗻𝗹𝗶𝗻𝗲😍
Boost your resume with real-world experience from global giants! 💼📊

🔹 Deloitte – https://pdlink.in/4iKcgA4
🔹 Accenture – https://pdlink.in/44pfljI
🔹 TATA – https://pdlink.in/3FyjDgp
🔹 BCG – https://pdlink.in/4lyeRyY

100% Virtual
🎓 Certificate Included
🕒 Flexible Timings
📈 Great for Beginners & Students

Apply now and gain an edge in your career! 🚀📈
If I had to start learning data analyst all over again, I'd follow this:

1- Learn SQL:

---- Joins (Inner, Left, Full outer and Self)
---- Aggregate Functions (COUNT, SUM, AVG, MIN, MAX)
---- Group by and Having clause
---- CTE and Subquery
---- Windows Function (Rank, Dense Rank, Row number, Lead, Lag etc)

2- Learn Excel:

---- Mathematical (COUNT, SUM, AVG, MIN, MAX, etc)
---- Logical Functions (IF, AND, OR, NOT)
---- Lookup and Reference (VLookup, INDEX, MATCH etc)
---- Pivot Table, Filters, Slicers

3- Learn BI Tools:

---- Data Integration and ETL (Extract, Transform, Load)
---- Report Generation
---- Data Exploration and Ad-hoc Analysis
---- Dashboard Creation

4- Learn Python (Pandas) Optional:

---- Data Structures, Data Cleaning and Preparation
---- Data Manipulation
---- Merging and Joining Data (Merging and joining DataFrames -similar to SQL joins)
---- Data Visualization (Basic plotting using Matplotlib and Seaborn)

Credits: https://whatsapp.com/channel/0029VaGgzAk72WTmQFERKh02

Hope this helps you 😊
1
𝗙𝗥𝗘𝗘 𝗢𝗻𝗹𝗶𝗻𝗲 𝗖𝗼𝘂𝗿𝘀𝗲𝘀 𝗧𝗼 𝗘𝗻𝗿𝗼𝗹𝗹 𝗜𝗻 𝟮𝟬𝟮𝟱 😍

Learn Fundamental Skills with Free Online Courses & Earn Certificates

SQL:- https://pdlink.in/4lvR4zF

AWS:- https://pdlink.in/4nriVCH

Cybersecurity:- https://pdlink.in/3T6pg8O

Data Analytics:- https://pdlink.in/43TGwnM

Enroll for FREE & Get Certified 🎓
𝗦𝘁𝗮𝗿𝘁 𝗮 𝗖𝗮𝗿𝗲𝗲𝗿 𝗶𝗻 𝗗𝗮𝘁𝗮 𝗼𝗿 𝗧𝗲𝗰𝗵 (𝗙𝗿𝗲𝗲 𝗕𝗲𝗴𝗶𝗻𝗻𝗲𝗿 𝗟𝗲𝗮𝗿𝗻𝗶𝗻𝗴 𝗣𝗮𝘁𝗵)😍

Dreaming of a career in data or tech but don’t know where to begin?👨‍💻📌

Don’t worry — this step-by-step FREE learning path will guide you from scratch to job-ready, without spending a rupee! 💻💼

𝐋𝐢𝐧𝐤👇:-

https://pdlink.in/45HFUDh

Enjoy Learning ✅️
1
This is a quick and easy guide to the four main categories: Supervised, Unsupervised, Semi-Supervised, and Reinforcement Learning.

1. Supervised Learning
In supervised learning, the model learns from examples that already have the answers (labeled data). The goal is for the model to predict the correct result when given new data.

Some common supervised learning algorithms include:

➡️ Linear Regression – For predicting continuous values, like house prices.
➡️ Logistic Regression – For predicting categories, like spam or not spam.
➡️ Decision Trees – For making decisions in a step-by-step way.
➡️ K-Nearest Neighbors (KNN) – For finding similar data points.
➡️ Random Forests – A collection of decision trees for better accuracy.
➡️ Neural Networks – The foundation of deep learning, mimicking the human brain.

2. Unsupervised Learning
With unsupervised learning, the model explores patterns in data that doesn’t have any labels. It finds hidden structures or groupings.

Some popular unsupervised learning algorithms include:

➡️ K-Means Clustering – For grouping data into clusters.
➡️ Hierarchical Clustering – For building a tree of clusters.
➡️ Principal Component Analysis (PCA) – For reducing data to its most important parts.
➡️ Autoencoders – For finding simpler representations of data.

3. Semi-Supervised Learning
This is a mix of supervised and unsupervised learning. It uses a small amount of labeled data with a large amount of unlabeled data to improve learning.

Common semi-supervised learning algorithms include:

➡️ Label Propagation – For spreading labels through connected data points.
➡️ Semi-Supervised SVM – For combining labeled and unlabeled data.
➡️ Graph-Based Methods – For using graph structures to improve learning.

4. Reinforcement Learning
In reinforcement learning, the model learns by trial and error. It interacts with its environment, receives feedback (rewards or penalties), and learns how to act to maximize rewards.

Popular reinforcement learning algorithms include:

➡️ Q-Learning – For learning the best actions over time.
➡️ Deep Q-Networks (DQN) – Combining Q-learning with deep learning.
➡️ Policy Gradient Methods – For learning policies directly.
➡️ Proximal Policy Optimization (PPO) – For stable and effective learning.

Join our WhatsApp channel: https://whatsapp.com/channel/0029Va8v3eo1NCrQfGMseL2D

Like if you need similar content 😄👍

Hope this helps you 😊
1
🤖 CHATGPT PROMPTS TO FINISH HOURS OF WORK IN SECONDS
3
𝗖𝗜𝗦𝗖𝗢 𝗙𝗥𝗘𝗘 𝗖𝗲𝗿𝘁𝗶𝗳𝗶𝗰𝗮𝘁𝗶𝗼𝗻 𝗖𝗼𝘂𝗿𝘀𝗲𝘀😍

- Data Analytics
- Data Science 
- Python
- Javanoscript
- Cybersecurity
 
𝐋𝐢𝐧𝐤 👇:- 

https://pdlink.in/4fYr1xO

Enroll For FREE & Get Certified🎓
1