ما یک مجموعه داده موبایل معرفی میکنیم که از الکتروانسفالوگرافی (EEG) در نواحی پوست سر و اطراف گوش و همچنین از حسگرهای حرکتی از 24 شرکتکننده در حین حرکت با چهار سرعت مختلف در حین انجام دو وظیفه رابط مغز-رایانه (BCI) به دست آمده است. دادهها از 32 کانال EEG پوست سر، 14 کانال EEG گوش، 4 کانال الکترواوکولوگرافی (EOG)، و 9 کانال واحدهای اندازهگیری اینرسی که در پیشانی، مچ پای چپ و مچ پای راست قرار گرفته بودند، جمعآوری شدند. شرایط ضبط بهصورت زیر بود: ایستاده، راهرفتن آهسته، راهرفتن سریع و دویدن آرام با سرعتهای 0، 0.8، 1.6 و 2.0 متر بر ثانیه، بهترتیب. برای هر سرعت، دو الگوی مختلف BCI، پتانسیل مرتبط با رویداد (ERP) و پتانسیل بصری برانگیخته حالت ماندگار (SSVEP) ضبط شدند. برای ارزیابی کیفیت سیگنال، دادههای EEG پوست سر و گوش در هر سرعت بهصورت کیفی و کمی اعتبارسنجی شدند. ما معتقدیم که این مجموعه داده به تسهیل توسعه BCIها در محیطهای مختلف موبایل کمک خواهد کرد تا فعالیتهای مغزی را تحلیل کرده و عملکرد را بهطور کمی ارزیابی نماید و استفاده از BCIهای کاربردی را گسترش دهد.
Automated preprocessing methods are critically needed to process the large publicly-available EEG databases, but the optimal approach remains unknown because we lack data quality metrics to compare them. Here, we designed a simple yet robust EEG data quality metric assessing the percentage of significant channels between two experimental conditions within a 100 ms post-stimulus time range. Because of volume conduction in EEG, given no noise, most brain-evoked related potentials (ERP) should be visible on every single channel. Using three publicly available collections of EEG data, we showed that, with the exceptions of high-pass filtering and bad channel interpolation, automated data corrections had no effect on or significantly decreased the percentage of significant channels. Referencing and advanced baseline removal methods were significantly detrimental to performance. Rejecting bad data segments or trials could not compensate for the loss in statistical power. Automated Independent Component Analysis rejection of eyes and muscles failed to increase performance reliably. We compared optimized pipelines for preprocessing EEG data maximizing ERP significance using the leading open-source EEG software: EEGLAB, FieldTrip, MNE, and Brainstorm. Only one pipeline performed significantly better than high-pass filtering the data.
روشهای پیشپردازش خودکار برای پردازش مجموعه دادههای EEG عمومی بسیار ضروری هستند، اما روش بهینه همچنان ناشناخته است زیرا ما معیارهای کیفی برای مقایسه آنها نداریم. در اینجا، ما یک معیار ساده و در عین حال قدرتمند برای ارزیابی کیفیت دادههای EEG طراحی کردیم که درصد کانالهای معنادار بین دو شرایط آزمایشی را در بازه زمانی 100 میلیثانیه پس از محرک اندازهگیری میکند. بهدلیل هدایت حجمی در EEG، در شرایط بدون نویز، انتظار میرود اکثر پتانسیلهای مرتبط با رویداد (ERP) در هر کانال قابل مشاهده باشند. با استفاده از سه مجموعه داده عمومی EEG، نشان دادیم که، با استثنای فیلترگذاری بالاگذر و درونیابی کانالهای معیوب، اصلاحات خودکار دادهها تأثیری نداشت یا بهطور قابلتوجهی درصد کانالهای معنادار را کاهش داد. ارجاعدهی و روشهای حذف پیشرفته خط مبنا تأثیر منفی قابلتوجهی بر عملکرد داشتند. حذف بخشها یا آزمایشهای داده معیوب نمیتوانست کاهش قدرت آماری را جبران کند. حذف خودکار اجزای مستقل مربوط به چشمها و عضلات نیز بهطور قابل اعتمادی عملکرد را بهبود نداد. ما بهینهترین خطوط پردازش پیشپردازش دادههای EEG را برای حداکثرسازی معناداری ERP با استفاده از برترین نرمافزارهای منبع باز EEG مقایسه کردیم: EEGLAB، FieldTrip، MNE و Brainstorm. تنها یک خط پردازش عملکردی بهطور قابلتوجهی بهتر از فیلترگذاری بالاگذر دادهها نشان داد.
National Brain Mapping Lab
🔰 آزمایشگاه ملی نقشه برداری مغز برگزار میکند: 💠 ۳۰ امین کارگاه ثبت، پردازش و تحلیل سیگنالهای EEG💠 🟢 مدرسین: ☑️دكتر علی مطيع نصرآبادی ☑️دكتر محمد ميكائيلی 🕑زمان: چهارشنبه، پنجشنبه و جمعه ۲۳ الی ۲۵ آبان ۱۴۰۳ ‼️ظرفیت محدود…
برنامه سی امین کارگاه ثبت پردازش و تحلیل سیگنالهای EEG
روز اول
- مقدمه ای بر تولید و ثبتEEG
- نحوه الکترود گذاشتن
- نحوه ثبت تک قطبی و دو قطبی
- اهمیت مرجع در ثبت
-نحوه ثبت ERP
-پروتکلهای ثبت و تحریک
-پتانسیل برانگیخته بیناییVEP
-پتانسیل برانگیخته شنوایی AEP
- پتانسیل برانگیخته حسی- حرکتیSEP
- پتانسیلهای وابسته به رخدادERP
- تعریف مولفهای P وN و ارتباط آنها با تحریک
- مقدمه ای بر مفاهیم و تعاریف مرتبط با پردازش EEG/ERP نظیر هادی حجمی، منابع مغزی، cortical patch و ...
روز دوم
- تعریف فرکانس و تبدیل فوریه
- کاربردهای آن در تخمین طیف سیگنالهای ایستا
-پنجره کردن و قطعه بندی سیگنال و انواع پنجره، مستطیلی، گوسی
- مفاهیم نشت فرکانس و رزولوشن فرکانس در تخمین طیف
- تخمین طیف با روش ولش Welch
- مقدمه ای بر تحلیل مولف های مستقل ICA و تجزیه به زیر فضاها
- کاربرد ICA در پردازش سیگناهای مغزی، مولفه های مغزی و غیر مغزی
- بررسی طیف مولفهها، فعالیت زمانی مولفه ها و نقشه مولفه ها ICA Topoplot برای تشخیص مولفه های مغزی از غیر مغزی
- حذف نویز از سیگنال های مغزی با کمک ICA
- کار با eeglab
- وارد کردن داده ها به eeglab
- تعریف channel location و event
- بررسی شکل زمانی و فرکانسی داده ها
- تمیز کردن چشمی داده ها
- بکار گیری ICA در تمیز کردن سیگنال
- استخراج ERP ها از سیگنال پیوسته EEG
- بررسی انواع نمایش ERP روی کانالها و در زمان
- نمایش همزمان ERP ها با زمان واکنش و کاربردهای آن
- کار با پلاگینهای اتوماتیک تمیز کردن سیگنالEEG و حذف مؤلفههای غیر مغزی ICA
ASR, ADJUST, ICLABEL
روز سوم
- توضیح تحلیل زمان- فرکانس برای سیگنالهای غیر ایستا Time-frequency representation
- تبدیل فوریه زمان کوتاه STFT
- تبدیل ویولت Wavelet
- مفاهیم رزولوشن زمان و فرکانس، ارتباط آنها
- مروری بر مفاهیم مکان یابی منابع source localization و روشهای آن
- توضیح روش مکان یابی منابع در eeglab
- بیان مشکلات و محدودیتها مکان یابی در حالت کلی و رفع انها در eeglab
- مقدمه ای بر ارتباطات مغزی: ساختاری، عملکردی و موثر
Brain connectivity: structural, functional and effective
- بیان مفاهیم نحوه چرخش اطلاعات و ارتباط بین نواحی مغز
- تعریف ارتباطات موثر با روش گرنجر Granger causality بر پایه مدل AR
- تعریف مدل ar و mvar و فرمول بندی آن
- بیان تعاریف خانواده PDC وDTF و ارتباطات مستقیم و غیر مستقیم بین سری های زمانی سیگنال مغزی
- بیان نکات محاسباتی در بکارگیری روابط ارتباطات مغزی
- کار با eeglab و پیاده سازی مفاهیم تئوري های گفته شده
- نمایش زمان- فرکانس در eeglab
- بکارگیری و نمایش مکانیابی منابع درeeglab با پلاگین dipfit
- بکارگیری پلاگین SIFT برای محاسبات ارتباطات مغزی و انواع نمایش آنها
- تعریف و طراحی study و کارهای آماری ساده
روز اول
- مقدمه ای بر تولید و ثبتEEG
- نحوه الکترود گذاشتن
- نحوه ثبت تک قطبی و دو قطبی
- اهمیت مرجع در ثبت
-نحوه ثبت ERP
-پروتکلهای ثبت و تحریک
-پتانسیل برانگیخته بیناییVEP
-پتانسیل برانگیخته شنوایی AEP
- پتانسیل برانگیخته حسی- حرکتیSEP
- پتانسیلهای وابسته به رخدادERP
- تعریف مولفهای P وN و ارتباط آنها با تحریک
- مقدمه ای بر مفاهیم و تعاریف مرتبط با پردازش EEG/ERP نظیر هادی حجمی، منابع مغزی، cortical patch و ...
روز دوم
- تعریف فرکانس و تبدیل فوریه
- کاربردهای آن در تخمین طیف سیگنالهای ایستا
-پنجره کردن و قطعه بندی سیگنال و انواع پنجره، مستطیلی، گوسی
- مفاهیم نشت فرکانس و رزولوشن فرکانس در تخمین طیف
- تخمین طیف با روش ولش Welch
- مقدمه ای بر تحلیل مولف های مستقل ICA و تجزیه به زیر فضاها
- کاربرد ICA در پردازش سیگناهای مغزی، مولفه های مغزی و غیر مغزی
- بررسی طیف مولفهها، فعالیت زمانی مولفه ها و نقشه مولفه ها ICA Topoplot برای تشخیص مولفه های مغزی از غیر مغزی
- حذف نویز از سیگنال های مغزی با کمک ICA
- کار با eeglab
- وارد کردن داده ها به eeglab
- تعریف channel location و event
- بررسی شکل زمانی و فرکانسی داده ها
- تمیز کردن چشمی داده ها
- بکار گیری ICA در تمیز کردن سیگنال
- استخراج ERP ها از سیگنال پیوسته EEG
- بررسی انواع نمایش ERP روی کانالها و در زمان
- نمایش همزمان ERP ها با زمان واکنش و کاربردهای آن
- کار با پلاگینهای اتوماتیک تمیز کردن سیگنالEEG و حذف مؤلفههای غیر مغزی ICA
ASR, ADJUST, ICLABEL
روز سوم
- توضیح تحلیل زمان- فرکانس برای سیگنالهای غیر ایستا Time-frequency representation
- تبدیل فوریه زمان کوتاه STFT
- تبدیل ویولت Wavelet
- مفاهیم رزولوشن زمان و فرکانس، ارتباط آنها
- مروری بر مفاهیم مکان یابی منابع source localization و روشهای آن
- توضیح روش مکان یابی منابع در eeglab
- بیان مشکلات و محدودیتها مکان یابی در حالت کلی و رفع انها در eeglab
- مقدمه ای بر ارتباطات مغزی: ساختاری، عملکردی و موثر
Brain connectivity: structural, functional and effective
- بیان مفاهیم نحوه چرخش اطلاعات و ارتباط بین نواحی مغز
- تعریف ارتباطات موثر با روش گرنجر Granger causality بر پایه مدل AR
- تعریف مدل ar و mvar و فرمول بندی آن
- بیان تعاریف خانواده PDC وDTF و ارتباطات مستقیم و غیر مستقیم بین سری های زمانی سیگنال مغزی
- بیان نکات محاسباتی در بکارگیری روابط ارتباطات مغزی
- کار با eeglab و پیاده سازی مفاهیم تئوري های گفته شده
- نمایش زمان- فرکانس در eeglab
- بکارگیری و نمایش مکانیابی منابع درeeglab با پلاگین dipfit
- بکارگیری پلاگین SIFT برای محاسبات ارتباطات مغزی و انواع نمایش آنها
- تعریف و طراحی study و کارهای آماری ساده
Chapter 1: Dynamic intuitionistic fuzzy weighting averaging operator: A multi-criteria decision-making technique for the diagnosis of brain tumor
1.1 Introduction
1.2 Multi-criteria decision making
1.3 Aggregation
1.4 Decision making
1.5 Medical diagnosis
1.6 Fuzzy theory
1.7 Intuitionistic fuzzy sets (IFS)
1.8 Intuitionistic fuzzy variable
1.9 Intuitionistic fuzzy number (IFN) and its operations
1.10 Dynamic intuitionistic fuzzy weighted averaging (DIFWA) operator
1.11 Medical diagnosis of the type of brain tumor
1.12 Proposed medical making algorithm: Dynamic intuitionistic fuzzy weighted averaging (DIFWA) operator
1.13 Evaluation of case study
1.14 Result
1.15 Result discussion
1.16 Conclusion
References
Chapter 2: Neural modeling and neural computation in a medical approach
2.1 Introduction
2.1.1 Introduction
2.1.2 Why are neuron models better?
2.1.3 Objective
2.2 Dynamic and architecture for neural computation
2.2.1 Overview of dynamic model
2.3 Neural modeling in functioning brain imaging
2.3.1 Hemodynamic-metabolic methods of functional neuroimaging signal
2.3.1.1 Functional MRI
2.3.1.2 Electric-magnetic methods
2.3.2 A brief review of neural modeling in functional brain imaging
2.3.2.1 Neuromodeling and PET/fMRI
2.3.2.2 EEG/MEG and neuromodeling
2.3.3 Conclusion
2.4 Literature review
2.4.1 Type of neural model
2.4.1.1 Single cell level models
2.4.1.2 Ensemble-level models
2.4.1.3 Systems-level models
2.4.2 Machine learning
2.4.2.1 Artificial intelligence vs machine learning vs deep learning
2.4.2.1.1 Artificial intelligence
2.4.2.1.2 Machine learning
2.4.2.1.2.1 Supervised learning
2.4.2.1.2.2 Unsupervised learning
2.4.2.1.2.3 Reinforcement learning
2.4.2.1.3 Deep learning
2.4.3 Application of machine learning
2.4.3.1 Machine learning in healthcare
2.4.4 Types of algorithms being used
2.4.4.1 Logistic regression
2.4.2.2 Convolutional neural network
2.4.2.3 Artificial neural networks
2.4.5 Considered learning algorithms
2.5 Best performing algorithm
2.6 Normalization and neural coding
2.7 Conclusion
References
Chapter 3: Neural networks and neurodiversity: The key foundation for neuroscience
3.1 Introduction
3.2 What is neuroscience?
3.3 Artificial neural network: A brief chronology
3.3.1 Do deep learning and neuroscience still need each other?
3.4 Neuro-imaging methods for cognitive developmental neurosciences
3.5 Neuromyths
3.6 Neural networks
3.6.1 Neuron models
3.6.2 General properties of neural networks
3.6.3 Neural network classification
3.6.3.1 Multilayer feedforward neural network (MLFFNN)
3.6.3.2 Single-layer feedforward neural network (SLFFNN)
3.6.3.3 Recurrent neural network (RNN)
3.7 RNNs as a tool of neurological science research
3.7.1 RNNs as an important model for computations
3.7.2 RNNs designing
3.7.3 Functionality and optimization
3.8 RNNs can be trained without intuition
3.9 Hypothesis and theory generation
3.10 Introduction to neurodiversity
3.11 Neurodiversity: The situation of including autistic employees at work
3.11.1 The links between technology, organization, and skills
3.11.2 Problem analysis
3.11.3 Neurodiversity at the workplace at different levels
3.11.4 Methodology
3.11.5 Result
3.12 Scope and conclusion
References
Chapter 4: Brain waves, neuroimaging (fMRI, EEG, MEG, PET, NIR)
4.1 Introduction
4.2 Brain waves
4.3 Neuroimaging
4.4 Conclusion
References
Web Source
Chapter 5: EEG: Concepts, research-based analytics, and applications
5.1 Introduction
5.2 Preprocessing techniques of EEG signals
5.3 Machine learning and deep learning based EEG data analysis techniques
5.4 Applications of EEG
5.4.1 Cognitive neuroscience
5.4.2 Behavioral neuroscience
5.4.3 Neuro-marketing
5.4.4 Sports and meditation
5.4.5 Educational purpose
5.4.6 Security
5.4.7 Brain control robotics
5.5 Challenges associated with EEG
1.1 Introduction
1.2 Multi-criteria decision making
1.3 Aggregation
1.4 Decision making
1.5 Medical diagnosis
1.6 Fuzzy theory
1.7 Intuitionistic fuzzy sets (IFS)
1.8 Intuitionistic fuzzy variable
1.9 Intuitionistic fuzzy number (IFN) and its operations
1.10 Dynamic intuitionistic fuzzy weighted averaging (DIFWA) operator
1.11 Medical diagnosis of the type of brain tumor
1.12 Proposed medical making algorithm: Dynamic intuitionistic fuzzy weighted averaging (DIFWA) operator
1.13 Evaluation of case study
1.14 Result
1.15 Result discussion
1.16 Conclusion
References
Chapter 2: Neural modeling and neural computation in a medical approach
2.1 Introduction
2.1.1 Introduction
2.1.2 Why are neuron models better?
2.1.3 Objective
2.2 Dynamic and architecture for neural computation
2.2.1 Overview of dynamic model
2.3 Neural modeling in functioning brain imaging
2.3.1 Hemodynamic-metabolic methods of functional neuroimaging signal
2.3.1.1 Functional MRI
2.3.1.2 Electric-magnetic methods
2.3.2 A brief review of neural modeling in functional brain imaging
2.3.2.1 Neuromodeling and PET/fMRI
2.3.2.2 EEG/MEG and neuromodeling
2.3.3 Conclusion
2.4 Literature review
2.4.1 Type of neural model
2.4.1.1 Single cell level models
2.4.1.2 Ensemble-level models
2.4.1.3 Systems-level models
2.4.2 Machine learning
2.4.2.1 Artificial intelligence vs machine learning vs deep learning
2.4.2.1.1 Artificial intelligence
2.4.2.1.2 Machine learning
2.4.2.1.2.1 Supervised learning
2.4.2.1.2.2 Unsupervised learning
2.4.2.1.2.3 Reinforcement learning
2.4.2.1.3 Deep learning
2.4.3 Application of machine learning
2.4.3.1 Machine learning in healthcare
2.4.4 Types of algorithms being used
2.4.4.1 Logistic regression
2.4.2.2 Convolutional neural network
2.4.2.3 Artificial neural networks
2.4.5 Considered learning algorithms
2.5 Best performing algorithm
2.6 Normalization and neural coding
2.7 Conclusion
References
Chapter 3: Neural networks and neurodiversity: The key foundation for neuroscience
3.1 Introduction
3.2 What is neuroscience?
3.3 Artificial neural network: A brief chronology
3.3.1 Do deep learning and neuroscience still need each other?
3.4 Neuro-imaging methods for cognitive developmental neurosciences
3.5 Neuromyths
3.6 Neural networks
3.6.1 Neuron models
3.6.2 General properties of neural networks
3.6.3 Neural network classification
3.6.3.1 Multilayer feedforward neural network (MLFFNN)
3.6.3.2 Single-layer feedforward neural network (SLFFNN)
3.6.3.3 Recurrent neural network (RNN)
3.7 RNNs as a tool of neurological science research
3.7.1 RNNs as an important model for computations
3.7.2 RNNs designing
3.7.3 Functionality and optimization
3.8 RNNs can be trained without intuition
3.9 Hypothesis and theory generation
3.10 Introduction to neurodiversity
3.11 Neurodiversity: The situation of including autistic employees at work
3.11.1 The links between technology, organization, and skills
3.11.2 Problem analysis
3.11.3 Neurodiversity at the workplace at different levels
3.11.4 Methodology
3.11.5 Result
3.12 Scope and conclusion
References
Chapter 4: Brain waves, neuroimaging (fMRI, EEG, MEG, PET, NIR)
4.1 Introduction
4.2 Brain waves
4.3 Neuroimaging
4.4 Conclusion
References
Web Source
Chapter 5: EEG: Concepts, research-based analytics, and applications
5.1 Introduction
5.2 Preprocessing techniques of EEG signals
5.3 Machine learning and deep learning based EEG data analysis techniques
5.4 Applications of EEG
5.4.1 Cognitive neuroscience
5.4.2 Behavioral neuroscience
5.4.3 Neuro-marketing
5.4.4 Sports and meditation
5.4.5 Educational purpose
5.4.6 Security
5.4.7 Brain control robotics
5.5 Challenges associated with EEG
5.5.1 Technical challenges
5.5.2 Social and ethical challenges
5.5.3 Environmental challenges
5.6 Conclusion
References
Chapter 6: Classification of gait signals for detection of neurodegenerative diseases using log energy entropy and ANN classifier
6.1 Introduction
6.2 Method and materials
6.2.1 Dataset used
6.2.2 Feature extraction
6.2.3 Classification
6.2.3.1 Classification performance
6.3 Results and discussion
6.4 Conclusion
References
Chapter 7: An optimized text summarization for healthcare analytics using swarm intelligence
7.1 Introduction
7.1.1 Text summarization
7.1.2 Text summarization approaches
5.5.2 Social and ethical challenges
5.5.3 Environmental challenges
5.6 Conclusion
References
Chapter 6: Classification of gait signals for detection of neurodegenerative diseases using log energy entropy and ANN classifier
6.1 Introduction
6.2 Method and materials
6.2.1 Dataset used
6.2.2 Feature extraction
6.2.3 Classification
6.2.3.1 Classification performance
6.3 Results and discussion
6.4 Conclusion
References
Chapter 7: An optimized text summarization for healthcare analytics using swarm intelligence
7.1 Introduction
7.1.1 Text summarization
7.1.2 Text summarization approaches
7.1.1 Text summarization
7.1.2 Text summarization approaches
7.1.2.1 Extractive text summarization
7.1.2.2 Abstractive text summarization
7.1.3 Text summarization in healthcare
7.2 Literature review
7.3 TF-IDF algorithm
7.4 Swarm intelligence using particle swarm optimization
7.4.1 Particle swarm optimization algorithm
7.5 Proposed methodology
7.5.1 Input text
7.5.2 Preprocessing
7.5.2.1 Sentence tokenization
7.5.2.2 Stop word removal
7.5.2.3 Stemming
7.5.3 Applying TF-IDF algorithm
7.5.4 Generation of different versions of summary
7.5.5 Applying PSO algorithm
7.5.5.1 Find all possible sets of summaries
7.5.5.2 Initialization of PSO parameters
7.5.5.3 Update the parameters until they get optimized or until some condition is reached
7.5.5.4 Get the p-best value for all versions
7.5.6 Evaluate the summaries and provide the best optimized summary as a result
7.6 Results and discussions
7.7 Conclusion and future work
References
Chapter 8: Computer aided diagnosis of neurodegenerative diseases using discrete wavelet transform and neural network for classification
8.1 Introduction
8.2 Methods and materials
8.2.1 Dataset used
8.2.2 Discrete wavelet transforms
8.2.3 Feature extraction
8.2.4 Artificial neural network classifier
8.3 Results and discussion
8.4 Conclusion
References
Chapter 9: EEG artifact detection and removal techniques: A brief review
9.1 Introduction
9.2 Different types of EEG artifacts
9.2.1 Ocular (EOG) artifact
9.2.2 Muscular artifact
9.2.3 Cardiac artifact
9.2.4 Motion artifact
9.3 Artifact removal techniques
9.3.1 Regression technique
9.3.2 Filtering technique
9.3.2.1 Adaptive filtering
9.3.3 Decomposition technique
9.3.3.1 Techniques of blind source separation (BSS)
9.3.3.1.1 Independent component analysis (ICA)
9.3.3.1.2 Canonical correlation analysis (CCA)
9.3.3.1.3 Morphological component analysis (MCA)
9.3.3.1.4 Principal component analysis (PCA)
9.3.3.2 Wavelet transform (WT)
9.3.3.3 Empirical mode decomposition (EMD)
9.3.3.4 Variational mode decomposition
9.3.4 Machine learning technique
9.3.5 Combined approach for artifact removal
9.3.5.1 Blind source separation and adaptive filtering
9.3.5.2 Adaptive filtering and wavelet transform
9.3.5.3 Technique of BSS and WT
9.3.5.4 Technique of EMD and BSS
9.3.5.5 Adaptive filtering and EMD
9.3.5.6 Technique of BSS and SVM
9.3.6 Summary of earlier methods used for EEG artifact removal
9.4 Proposed technique
9.4.1 Fast discrete S transform (FDST)
9.5 Result and discussion
9.6 Conclusion
References
Chapter 10: Analysis of neural network and neuromorphic computing with hardware: A survey
10.1 Introduction
10.2 Models of research
10.2.1 Models of neurons
10.2.2 Synapse models
10.2.2.1 Network model
10.3 Algorithm and learning
10.3.1 Supervised learning concept
10.4 Conclusion
References
Chapter 11: Analysis of technology research and ADHD with the neurodivergent reader: A survey
11.1 Introduction
11.2 Domain previous study
11.2.1 ADHD
11.2.2 Neurodivergence and HCI
11.2.3 Studies of disabilities with a critical lens and crip technology
11.3 Research methods
11.3.1 Development of corpus
11.4 Result and discussion
11.5 Research gaps
11.6 Conclusion
7.1.2 Text summarization approaches
7.1.2.1 Extractive text summarization
7.1.2.2 Abstractive text summarization
7.1.3 Text summarization in healthcare
7.2 Literature review
7.3 TF-IDF algorithm
7.4 Swarm intelligence using particle swarm optimization
7.4.1 Particle swarm optimization algorithm
7.5 Proposed methodology
7.5.1 Input text
7.5.2 Preprocessing
7.5.2.1 Sentence tokenization
7.5.2.2 Stop word removal
7.5.2.3 Stemming
7.5.3 Applying TF-IDF algorithm
7.5.4 Generation of different versions of summary
7.5.5 Applying PSO algorithm
7.5.5.1 Find all possible sets of summaries
7.5.5.2 Initialization of PSO parameters
7.5.5.3 Update the parameters until they get optimized or until some condition is reached
7.5.5.4 Get the p-best value for all versions
7.5.6 Evaluate the summaries and provide the best optimized summary as a result
7.6 Results and discussions
7.7 Conclusion and future work
References
Chapter 8: Computer aided diagnosis of neurodegenerative diseases using discrete wavelet transform and neural network for classification
8.1 Introduction
8.2 Methods and materials
8.2.1 Dataset used
8.2.2 Discrete wavelet transforms
8.2.3 Feature extraction
8.2.4 Artificial neural network classifier
8.3 Results and discussion
8.4 Conclusion
References
Chapter 9: EEG artifact detection and removal techniques: A brief review
9.1 Introduction
9.2 Different types of EEG artifacts
9.2.1 Ocular (EOG) artifact
9.2.2 Muscular artifact
9.2.3 Cardiac artifact
9.2.4 Motion artifact
9.3 Artifact removal techniques
9.3.1 Regression technique
9.3.2 Filtering technique
9.3.2.1 Adaptive filtering
9.3.3 Decomposition technique
9.3.3.1 Techniques of blind source separation (BSS)
9.3.3.1.1 Independent component analysis (ICA)
9.3.3.1.2 Canonical correlation analysis (CCA)
9.3.3.1.3 Morphological component analysis (MCA)
9.3.3.1.4 Principal component analysis (PCA)
9.3.3.2 Wavelet transform (WT)
9.3.3.3 Empirical mode decomposition (EMD)
9.3.3.4 Variational mode decomposition
9.3.4 Machine learning technique
9.3.5 Combined approach for artifact removal
9.3.5.1 Blind source separation and adaptive filtering
9.3.5.2 Adaptive filtering and wavelet transform
9.3.5.3 Technique of BSS and WT
9.3.5.4 Technique of EMD and BSS
9.3.5.5 Adaptive filtering and EMD
9.3.5.6 Technique of BSS and SVM
9.3.6 Summary of earlier methods used for EEG artifact removal
9.4 Proposed technique
9.4.1 Fast discrete S transform (FDST)
9.5 Result and discussion
9.6 Conclusion
References
Chapter 10: Analysis of neural network and neuromorphic computing with hardware: A survey
10.1 Introduction
10.2 Models of research
10.2.1 Models of neurons
10.2.2 Synapse models
10.2.2.1 Network model
10.3 Algorithm and learning
10.3.1 Supervised learning concept
10.4 Conclusion
References
Chapter 11: Analysis of technology research and ADHD with the neurodivergent reader: A survey
11.1 Introduction
11.2 Domain previous study
11.2.1 ADHD
11.2.2 Neurodivergence and HCI
11.2.3 Studies of disabilities with a critical lens and crip technology
11.3 Research methods
11.3.1 Development of corpus
11.4 Result and discussion
11.5 Research gaps
11.6 Conclusion
Forwarded from اخلاق نشر و منابع علمی
This media is not supported in your browser
VIEW IN TELEGRAM
به مناسبت ۳۱ اکتبر زادروز راگنار گرانيت.
در دهه ۳۰ تا ۵۰ میلادی، راگنار گرانيت دانشمند فنلاندی-سوئدی موفق شد کشف کند که سه نوع سلول مخروطی در شبکیه وجود دارد که هر کدام به طول موج خاصی از نور واکنش نشان میدهند. این سه نوع مخروط (قرمز، سبز و آبی) بنیان تشخیص رنگ در انسان هستند.
تشخیص رنگها بسیار پیچیده تر از آن چیزی است که به نظر میرسد و مغز انسان بر اساس درصدی از هر کدام از مخروطها که توسط طول موجهای مختلف نور فعال میشوند، رنگها را تشخیص میدهد.
از همین خاصیت چشم و مغز انسان در تولید صفحات نمایش استفاده میشود و فقط با سه نوع سلول رنگی، تمام رنگها را نمایش میدهند.
فیلم در مورد نحوه تشخیص رنگ توسط چشم و مغز انسان است.
در واقع تشخیص رنگ در مغز انسان در سه کانال سیاه-سفید، آبی-زرد و سبز-قرمز صورت میگیرد و هر دو رنگ ذکر شده به صورت متضاد هم عمل میکنند.
طبق قانون هرینگ مغز انسان امکان ترکیب آبی-زرد یا سبز-قرمز را ندارد!
https://youtu.be/WN1yCigL3Hk
گرانيت در سال ۱۹۶۷ برنده جایزه نوبل شد.
#نوابغ_علم
در کانال اخلاق نشر و منابع علمی در تلگرام عضو شوید
http://t.me/pubethicsmums/2451
در دهه ۳۰ تا ۵۰ میلادی، راگنار گرانيت دانشمند فنلاندی-سوئدی موفق شد کشف کند که سه نوع سلول مخروطی در شبکیه وجود دارد که هر کدام به طول موج خاصی از نور واکنش نشان میدهند. این سه نوع مخروط (قرمز، سبز و آبی) بنیان تشخیص رنگ در انسان هستند.
تشخیص رنگها بسیار پیچیده تر از آن چیزی است که به نظر میرسد و مغز انسان بر اساس درصدی از هر کدام از مخروطها که توسط طول موجهای مختلف نور فعال میشوند، رنگها را تشخیص میدهد.
از همین خاصیت چشم و مغز انسان در تولید صفحات نمایش استفاده میشود و فقط با سه نوع سلول رنگی، تمام رنگها را نمایش میدهند.
فیلم در مورد نحوه تشخیص رنگ توسط چشم و مغز انسان است.
در واقع تشخیص رنگ در مغز انسان در سه کانال سیاه-سفید، آبی-زرد و سبز-قرمز صورت میگیرد و هر دو رنگ ذکر شده به صورت متضاد هم عمل میکنند.
طبق قانون هرینگ مغز انسان امکان ترکیب آبی-زرد یا سبز-قرمز را ندارد!
https://youtu.be/WN1yCigL3Hk
گرانيت در سال ۱۹۶۷ برنده جایزه نوبل شد.
#نوابغ_علم
در کانال اخلاق نشر و منابع علمی در تلگرام عضو شوید
http://t.me/pubethicsmums/2451
Forwarded from National Brain Mapping Lab
🔰 آزمایشگاه ملی نقشه برداری مغز برگزار میکند:
💠 ۳۰ امین کارگاه ثبت، پردازش و تحلیل سیگنالهای EEG💠
🟢 مدرسین:
☑️دكتر علی مطيع نصرآبادی
☑️دكتر محمد ميكائيلی
🕑زمان: چهارشنبه، پنجشنبه و جمعه
۲۳ الی ۲۵ آبان ۱۴۰۳
‼️ظرفیت محدود ‼️
🌐برای ثبت نام و کسب اطلاعات بیشتر کلیک کنید.
☎️ تماس با ما: 02186093155
💠Telegram
💠Instagram
💠LinkedIn
🌐Website
💠 ۳۰ امین کارگاه ثبت، پردازش و تحلیل سیگنالهای EEG💠
🟢 مدرسین:
☑️دكتر علی مطيع نصرآبادی
☑️دكتر محمد ميكائيلی
🕑زمان: چهارشنبه، پنجشنبه و جمعه
۲۳ الی ۲۵ آبان ۱۴۰۳
‼️ظرفیت محدود ‼️
🌐برای ثبت نام و کسب اطلاعات بیشتر کلیک کنید.
☎️ تماس با ما: 02186093155
💠Telegram
🌐Website
National Brain Mapping Lab
🔰 آزمایشگاه ملی نقشه برداری مغز برگزار میکند: 💠 ۳۰ امین کارگاه ثبت، پردازش و تحلیل سیگنالهای EEG💠 🟢 مدرسین: ☑️دكتر علی مطيع نصرآبادی ☑️دكتر محمد ميكائيلی 🕑زمان: چهارشنبه، پنجشنبه و جمعه ۲۳ الی ۲۵ آبان ۱۴۰۳ ‼️ظرفیت محدود…
از آزمایشگاه اطلاع دادند که متاسفانه سایت و درگاه پرداخت دچار مشکل شده است و در تلاش برای رفع آن هستند
اگر تا شنبه مشکل برطرف نشد
با سرکار خانم وکیلی در آزمایشگاه هماهنگ کنید تا از طریق دیگر ثبت نام نهایی شود
با تشکر
@Vakili1988
به ای دی ایشان پیام بدهید
اگر تا شنبه مشکل برطرف نشد
با سرکار خانم وکیلی در آزمایشگاه هماهنگ کنید تا از طریق دیگر ثبت نام نهایی شود
با تشکر
@Vakili1988
به ای دی ایشان پیام بدهید
Forwarded from EEG workshop
برای استخراج توان در باندهای فرکانسی مورد نظر در متلب میتوان از دستور bandpower استفاده کرد(از help نرم افزار کمک بگیرید)
برای مثال x سیگنال eeg مورد نظر است و با فرکانس 250 هرتز نمونه برداری شده است و ما میخواهیم قدرت طیف الفا 8-13 هرتز را بدست اوریم مینویسیم
P=bandpower(x,250,[8 13])
برای مثال x سیگنال eeg مورد نظر است و با فرکانس 250 هرتز نمونه برداری شده است و ما میخواهیم قدرت طیف الفا 8-13 هرتز را بدست اوریم مینویسیم
P=bandpower(x,250,[8 13])
Forwarded from EEG workshop
در فیلتر کردن سیگنالها، خطی بودن فاز اهمیت زیادی دارد و از شیفت و جابجایی مولفه های فرکانسی در زمان(محل رویداد مولفه ها)، بعد از عبور سیگنال از فیلتر جلوگیری میکند. فیلتر های دیجیتال یا تمام صفرندFIR یا قطب دارندIIR که فیلتر های FIR با طراحی خاصی می توانند فاز خطی داشته باشند و بنابراین کاربرد زیادی در فیلتر کردن سیگنالها مخصوصاً سیگنالهای حیاتی دارند. یکی از دستورات طراحی فیلتر های پاسخ ضربه محدودFIR در متلب دستور firgr میباشد که با مشخص کردن پاسخ فرکانسی برای ان و با توجه به درجه فیلتر(تعداد تاخیر) ضرایب فیلتر را مشخص میکند. توضیحات بیشتر در جزوه mi2 اورده شده است
👇👇👇
👇👇👇
Forwarded from EEG workshop
در فیلتر کردن سیگنالها بسته به درجه فیلترها از نظر زمانی پیکها جابجا میشوند و مثلا پیک در ثانیه 2 به 2.2 ثانیه منتقل میشود
اگر از نظر زمانی، زمان رویدادن یک اتفاق مهم است در فیلتر کردن باید مواظب باشید تا شیفت پیدا نکند
برای اینکار میتوان از دستور filtfilt متلب استفاده کرد که یکبار سیگنال را درجهت مستقیم زمانی (time forward)و یکبار معکوس زمانی(time reverse) فیلتر میکند و شیفتها جبران میشود
اگر از نظر زمانی، زمان رویدادن یک اتفاق مهم است در فیلتر کردن باید مواظب باشید تا شیفت پیدا نکند
برای اینکار میتوان از دستور filtfilt متلب استفاده کرد که یکبار سیگنال را درجهت مستقیم زمانی (time forward)و یکبار معکوس زمانی(time reverse) فیلتر میکند و شیفتها جبران میشود
Forwarded from EEG workshop
در تصویر بالا می بینیم فیلتر معمولی شیفت زمانی داده ولی filtfilt محل زمانی پیک را حدودا تغییر نداده
Forwarded from EEG workshop
در روشهای استخراج باند الفا در سیگنال های مغزی این نکته در فیلتر کردن مهم است
در فیلترهای FIR حدودا به درجه فیلتر شیفت در نمونه های زمانی داریم مثلا فیلتر درجه 100 حدود 100 نمونه شیفت دارد(اگر فرکانس نمونه برداری 200 هرتز باشد 100 نمونه حدود نیم ثانیه میشود)
این روش برای پردازشهای offline مناسب است و برای کارهای online قابل استفاده نیست
در فیلترهای FIR حدودا به درجه فیلتر شیفت در نمونه های زمانی داریم مثلا فیلتر درجه 100 حدود 100 نمونه شیفت دارد(اگر فرکانس نمونه برداری 200 هرتز باشد 100 نمونه حدود نیم ثانیه میشود)
این روش برای پردازشهای offline مناسب است و برای کارهای online قابل استفاده نیست