Machine Learning Research – Telegram
Machine Learning Research
955 subscribers
61 photos
7 videos
2 files
1.05K links
Download Telegram
🌟 Линейная алгебра для Data Science — мощный учебник от Wanmo Kang и Kyunghyun Cho

Последние несколько лет два этих профессора обсуждали, как преподавать линейную алгебру в эпоху Data Science и искусственного интеллекта. В ходе этих обсуждений и родился этот учебник, который освещает самые важные и востребованные темы линейной алгебры.

Вот некоторые темы учебника для полного представления:
— Векторные пространства
— Ортогональность и проекции
— Сингулярное разложение
— SVD на практике
— Положительно определенные матрицы
— Собственные значения и собственные вектора
— Важные теоремы в линейной алгебре

🟡 Linear Algebra for Data Science, pdf

@machinelearning_interview
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍2
Forwarded from эйай ньюз
🔥Mastering LLMs: Открытый курс по LLM от практиков

Я заметил, что очень хорошо разлетелся пост с ноутбуком для файнтюна LLaMa 3.1 в колабе. Поэтому принес вам еще имбовый курс по LLM от практиков для практиков. Он будет актуален для технических специалистов (включая инженеров и DS-ов), которые имеют некоторый опыт работы с LLM, да, я думаю, и для начинающих практиков он тоже хорошо зайдет.

Это набор лекций, которые покрывают такие прикладные темы как RAG, файн-тюнинг, промпт-инжиниринг, оценка качества моделей и прочее. Курс уникальный, потому что лекции ведут 25+ разных опытных чуваков из индустрии, которые являются экспертами по соответсвующим темам. Там ребята из Pytorch (Meta), Anthropic, Mistral, Fireworks-ai и других компаний.

Курс очень хорошо оформлен. К каждой лекции идут слайды, заметки, дополнительные ресурсы со ссылками и полный транскрипт видео.

Минимальные требования, чтобы успешно смотреть курс:
- Базовое знакомство с LLM-ками.
- Если такого опыт у вас нет, то рекомендуется начать с видео A Hacker’s Guide to LLMs от Джереми Ховарда, а также пройти туториал об Instruction Tuning LlaMa-2.

> Ссылка на курс: https://parlance-labs.com/education/

Давайте еще накидаем в комментах другие классные курсы по NLP, которые вы сами смотрели/проходили.

#ликбез
@ai_newz
👍4
Forwarded from Вихревое общество (plotva research)
Новый Вихрь 5.4

Базовый Вихрь 5той версии (мистраль) обученный на переведенных инструкциях и ответах GPT-4 и улучшенный с помощью ORPO на нашем внутреннем датасете.
Модель имеет довольно высокое разннобразие ответов, поэтому рекомендуется использовать temperature в рендже [0.1, 0.4].


HF PyTorch
HF GGUF
Появилась LLM-арена для русско-язычных LLM
https://llmarena.ru/
Захожу после работы на ютуб, а там все сверкает, переливается, крутится, вертится... 😍 Что же это?! ..🤔
...ну конечно же, новое видео от 3blue1brown!

https://youtu.be/9-Jl0dxWQs8?si=VuVVJaYfPZYNxS9j

Стала смотреть, а видео-то не простое: к моему удивлению, оно оказалось посвящено интерпретации эмбеддингов с MLP-слоев трансформера 🥳

✍️ В первой части видео автор показывает, по каким примерно принципам факты могут извлекаться из этих MLP (multi-layer perceptron) слоев. Сама идея о том, что MLP слои трансформера в большей степени отвечают за "вспоминание" фактов, чем его MHA (multi-head attention) слои, известна в ресерч-сообществе довольно давно и берет свое начало из ряда статей, самая известная из которых эта - https://arxiv.org/abs/2202.05262 . Однако, я в первый раз вижу, чтобы эту тему раскрывали в ролике популярного формата!
✍️ Вторая часть раскрывает главный феномен, стоящий за серией постов (и статей) от Anthropic про features superposition ( https://transformer-circuits.pub/2022/toy_model/index.html ). Суть его в том, что в пространство высокой размерности, оказывается, можно напихать неожиданно большое количество векторов, "почти" перпендикулярных друг другу - намного больше, чем количество векторов в ортонормированном базисе этого пространства. Далее вспоминаем, что в пространстве эмбеддинга языковой модели вектора можно интерпретировать как некоторые концепции, а значит, в эмбеддинг можно напихать намного больше "почти" (но не совсем) независимых концепций, чем размерность этого эмбеддинга, получая эдакий раздутый псведо-"базис", по которому можно раскладывать другие вектора и изучать их семантику в соответствии с таким разложением. Это и называется features superposition в статьях Антропик.

Под самим же роликом, к еще большему моему удивлению, оказалась ссылка на туториал, который я сама сейчас ковыряю, чтобы разобраться с библиотекой TransformerLens:
https://arena3-chapter1-transformer-interp.streamlit.app/
и еще много других интересных ссылок. ☕️

#учебные_материалы #объяснения_статей
Please open Telegram to view this post
VIEW IN TELEGRAM
1
Forwarded from L M
Ongoing курс по LLM агентам
https://llmagents-learning.org/f24
потихоньку выкладывают записи лекций и слайды
💻Всем про LLM: наш курс про трансформеры теперь на Хабр

В августе мы представили на ACL наш курс по трансформерным моделям (писала про это тут). А теперь @Sayankotor написала про него потрясающий Хабр пост.

✏️Пост
📕Статья
👀Слайды
🤖Материалы курса
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥3
В продолжение темы, Jay Alammar, у которого были прекрасные визуальные объяснения про работу трансформера, в сто раз лучшие оригинальной статьи, выпустил только что иллюстрированный DeepSeek-R1

https://newsletter.languagemodels.co/p/the-illustrated-deepseek-r1
🔥2
Forwarded from Sinекура
Вышел следующий пост в блоге Synthesis AI. Пока все обсуждают DeepSeek R1, я написал пост о статье, вышедшей буквально 31 декабря 2024 года — новом механизме памяти Titans, который исследователи из Google добавили в трансформер.

https://synthesis.ai/2025/01/28/attack-of-the-titans-transformers-2-0/

Очень интересная идея, которая с одной стороны вроде как продолжает линейку Mamba и вообще "линейного внимания", но с другой стороны выглядит (и есть!) гораздо проще. По сути авторы нашли способ реализовать простую логичную идею: ввести память как ещё одну небольшую сеть, которая обучается прямо на входе, в процессе его чтения. А Mamba-like модели, которые активно развивались весь прошлый год, как раз дали подходящий метод для того, как это всё реализовать достаточно эффективно, чтобы можно было отмасштабировать.

Это всё больше похоже на то, как (я представляю, будто бы) работает наша человеческая память. Даже пост начал с Александра Лурии в этот раз, хотя, конечно, с него можно было бы почти любой такой пост начинать. Результаты впечатляющие, хотя, конечно, пока это всё маленькие академические эксперименты, ждём, пока в полноценный Gemini встроят; но главное — очень простая идея, наверняка очень скоро будут и продолжения.

Про DeepSeek тоже напишу, конечно, но позже; надо бы написать про o1 replications и о том, где именно там RL и зачем.
1👍1
Forwarded from Kantor.AI
Первый бесплатный курс MLinside

Мы опубликовали на Stepik наш первый бесплатный курс (он же демо платного) - https://stepik.org/users/984760246/

Первым (коммерческим) курсом в MLinside был базовый курс ML. Не то чтобы мало на свете введений в ML. Для меня, например, после 15 лет преподавания, гораздо более интересный курс это ML в бизнесе, который мы тоже уже стартовали в MLinside, и где рассматриваем стандартные задачи, решаемые в компаниях. Но сработал тот же принцип несрезания конверсии, о котором я рассказывал в прошлом посте: вот придет кто-то на ML в бизнесе, поймет, что пока рано, и много чего из базы непонятно, а без базового курса и идти некуда 🙂

Первый поток мы набрали очень быстро, и с головой погрузились в проведение курса. Но в какой-то момент стало понятно, что поток закончится через 6 месяцев, отзывы от самых быстрых студентов пойдут через 3-4 месяца, и все это время не публиковать никакой информации о «Базе ML» будет как-то опрометчиво.

Решением стала публикация отдельных лекций в открытом доступе. Подписчики нас попросили выложить примеры лекций всех преподавателей курса, чтобы можно было оценить подачу материала. Я выбрал несколько видео от каждого, и оказалось, что в целом, даже только по выбранным фрагментам уже можно чему-то научиться.

В самом деле, в итоговый список попали:
- часть лекций по математике
- пара видео про питон
- семинары про линейную регрессию и SGD
- семинар, где собирается простая нейросеть на коленке не в PyTorch, а прям с нуля ручками с объяснением, как это работает
- лекции и семинары по метрикам качества и особенностям их оптимизации и валидации моделей

Посмотрев на все это, мы выложили материалы на Stepik в виде демо курса «База ML». Так что теперь у нас есть небольшой бесплатный курс, где можно познакомиться с основными концепциями: какая математика и какой питон нужны в ML, как работают внутри ML модели на примере линейных моделей и нейросеток (в частности, как и там и там применяется оптимизация с помощью SGD), как валидировать ML модели на примере задачи регрессии. Ко всему этому еще есть тесты и задания, так что проверить себя тоже можно :)

Что будет дальше? По мере расширения нашей линейки курсов, будет больше материалов в открытом доступе. Кроме того, у нас уже сформировался длинный список дополнительных видео для существующих курсов, что-то из них тоже будет опубликовано. Так что ждите новых анонсов! Также пишите, каких видеолекций/курсов вам не хватает в открытом доступе. Подумаем, что можем сделать 🙂
👍1
Forwarded from Machinelearning
LitGPT

20+ производительных LLM, написанных с нуля, с подробным описанием, инструкциями, файнтюнигу и деплою.

Особенности:
🟢 Модели написаны с нуля
🟢 Нет абстракций
🟢 Подходит для обучения новичков
🟢 Flash attention
🟢 FSDP
🟢 LoRA, QLoRA, Adapter
🟢 Уменьшение памяти GPU (fp4/8/16/32)
🟢 1-1000+ GPU/TPUs
🟢 20+ LLMs

Установка:


pip install 'litgpt[all]'

Пример:

from litgpt import LLM

llm = LLM.load("microsoft/phi-2")
text = llm.generate("Fix the spelling: Every fall, the familly goes to the mountains.")
print(text)
# Corrected Sentence: Every fall, the family goes to the mountains.


Github
Docs
Video

@ai_machinelearning_big_data



#LitGPT #tutorial #llm #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍41🔥1
Forwarded from Vikhr models
⚡️ QVikhr-2.5-1.5B-Instruct-SMPO — Наша новая компактная llm теперь еще и с RLHF этапом. За счет RLHF получили качественный прирост по метрикам, а за счет размера гонять можно хоть на тостере!

🔗 Карточка модели: https://huggingface.co/Vikhrmodels/QVikhr-2.5-1.5B-Instruct-SMPO
🔗 GGUF: https://huggingface.co/Vikhrmodels/QVikhr-2.5-1.5B-Instruct-SMPO_GGUF
🔗 Презентация Preference Optimization: https://docs.google.com/presentation/d/1WDzavFCtCeF8A9i0-hyyE9e8N1f_ieijyGiS4N0sAGQ/edit?usp=sharing

Коллектив авторов: @LakoMoorDev @nlpwanderer
👍2