Machine Learning Research – Telegram
Machine Learning Research
955 subscribers
61 photos
7 videos
2 files
1.05K links
Download Telegram
Снова про JAX.

Если моя книга “Deep Learning with JAX” (https://news.1rj.ru/str/gonzo_ML/2926) для вас ещё не является достаточной мотивацией освоить этот продвинутый фреймворк, то вот вам ещё пара крутых свежих материалов:

The PyTorch developer's guide to JAX fundamentals
https://cloud.google.com/blog/products/ai-machine-learning/guide-to-jax-for-pytorch-developers

Короткий гайд по созданию модели для тех, кто привык к PyTorch и хочет сравнить. Пример использует новый Flax NNX API (писал про него в посте JAX things to watch for in 2025, https://gonzoml.substack.com/p/jax-things-to-watch-for-in-2025), но есть также и пример на более старом но всё ещё популярном Flax Linen API.

================================

How to Scale Your Model

A Systems View of LLMs on TPUs
https://jax-ml.github.io/scaling-book/

Это прям целая книга про скейлинг LLM на TPU. Содержит несколько секций:

1. All About Rooflines
https://jax-ml.github.io/scaling-book/roofline/

Объясняет, что такое roofline model (писал про неё когда-то давно тут https://moocaholic.medium.com/hardware-for-deep-learning-part-3-gpu-8906c1644664). Это безумно важно понимать для оптимизации ваших вычислений, не всё определяется флопсами, многие алгоритмы ограничены коммуникацией, в смысле пересылкой данных, не обязательно в распределённой системе, даже при неудачно организованном чтении из памяти можно оказаться в ситуации, когда ваш GPU/TPU используется лишь на 5% и до пиковых флопс как до Луны.

2. What Is a TPU?
https://jax-ml.github.io/scaling-book/tpus/

Объясняет, что такое TPU (про это я тоже писал ещё давно https://moocaholic.medium.com/hardware-for-deep-learning-part-4-asic-96a542fe6a81), что такое систолический массив, какие блоки есть внутри, как связываются ускорители в Pod, каковы характеристики разных TPU от v3 до v6e.

3. Sharded Matrices and How to Multiply Them
https://jax-ml.github.io/scaling-book/sharding/

Подробно разбирает как работает шардинг (разбиение вычислений больших тензоров по нескольким ускорителям). Параллелизация, Collective Operations -- всё тут. У меня в книге этому посвящена 8-я глава, а кроме неё есть глава 7 про более классический метод параллелизации (pmap) и приложение D про уже устаревшие экспериментальные подходы, которые тем не менее могут помочь лучше понять как мы пришли в текущую точку.

4. All the Transformer Math You Need to Know
https://jax-ml.github.io/scaling-book/transformers/

Вся основа трансформеров на уровне вычислений. Где какие операции, как считать флопсы и параметры, MoE, Gradient checkpointing, KV caching, Flash Attention.

5. How to Parallelize a Transformer for Training
https://jax-ml.github.io/scaling-book/training/

Обсуждение разных видов параллелизма на примере трансформера: data parallelism, fully-sharded data parallelism (FSDP), tensor parallelism, pipeline parallelism.

6. Training LLaMA 3 on TPUs
https://jax-ml.github.io/scaling-book/applied-training/

Как применить все эти знания к обучению реальной модели (Llama 3) на TPU v5p. Что такое Llama 3, как отшардить модель LLaMA 3-70B.

7. All About Transformer Inference
https://jax-ml.github.io/scaling-book/inference/

В чём особенности инференса для трансформеров, где боттлнеки, что с памятью, что с latency. MHA, MQA, GQA (про MLA ещё нет: https://news.1rj.ru/str/gonzo_ML/3292). KV cache, распределение инференса по разным ускорителям, фазы инференса (prefill, generation), шардирование KV-кэша, _много_ оптимизаций инференса.

8. Serving LLaMA 3-70B on TPUs
https://jax-ml.github.io/scaling-book/applied-inference/

Как применить все эти знания к инференсу реальной модели, той же самой Llama 3-70B.

9. How to Profile TPU Programs
https://jax-ml.github.io/scaling-book/profiling/

Как профилировать код на TPU и искать боттлнеки. Как работает компилятор XLA, что такое HLO (я много это разбираю в главе 5 своей книги, про компиляцию), что такое JAX TPU profiler, Trace Viewer, Graph Viewer, как делать профилирование памяти.

10. Programming TPUs in JAX
https://jax-ml.github.io/scaling-book/jax-stuff/
👍2
Вышел Sonnet 3.7. Доступен на всех тарифах в т.ч. бесплатно
http://claude.ai
Forwarded from Градиент обреченный (Sergei Averkiev)
🔺 Phi-4-multimodal-instruct

MS выложили мультимодальную (картинки-аудио-текст) модель в открытый доступ.

5.6B параметров, поддерживает русский язык в тексте, в картинках только английский, в аудио — 7 европейских языков + китайский.

Также выложили Phi-4-mini 3.8B. У обеих моделей контекст до 128k токенов.

Основной фишкой моделей такого размера является возможность их встраивания на устройства типа смартфонов, поэтому качественная end-2-end мультимодальность (а не обработка данных несколькими специализированными моделями) такого размера очень в тему.

👉 Пост | HF | Tech. Report | Чат
3
Forwarded from Tips AI | IT & AI
📼 Вышел новый ролик от Андрея Карпаты — Как я использую LLM.

В прошлый раз он объяснял, как [устроены] модели ChatGPT, а теперь делится реальными кейсами из своей жизни.

Что в ролике:
• Разбор популярных моделей и их возможности
• Как выбирать модель под задачу (и не переплачивать)
• Инструменты: поиск, код, графики, работа с файлами
• Голос, изображения, видео и даже Custom GPTs

2 часа контента с таймкодами. Отличное времяпровождение на выходные 😬

🔘Ссылка [тут].

@tips_ai #news
Please open Telegram to view this post
VIEW IN TELEGRAM
5🔥3👍2
Forwarded from Градиент обреченный (Sergei Averkiev)
🔺 GigaChat 2

Друзья, день релиза! Сегодня потихоньку выкатываем новую версию Гигачата. В API он уже доступен, также его можно попробовать в разделе Playground в консоли.

Про улучшения коллеги написали на Хабре. Из прикольного там, например, то, как у ребят получилось приручить DPO, финальный этап обучения, на котором мы пытаемся увеличить вероятность качественного ответа.

Персонажность тоже улучшили, как и вызов функций (появились множественные вызовы) и работу с кодом.

Стало ощутимо лучше, коллеги молодцы.

В обычный чат, думаю, тоже скоро доедет. Пока можете потыкать в API (ключик мой личный, там еще есть немного токенов) и в своем ЛК.

#pip install gigachat

from gigachat import GigaChat
from gigachat.models import Chat, Messages, MessagesRole

key = "NDFjYTQwOWYtYmRjZi00NzE0LTk3MTQtNWQyOWVjODBjYWU0OjU3YzhkMDgxLTgwZjMtNDQyYS05MWRjLTEyZjg0MzU4NTIyYg=="

payload = Chat(
messages=[Messages(
role=MessagesRole.SYSTEM,
content="Отвечай как пришелец с Венеры"
)],
temperature=0.8,
max_tokens=100,
)

with GigaChat(credentials=key, verify_ssl_certs=False, model="GigaChat-2-Max") as giga:
query = "Как у вас там дела?"
payload.messages.append(Messages(role=MessagesRole.USER, content=query))
response = giga.chat(payload)

print(response.choices[0].message.content)


👉 Хабр | Playground | GitHub
👍5
Курс молодого ресёрчера

Меня в последнее время уж слишком часто спрашивают, чё почитать, чтобы вкатиться в нлп, а я каждый раз пересылаю целую батарею из ссылок, которую я создал год назад. Пришло время обновить ссылки, организовать их в аккуратненький пост и потом кидать уже его.

Ссылки для обучения базе:

- HF NLP Course — Платиновая база. Это надо прочитать, чтобы научиться делать свои минимальные штуки на уровне инженера. Курс больше прикладной, не теоретический, учит взаимодействию с transformers. Он постоянно обновляется и там появляются туториалы по next big thing — например, там уже есть глава про reasoning models.
- Плейлист с лекциями Карпатого и его же гитхаб — Ещё более платиновая и ещё более база. Я очень плохо воспринимаю лекции и обычно смотрю их на х2, но тут и очень понятные объяснения, и иллюстрации в виде питоновского кода в тетрадках, и скорость изложения ровно такая, какая надо. В описаниях к видео есть домашки, если чувствуете, что надо получше разобраться, делайте их :)
- Зоопарк трансформеров — Чуть устаревшая статья на хабре, где описываются разные модификации трансформеров. Для каждой архитектуры и модели кратко описаны ключевые изменения. Новых моделей за последние пару лет тут, к сожалению, нет, но чтобы понять как всё развивалось, этого будет достаточно.
- Attention is all you need — Самая главная статья из современного NLP. Стоит прочитать, осознать и запомнить, потому что по сути с тех пор языковые модели практически не менялись.
- NLP Course For You — Классический курс по базе NLP, есть много про дотрансформерные методы. Мне кажется, что он уже не так актуален, но ознакомиться всё равно стоит.
- NLP чат — Уютненький чятик, где обсуждают новости и задают вопросы. Ваш покорный слуга выступает там в роли бесплатной добровольной техподдержки.

Ссылки для "уже смешариков", чтобы читать новости и развиваться дальше

- LocalLLaMA — Самый популярный сабреддит про локальный инференс ллмок. Все новости обычно появляются там.
- HF Daily Papers — Рассылка свежих статей по DL. Очень советую подписаться по почте, чтобы утром просматривать заголовки и читать интересующее. Помогает очень сильно расширить кругозор.
- lmarena.ai — Тут можно потыкать разные модельки руками, сравнить их и посмотреть, как они отвечают. Удобно, если надо быстро сделать сбс или проверить какую-то гипотезу.
- openrouter.ai — Сайт, где можно использовать модели через апи. Очень дёшево (по сравнению с аналогами), очень удобно. Оплачивается криптой, иностранной картой или через платиру/ggsel.
- 5 Levels of Text Splitting и RAG Techniques — Всё, что вы хотели знать про RAG, других ссылок, по сути, не нужно. В первой разбираются, как правильно сплитить текст для базы знаний, во второй рассматривают все типичные архитектуры и трюки, связанные с рагом.
- MTEB — Рейтинг эмбеддеров. Чем выше, тем лучше. Не спрашивайте в нлп чате, что выбрать, если предварительно не посмотрели сюда!
- HF Cookbook — Список готовых советов и рецептов для решения прикладных задач. Есть и код, и описание задачи, оформлено в виде блогпостов.
- vLLM, llama.cpp, TGI, sglang, exllamav2, Infinity Embeddings, CTranslate2 — Движки для инференса. vLLM, TGI, exllamav2 и sglang для быстрого инференса декодеров на гпу, llama.cpp на цпу. Infinity Embeddings это движок для энкодеров, CTranslate2 для энкодер-декодеров.

Ссылки для совсем опытных Кар-Карычей

- Quantization Deep Dive — офигенный хабрапост от Яндекса, где расписывают математическую базу квантизации и про типы данных
- Ускорение LLM: универсальные методы для популярных архитектур — тоже офигенный хабрапост и тоже от Яндекса, где расписывают варианты ускорения инференса
- Статьи от Давида Дале на Хабре — все очень увлекательны и прекрасны. Мои любимые — про декодирование из эмбеддингов LaBSE, про прунинг токенизатора у mt5 и про дистилляцию берта.
- 100 questions about NLP — универсальный список вопросов для подготовки к собесам. Не на все вопросы есть ответы, но все вопросы хорошие.

Этот список, конечно же, неполный, но как база для вката работает на ура. Если есть что-то ещё полезного — кидайте в комменты.
7
Forwarded from Neural Shit
Там гугол выкатил новую Gemini 2.5 Pro для бесплатных пользователей.

Из интересного: можно загрузить сразу папку с кодом, чтобы модель понимала весь контекст и структуру проекта.

Попробовать можно тут (естественно, нужен забугорный VPN)
Forwarded from Machinelearning
🦙 Встречайте, дамы и господа, LLaMA 4: мультимодальные MoE модели!

Llama 4 Omni разработана для понимания и обработки информации модальностей, а не только текста.

Доступна в 3х вариантах: Llama 4 Scout и Llama 4 Maverick, Llama 4 Behemoth.

У Llama 4 Scout (109B) контекстное окно размером 10 М, 17B активных параметров, 16 экспертов, может быть запущена на 1ом GPU!

Llama 4 Maverick (400B) окно в 1M, 128 экспертов, 17B активных параметров.

У зверюги бегемота обещают окно в 2T!!! 16 экспертов, 288B активных параметров.

Сейчас выпущены только Scout и Maverick.

- Model Card
- Веса
- Релиз

@ai_machinelearning_big_data
3
Forwarded from Роман с данными
LLM моделей становится все больше и больше, разобраться в таком зоопарке становится все сложнее и сложнее.

Openrouter придумал интересный способ навести порядок - они проклассифицировали запросы своих клиентов по типам задач (programming, legal, finance и т.д) - и посмотрели в каких случаях какие модели используются.

Как говорится - все гениальное просто 🙃

Ознакомиться с инфографикой можно по ссылке https://openrouter.ai/rankings
2👍1
Forwarded from Data Secrets
Там Стэнфорд выложили на YouTube свой свежий курс CS336: Language Modeling from Scratch

Это практический курс, в котором вся теория по LLM подается в процессе разработки собственной модели. Получается изучение end-to-end: от обработки данных и архитектуры трансформера до RL и эвала.

Ведет курс опытный профессор университета и сооснователь TogetherAI Перси Лианг.

Ну и главное: курс новый и вся информация актуальна на сегодняшний день. Он даже в самом Стэнфорде еще идет прямо сейчас, так что лекции и код продолжат выкладывать по ходу.

Репозиторий с дз и ноутбуками
Сайт курса
YouTube
🔥5
Forwarded from Tips AI | IT & AI
Media is too big
VIEW IN TELEGRAM
YouLearn — персональный ИИ-репетитор.

Это неплохой конкурент Notebooklm, но с акцентом на обучении.

Сервис превращает любой материал в учебный: делает саммари, отвечает на вопросы по содержанию, генерирует викторины для проверки знаний и флешкарты для закрепления материала.

Также есть голосовой режим и поддержка русского языка.

Можно закинуть файл, аудио, видео, ссылку на сайт, текст или Youtube-видео.

В бесплатном тарифе за всё отвечает Gemini 2.0 Flash, но есть и Claude 3.5 Sonnet, GPT-4o и DeepSeek V3, но за них уже придется заплатить $20/мес.

Работает довольно шустро даже в бесплатном тарифе, и вроде даже без лимитов. С часовым видео справился за пару минут.

• Ссылка [тут].

@tips_ai #tools
4
Forwarded from Pavel Zloi
🇷🇺 FRIDA теперь в GGUF и Ollama

Модель FRIDA от SberDevices - это мощный эмбеддер на базе T5, обученный для универсального представления текста в задачах вроде парафразирования, классификации и поиска.

Однако, из-за того что её токенизатор - Roberta, а веса - T5Encoder её было затруднительно конвертировать в GGUF, но мне таки удалось это сделать.

Поэтому теперь FRIDA доступна:
- на Hugging Face в формате GGUF
- в Ollama для локального инференса

Подробнее о самой модели можно почитать в публикации "Знакомьтесь, FRIDA. Открытая эмбеддинг-модель для русского языка" на Хабр и в посте на Телеграм-канале Александра Абрамова (@dealerAI).

Качаем так:
ollama pull evilfreelancer/FRIDA


Пример запроса к Ollama:
curl http://localhost:11434/api/embed -d '{
"model": "evilfreelancer/FRIDA",
"input": "search_query: Где находится НИИ ЧАВО?"
}'


Обратите внимание: на данный момент в Ollama (v0.7.0) возможны баги при обработке некоторых строк (например, длинные русские тексты с query/document), но с llama-embedding модель работает стабильно.

PS. Подробную инструкцию о том как выполнять конвертацию выложу отдельно.
5
Forwarded from эйай ньюз
Стенфордский курс по внутреннему устройству LLM

CS336, Language Modeling from Scratch, показывает, как сделать полноценную LLM с нуля: от сбора и очистки датасета до тренировки, профайлинга и развёртывания модели. Все конспекты, ноутбуки и код сразу публикуют в открытой репе, так что можно повторять эксперименты дома хоть на одной-двух карточках или в колабе.

Курс сделан с большим упором на практику — в качестве пяти домашних заданий предлагают имплементировать сначала чистый Transformer с нуля, затем кастомный FlashAttention 2 на Triton, распределённую тренировку, разобраться со scaling laws, фильтрацей датасета и применением RL в LLM. Требования — уверенный Python и PyTorch.

Лекции на ютубе
Материалы к лекциям
Сайт курса

@ai_newz
1👍1
Forwarded from Vikhr models
Выложили QVikhr-3-1.7B на основе Qwen-3-1.7B, лучшая в классе и обгоняет лучшие модели. Ризонинг прямо сейчас выключен, будет позже. Но и без него модель обходит стандартную модель с включенным ризонингом. А самое главное, можно запустить на CPU и не страдать от низкой скорости TPS (Token per second).

🔗 Карточка модели: https://huggingface.co/Vikhrmodels/QVikhr-3-1.7B-Instruction-noreasoning
🔗 GGUF (скоро): https://huggingface.co/Vikhrmodels/QVikhr-3-1.7B-Instruction-noreasoning-GGUF
⚖️ Лицензия: apache-2.0

👥 Авторы: @LakoMoorDev @nlpwanderer
👍1
Какую модель применять в NLP.pdf
110.8 KB
Какую модель применять в NLP?

Написал гайд по выбору модели, который сильно упростит вам жизнь. Не только про LLM, но и про другие модели нейронных сетей.

Пользуйтесь, делитесь с друзьями, задавайте вопросы в комментариях.
Все вопросы разберем.
🔥2
Forwarded from Data Secrets
Новая лекция от Андрея Карпаты: «Разработка в эпоху ИИ»

На этой неделе в Сан-Франциско прошло крупное мероприятие AI Startup School от очень известного венчурного фонда Y Combinator.

На нем со своей свежей лекцией выступил легендарный Андрей Карпаты. Запись уже можно найти здесь. Внутри:

Куда движется software разработка, и к чему мы придем через пару лет

Как выглядит вайб-кодинг здорового человека сегодня и что такое partial autonomy apps

Как будут работать операционные системы на основе LLM

В чем основные проблемы современных LLM и почему они на самом деле возникают

Чему обязательно нужно учиться современному программисту


В общем, советуем посмотреть. Лекции Карпаты, как всегда, на высоте
Please open Telegram to view this post
VIEW IN TELEGRAM
1