CNN Long Short-Term Memory Networks
https://machinelearningmastery.com/cnn-long-short-term-memory-networks/
https://machinelearningmastery.com/cnn-long-short-term-memory-networks/
Python/R code to predict reactions to text using a pretrained RNN on hundreds of thousands of Facebook Posts
https://github.com/minimaxir/reactionrnn
https://github.com/minimaxir/reactionrnn
GitHub
minimaxir/reactionrnn
Python module + R package to predict the reactions to a given text using a pretrained recurrent neural network. - minimaxir/reactionrnn
Stacked Long Short-Term Memory Networks
https://machinelearningmastery.com/stacked-long-short-term-memory-networks/
https://machinelearningmastery.com/stacked-long-short-term-memory-networks/
MachineLearningMastery.com
Stacked Long Short-Term Memory Networks - MachineLearningMastery.com
Gentle introduction to the Stacked LSTM
with example code in Python.
The original LSTM model is comprised of a single hidden LSTM layer followed by a standard feedforward output layer.
The Stacked LSTM is an extension to this model that has multiple…
with example code in Python.
The original LSTM model is comprised of a single hidden LSTM layer followed by a standard feedforward output layer.
The Stacked LSTM is an extension to this model that has multiple…
High Quality 3D Object Reconstruction from a Single Color Image
http://bair.berkeley.edu/blog/2017/08/23/high-quality-3d-obj-reconstruction/
http://bair.berkeley.edu/blog/2017/08/23/high-quality-3d-obj-reconstruction/
The Berkeley Artificial Intelligence Research Blog
High Quality 3D Object Reconstruction from a Single Color Image
The BAIR Blog
ML Model Ensembling with Fast Iterations - reproducible final prediction as a composite of predictions from individual ML algorithms
https://blog.dataversioncontrol.com/ml-model-ensembling-with-fast-iterations-91e8cad6a9b5
https://blog.dataversioncontrol.com/ml-model-ensembling-with-fast-iterations-91e8cad6a9b5
Data Version Control
ML Model Ensembling with Fast Iterations
In many real-world Machine Learning projects, there is a need to ensemble complex models as well as maintain pipelines.
A new kind of data challenge: $100k to help build open source AI for lung cancer
https://concepttoclinic.drivendata.org/
https://concepttoclinic.drivendata.org/
Kaggle Mercedes и кросс-валидация
https://habrahabr.ru/company/ods/blog/336168/
https://habrahabr.ru/company/ods/blog/336168/
Habr
Kaggle Mercedes и кросс-валидация
Всем привет, в этом посте я расскажу о том, как мне удалось занять 11 место в конкурсе от компании Мерседес на kaggle , который можно охарактеризовать как лидера по количеству участников и по...
Encoder-Decoder Long Short-Term Memory Networks
https://machinelearningmastery.com/encoder-decoder-long-short-term-memory-networks/
https://machinelearningmastery.com/encoder-decoder-long-short-term-memory-networks/
Deep Learning Neural Networks Play Path of Exile
https://www.youtube.com/watch?v=UrrZOswJaow&feature=youtu.be
https://www.youtube.com/watch?v=UrrZOswJaow&feature=youtu.be
YouTube
Deep Learning Neural Networks Play Path of Exile
Four deep learning neural networks work together simultaneously to play the game Path of Exile only using visual input from the game. Project summary video w...
Application of Hierarchical Clustering to 300+ Cryptocurrencies (btc,eth,...) (historical prices)
https://gmarti.gitlab.io/cryptocurrency/2017/08/25/download-cryptocoins-api-python.html
https://gmarti.gitlab.io/cryptocurrency/2017/08/25/download-cryptocoins-api-python.html
gmarti.gitlab.io
Download & Play with Cryptocurrencies Historical Data in Python
To access the CryptoCompare public API in Python, we can use the following Python wrapper available on GitHub: cryCompare.
Fashion-MNIST a MNIST-like fashion product dataset under MIT
https://github.com/zalandoresearch/fashion-mnist
https://github.com/zalandoresearch/fashion-mnist
GitHub
GitHub - zalandoresearch/fashion-mnist: A MNIST-like fashion product database. Benchmark
A MNIST-like fashion product database. Benchmark :point_down: - GitHub - zalandoresearch/fashion-mnist: A MNIST-like fashion product database. Benchmark
Docker Compose + GPU + TensorFlow = ❤️
https://hackernoon.com/docker-compose-gpu-tensorflow-%EF%B8%8F-a0e2011d36
https://hackernoon.com/docker-compose-gpu-tensorflow-%EF%B8%8F-a0e2011d36
Hackernoon
Docker Compose + GPU + TensorFlow = ❤️
Docker is awesome — more and more people are leveraging it for development and distribution. Instant environment setup, platform independent apps, ready-to-go solutions, better version control, simplified maintenance: Docker has a lot of benefits.
Understanding Attentive Recurrent Comparators + a PyTorch implementation
https://medium.com/@sanyamagarwal/understanding-attentive-recurrent-comparators-ea1b741da5c3
https://medium.com/@sanyamagarwal/understanding-attentive-recurrent-comparators-ea1b741da5c3
Medium
Understanding Attentive Recurrent Comparators
I recently came across an ICML’17 paper “Attentive Recurrent Comparators” which proposes a simple yet powerful model for data efficient…
How to Train a Simple Audio Recognition Network
https://www.tensorflow.org/versions/master/tutorials/audio_recognition
https://www.tensorflow.org/versions/master/tutorials/audio_recognition
Automatically Fitting the Support Vector Machine Cost Parameter
https://www.displayr.com/automatically-fitting-the-support-vector-machine-cost-parameter/
https://www.displayr.com/automatically-fitting-the-support-vector-machine-cost-parameter/
Displayr
Automatically Fitting the Support Vector Machine Cost Parameter
I show how to automatically fit the Support Vector Machine cost parameter by automating the manual search for the optimal cost.
[DeepBayes] День 1, лекция 1. Евгений Соколов. Обзор нейросетевых архитектур
https://www.youtube.com/watch?v=R5YUywRz45E&list=PLEqoHzpnmTfBSyGmE4nBlhxxi28dCZwWN&index=2
https://www.youtube.com/watch?v=R5YUywRz45E&list=PLEqoHzpnmTfBSyGmE4nBlhxxi28dCZwWN&index=2
YouTube
[DeepBayes] День 1, лекция 1. Евгений Соколов. Обзор нейросетевых архитектур
[DeepBayes] День 1, лекция 2. Дмитрий Ветров. Введение в байесовские методы
https://www.youtube.com/watch?v=gdlEfmrCklw&list=PLEqoHzpnmTfBSyGmE4nBlhxxi28dCZwWN&index=3
https://www.youtube.com/watch?v=gdlEfmrCklw&list=PLEqoHzpnmTfBSyGmE4nBlhxxi28dCZwWN&index=3
YouTube
[DeepBayes] День 1, лекция 2. Введение в байесовские методы (Дмитрий Ветров)
На школе мы объясним, как байесовские методы и глубинное обучение объединяются в единый формализм, покажем примеры успешного применения нейробайесовских моделей, расскажем про современные методы стохастической оптимизации и основные библиотеки глубинного…
[DeepBayes] День 1, лекция 3. Дмитрий Кропотов. Введение в стохастическую оптимизацию
https://www.youtube.com/watch?v=djh4hBxTZRA&index=4&list=PLEqoHzpnmTfBSyGmE4nBlhxxi28dCZwWN
https://www.youtube.com/watch?v=djh4hBxTZRA&index=4&list=PLEqoHzpnmTfBSyGmE4nBlhxxi28dCZwWN
YouTube
[DeepBayes] День 1, лекция 3. Дмитрий Кропотов. Введение в стохастическую оптимизацию