How we Hacked GTA V for Carvana Kaggle Challenge
https://hackernoon.com/hacking-gta-v-for-carvana-kaggle-challenge-6d0b7fb4c781
https://hackernoon.com/hacking-gta-v-for-carvana-kaggle-challenge-6d0b7fb4c781
Hackernoon
Hacking GTA V for Carvana Kaggle Challenge
<a href="https://www.kaggle.com/c/carvana-image-masking-challenge" target="_blank">Carvana Image Masking Challenge</a> hosted on Kaggle have attracted a lot of attention from the Deep Learning community. Currently, the contest has more than 600 teams registered.…
The Ten Fallacies of Data Science – Towards Data Science – Medium
https://medium.com/@brennash/the-ten-fallacies-of-data-science-9b2af78a1862
https://medium.com/@brennash/the-ten-fallacies-of-data-science-9b2af78a1862
Medium
The Ten Fallacies of Data Science
There exists a hidden gap between the more idealized view of the world given to data-science students and recent hires, and the issues they…
Pytorch implementation of Facebook's Seq2Seq
https://github.com/facebookresearch/fairseq-py
https://github.com/facebookresearch/fairseq-py
GitHub
pytorch/fairseq
Facebook AI Research Sequence-to-Sequence Toolkit written in Python. - pytorch/fairseq
New version of our Jupyter Notebook client for iPad is available for beta testing now — bringing code completion, fixes and more. (x-post from /r/IPython)
https://kernels.io/kernels-v-1-0-3-beta/
https://kernels.io/kernels-v-1-0-3-beta/
Kernels
Kernels v.1.0.3 beta
A new beta release of Kernels, a Jupyter Notebook client for iPad.
Беседа с А.Г. Дьяконовым. Про Kaggle, карьеру, образование, роль советских ученых в становлении ML и про то, зачем нужен наш открытый курс по машинному обучению, и куда девать столько датасаентистов
https://www.youtube.com/watch?v=qV3yjIyj7Dc
https://www.youtube.com/watch?v=qV3yjIyj7Dc
YouTube
Беседа с Александром Дьяконовым
Про Kaggle, карьеру, образование, роль советских ученых в становлении ML и про то, зачем нужен открытый курс по машинному обучению.
Все интервью серии:
- Александр Дьяконов https://youtu.be/qV3yjIyj7Dc
- Константин Воронцов https://youtu.be/DR3mgnEKRgI…
Все интервью серии:
- Александр Дьяконов https://youtu.be/qV3yjIyj7Dc
- Константин Воронцов https://youtu.be/DR3mgnEKRgI…
Learning embeddings for classification, retrieval and ranking.
https://github.com/facebookresearch/Starspace
https://github.com/facebookresearch/Starspace
GitHub
GitHub - facebookresearch/StarSpace: Learning embeddings for classification, retrieval and ranking.
Learning embeddings for classification, retrieval and ranking. - GitHub - facebookresearch/StarSpace: Learning embeddings for classification, retrieval and ranking.
7 Applications of Deep Learning for Natural Language Processing
https://machinelearningmastery.com/applications-of-deep-learning-for-natural-language-processing/
https://machinelearningmastery.com/applications-of-deep-learning-for-natural-language-processing/
MachineLearningMastery.com
7 Applications of Deep Learning for Natural Language Processing - MachineLearningMastery.com
The field of natural language processing is shifting from statistical methods to neural network methods.
There are still many challenging problems to solve in natural language. Nevertheless, deep learning methods are achieving state-of-the-art results…
There are still many challenging problems to solve in natural language. Nevertheless, deep learning methods are achieving state-of-the-art results…
Collection of various GAN models implemented in torch7
https://github.com/nashory/gans-collection.torch
https://github.com/nashory/gans-collection.torch
GitHub
GitHub - nashory/gans-collection.torch: Torch implementation of various types of GAN (e.g. DCGAN, ALI, Context-encoder, DiscoGAN…
Torch implementation of various types of GAN (e.g. DCGAN, ALI, Context-encoder, DiscoGAN, CycleGAN, EBGAN, LSGAN) - nashory/gans-collection.torch
Andrew Ng ranks how valuable current ML methods are
https://www.youtube.com/watch?v=NQK4ZY_gwKI
https://www.youtube.com/watch?v=NQK4ZY_gwKI
YouTube
AI is the new electricity. - Andrew Ng (Coursera)
Much like the rise of electricity, which started about 100 years ago, AI will revolutionize every major industry. Andrew Ng explains how AI can transform your business, shares major technology trends and thoughts on where your biggest future opportunities…
Достижения в глубоком обучении за последний год
https://habrahabr.ru/company/mailru/blog/338248/
https://habrahabr.ru/company/mailru/blog/338248/
Habr
Достижения в глубоком обучении за последний год
Привет, Хабр. В своей статье я расскажу вам, что интересного произошло в мире машинного обучения за последний год (в основном в Deep Learning). А произошло очень многое, поэтому я остановился на...
Binary Latent Representations for Efficient Ranking
https://github.com/maciejkula/binge
https://github.com/maciejkula/binge
GitHub
maciejkula/binge
binge - Recommendation models that use binary rather than floating point operations at prediction time.
Datasets for Natural Language Processing
https://machinelearningmastery.com/datasets-natural-language-processing/
https://machinelearningmastery.com/datasets-natural-language-processing/
MachineLearningMastery.com
Datasets for Natural Language Processing - MachineLearningMastery.com
You need datasets to practice on when getting started with deep learning for natural language processing tasks. It is better to use small datasets that you can download quickly and do not take too long to fit models. Further, it is also helpful to use standard…
Promise of Deep Learning for Natural Language Processing
https://machinelearningmastery.com/promise-deep-learning-natural-language-processing/
https://machinelearningmastery.com/promise-deep-learning-natural-language-processing/
Machine Learning Mastery
Promise of Deep Learning for Natural Language Processing
The promise of deep learning in the field of natural language processing is the better performance by models that may require more data but less linguistic expertise to train and operate. There is a lot of hype and large claims around deep learning methods…
Multi-Task Learning Objectives for Natural Language Processing
http://ruder.io/multi-task-learning-nlp/
http://ruder.io/multi-task-learning-nlp/
ruder.io
Multi-Task Learning Objectives for Natural Language Processing
Multi-task learning is becoming increasingly popular in NLP but it is still not understood very well which tasks are useful. As inspiration, this post gives an overview of the most common auxiliary tasks used for multi-task learning for NLP.
Highlights of EMNLP 2017: Exciting datasets, return of the clusters, and more
http://ruder.io/highlights-emnlp-2017/
http://ruder.io/highlights-emnlp-2017/
Sebastian Ruder
Highlights of EMNLP 2017
This post gives an overview of highlights of the Conference on Empirical Methods in Natural Language Processing (EMNLP) 2017 in Copenhagen.
Dockerface: An easy to use docker solution for deep learning face detection.
https://github.com/natanielruiz/dockerface
https://github.com/natanielruiz/dockerface
GitHub
natanielruiz/dockerface
Face detection using deep learning. Contribute to natanielruiz/dockerface development by creating an account on GitHub.
Semantic Segmentation using a Fully Convolutional Neural Network
https://github.com/upul/Semantic_Segmentation
https://github.com/upul/Semantic_Segmentation
GitHub
upul/Semantic_Segmentation
Semantic Segmentation using Fully Convolutional Neural Network. - upul/Semantic_Segmentation