Константин Воронцов. Многокритериальный тематический анализ текстовых коллекций
5 октября, 18:10 – 19:30
Кочновский проезд, 3, ауд. 205
Заказать пропуск на проход в здание можно на computerscience@hse.ru
https://cs.hse.ru/data/2017/09/18/1173189416/171005_Vorontsov.pdf
5 октября, 18:10 – 19:30
Кочновский проезд, 3, ауд. 205
Заказать пропуск на проход в здание можно на computerscience@hse.ru
https://cs.hse.ru/data/2017/09/18/1173189416/171005_Vorontsov.pdf
A Gentle Introduction to the Bag-of-Words Model
https://machinelearningmastery.com/gentle-introduction-bag-words-model/
https://machinelearningmastery.com/gentle-introduction-bag-words-model/
How to Develop Word Embeddings in Python with Gensim
https://machinelearningmastery.com/develop-word-embeddings-python-gensim/
https://machinelearningmastery.com/develop-word-embeddings-python-gensim/
GANs are Broken in More than One Way: The Numerics of GANs
http://www.inference.vc/my-notes-on-the-numerics-of-gans/
http://www.inference.vc/my-notes-on-the-numerics-of-gans/
inFERENCe
GANs are Broken in More than One Way: The Numerics of GANs
Last year, when I was on a mission to "fix GANs" I had a tendency to focus only
on what the loss function is, and completely disregard the issue of how do we
actually find a minimum. Here is the paper that has finally challenged that
attitude:
* Mescheder…
on what the loss function is, and completely disregard the issue of how do we
actually find a minimum. Here is the paper that has finally challenged that
attitude:
* Mescheder…
Vanilla LSTM with numpy
http://blog.varunajayasiri.com/numpy_lstm.html
http://blog.varunajayasiri.com/numpy_lstm.html
Sequence Pair Classification in TensorFlow using Sequence-Semantic-Embeddings (SSE)
https://github.com/eBay/Sequence-Semantic-Embedding
https://github.com/eBay/Sequence-Semantic-Embedding
GitHub
GitHub - eBay/Sequence-Semantic-Embedding: Tools and recipes to train deep learning models and build services for NLP tasks such…
Tools and recipes to train deep learning models and build services for NLP tasks such as text classification, semantic search ranking and recall fetching, cross-lingual information retrieval, and q...
Code for Unsupervised Image to Image Translation Networks
https://github.com/leehomyc/Img2Img-Translation-Networks
https://github.com/leehomyc/Img2Img-Translation-Networks
GitHub
GitHub - leehomyc/Img2Img-Translation-Networks: Tensorflow implementation of paper "unsupervised image to image translation networks"
Tensorflow implementation of paper "unsupervised image to image translation networks" - GitHub - leehomyc/Img2Img-Translation-Networks: Tensorflow implementation of paper &quo...
Ежемесячная рубрика «Читаем статьи за вас». Сентябрь 2017
https://habrahabr.ru/company/ods/blog/339094/
https://habrahabr.ru/company/ods/blog/339094/
Habr
Рубрика «Читаем статьи за вас». Сентябрь 2017
Привет, Хабр! Мы продолжаем нашу традицию и снова выпускаем ежемесячный набор рецензий на научные статьи от членов сообщества Open Data Science из канала #article_essense. Хотите получать их раньше...
Singular Value Decomposition (SVD) Tutorial: Applications, Examples, Exercises
https://blog.statsbot.co/singular-value-decomposition-tutorial-52c695315254
https://blog.statsbot.co/singular-value-decomposition-tutorial-52c695315254
Interactive Visualizations In Jupyter Notebook
https://medium.com/towards-data-science/interactive-visualizations-in-jupyter-notebook-3be02ab2b8cd
https://medium.com/towards-data-science/interactive-visualizations-in-jupyter-notebook-3be02ab2b8cd
Medium
Interactive Visualizations In Jupyter Notebook
This entry is a non-exhaustive introduction on how to create interactive content directly from your Jupyter notebook.
Visualising Activation Functions in Neural Networks
https://dashee87.github.io/data%20science/deep%20learning/visualising-activation-functions-in-neural-networks/
https://dashee87.github.io/data%20science/deep%20learning/visualising-activation-functions-in-neural-networks/
dashee87.github.io
Visualising Activation Functions in Neural Networks
Using D3, this post visually explores activation functions, a fundamental component of neural networks.
Как Яндекс учит искусственный интеллект разговаривать с людьми
https://habrahabr.ru/company/yandex/blog/339638/
https://habrahabr.ru/company/yandex/blog/339638/
Habr
Алиса. Как Яндекс учит искусственный интеллект разговаривать с людьми
В будущем, как нам кажется, люди будут взаимодействовать с устройствами с помощью голоса. Уже сейчас приложения распознают точные голосовые команды, заложенные в них разработчиками, но с развитием...
Recurrent Neural Networks for Email List Churn Prediction
https://www.blendo.co/blog/recurrent-neural-networks-email-churn-prediction/
https://www.blendo.co/blog/recurrent-neural-networks-email-churn-prediction/
Blendo
Recurrent Neural Networks for Email List Churn Prediction - Blendo
Email list Churn and how we started "playing" with RNN to predict it.
Bayesian Nonparametrics: Dirichlet process and its applications
https://blog.statsbot.co/bayesian-nonparametrics-9f2ce7074b97
https://blog.statsbot.co/bayesian-nonparametrics-9f2ce7074b97
Medium
Bayesian Nonparametrics
An introduction to the Dirichlet process and its applications
A curated list of awesome applications of GANs
https://github.com/nashory/gans-awesome-applications/blob/master/README.md#text2image-text-to-image
https://github.com/nashory/gans-awesome-applications/blob/master/README.md#text2image-text-to-image
GitHub
gans-awesome-applications/README.md at master · nashory/gans-awesome-applications
Curated list of awesome GAN applications and demo. Contribute to nashory/gans-awesome-applications development by creating an account on GitHub.
Humanizing Artificial Intelligence (AI) with Deep Learning
https://blogs.msdn.microsoft.com/msind/2017/10/06/humanizing-artificial-intelligence-ai-with-deep-learning/
https://blogs.msdn.microsoft.com/msind/2017/10/06/humanizing-artificial-intelligence-ai-with-deep-learning/
A news recommendation engine driven by collaborative reader behavior
https://blog.insightdatascience.com/news4u-recommend-stories-based-on-collaborative-reader-behavior-9b049b6724c4
https://blog.insightdatascience.com/news4u-recommend-stories-based-on-collaborative-reader-behavior-9b049b6724c4
Medium
A news recommendation engine driven by collaborative reader behavior
Yuan Huang is an Insight alum from the Summer 2017 session of Insight Data Science in New York. Yuan is completing a PhD in Computational…