COMMON REPRESENTATION LEARNING USING DEEP CORRNET
https://deeplearn.school.blog/2017/05/24/common-representation-learning-using-deep-corrnet/
https://deeplearn.school.blog/2017/05/24/common-representation-learning-using-deep-corrnet/
Deep learn
Common Representation Learning using Deep CorrNet
In this post, I am going to discuss Deep CorrNet that is described in Correlational Neural Network which is a Common Representation Learning (CRL) technique. I have implemented CorrNet in Python us…
Machine Learning Basics: a Guide for the Perplexed
http://blog.aylien.com/machine-learning-basics-guide-perplexed/
http://blog.aylien.com/machine-learning-basics-guide-perplexed/
AYLIEN
Machine Learning Basics: a Guide for the Perplexed - AYLIEN
FacebookTwitterLinkedInArtificial Intelligence and Machine Learning play a bigger part in our lives today than most people can imagine. We use intelligent services and applications every day that rely heavily on Machine Learning advances. Voice activation…
Анализ рынка недвижимости методом случайного леса
https://habrahabr.ru/post/329504/
https://habrahabr.ru/post/329504/
habrahabr.ru
Анализ рынка недвижимости методом случайного леса
Решалась задача анализа текущих предложений на минском рынке недвижимости с целью поиска недооцененных квартир. В качестве источника информации был выбран сайт...
cs231n lecture from Stanford, comparing between TensorFlow and PyTorch
http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture8.pdf
http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture8.pdf
Hybrid Generative-Discriminative Deep Models
http://www.openias.org/hybrid-generative-discriminative
http://www.openias.org/hybrid-generative-discriminative
www.openias.org
OpenIAS | Hybrid Generative-Discriminative Deep Models
Deep discriminative classifiers perform remarkably well on problems witha lot of labeled data. So-called deep generative models tend to excel whenlabeled tra...
PyTorch Tutorial for Deep Learning Researchers
https://github.com/yunjey/pytorch-tutorial
https://github.com/yunjey/pytorch-tutorial
GitHub
GitHub - yunjey/pytorch-tutorial: PyTorch Tutorial for Deep Learning Researchers
PyTorch Tutorial for Deep Learning Researchers. Contribute to yunjey/pytorch-tutorial development by creating an account on GitHub.
Unsupervised Machine Learning for Fun & Profit with Basket Clusters
https://medium.com/@gaetanconsulting/unsupervised-machine-learning-for-fun-profit-with-basket-clusters-17a1161e7aa1
https://medium.com/@gaetanconsulting/unsupervised-machine-learning-for-fun-profit-with-basket-clusters-17a1161e7aa1
Hacker Noon
Unsupervised Machine Learning for Fun & Profit with Basket Clusters
I finally beat the S&P 500 by 10%. This might not sound like much but when we’re dealing with large amounts of capital and with good…
Нейронные сети в детектировании номеров
https://habrahabr.ru/company/recognitor/blog/329636/
https://habrahabr.ru/company/recognitor/blog/329636/
Habr
Нейронные сети в детектировании номеров
Распознавание автомобильных номеров до сих пор является самым продаваемым решением на основе компьютерного зрения. Сотни, если не тысячи продуктов конкурируют на этом рынке уже на протяжении 20-25...
Understanding Tensorflow using Go
https://pgaleone.eu/tensorflow/go/2017/05/29/understanding-tensorflow-using-go/
https://pgaleone.eu/tensorflow/go/2017/05/29/understanding-tensorflow-using-go/
P. Galeone's blog
Understanding Tensorflow using Go
Tensorflow is not a Machine Learning specific library, instead, is a general purpose computation library that represents computations with graphs. Its core is implemented in C++ and there are also bindings for different languages. The bindings for the Go…
An Overview of Multi-Task Learning in Deep Neural Networks
http://sebastianruder.com/multi-task/
http://sebastianruder.com/multi-task/
Sebastian Ruder
An Overview of Multi-Task Learning for Deep Learning
This blog post gives an overview of multi-task learning in deep neural networks. It discusses existing approaches as well as recent advances.
How Bayesian inference works
https://brohrer.github.io/how_bayesian_inference_works.html
https://brohrer.github.io/how_bayesian_inference_works.html
Introduction to Probabilistic Modelling and Machine Learning
https://www.youtube.com/watch?v=5KdWhDpeQvU&index=1&list=PLAbhVprf4VPlqc8IoCi7Qk0YQ5cPQz9fn
https://www.youtube.com/watch?v=5KdWhDpeQvU&index=1&list=PLAbhVprf4VPlqc8IoCi7Qk0YQ5cPQz9fn
YouTube
Lecture 1 (part 1): Introduction to Probabilistic Modelling and Machine Learning
Machine Learning and Nonparametric Bayesian Statistics by prof. Zoubin Ghahramani. These lectures are part of the Visiting Professor Programme co-financed by...
Новый корпус русского языка: почищенный, дедуплицированный и автоматически размеченный UD 2.0, в основном из common crawl (архив 24 Гб)
https://lindat.mff.cuni.cz/repository/xmlui/handle/11234/1-1989
https://lindat.mff.cuni.cz/repository/xmlui/handle/11234/1-1989
A TensorFlow Implementation of Machine Translation In Neural Machine Translation in Linear Time
https://github.com/Kyubyong/bytenet_translation
https://github.com/Kyubyong/bytenet_translation
GitHub
Kyubyong/bytenet_translation
bytenet_translation - A TensorFlow Implementation of Machine Translation In Neural Machine Translation in Linear Time
A Tour of PyTorch Internals (Part I)
https://gist.github.com/killeent/4675635b40b61a45cac2f95a285ce3c0
https://gist.github.com/killeent/4675635b40b61a45cac2f95a285ce3c0
Gist
internals.md
GitHub Gist: instantly share code, notes, and snippets.
Automate your Machine Learning in Python – TPOT and Genetic Algorithms
https://blog.alookanalytics.com/2017/05/25/automate-your-machine-learning/
https://blog.alookanalytics.com/2017/05/25/automate-your-machine-learning/
alookanalytics blog
Automate your Machine Learning in Python – TPOT and Genetic Algorithms
Automatic Machine Learning (AML) is a pipeline, which enables you to automate the repetitive steps in your Machine Learning (ML) problems and so save time to focus on parts where your expertise has…
Polyaxon: A platform and a deep Learning library for TensorFlow
https://github.com/polyaxon/polyaxon
https://github.com/polyaxon/polyaxon
GitHub
GitHub - polyaxon/polyaxon: MLOps Tools For Managing & Orchestrating The Machine Learning LifeCycle
MLOps Tools For Managing & Orchestrating The Machine Learning LifeCycle - polyaxon/polyaxon
How to Evaluate the Skill of Deep Learning Models
http://machinelearningmastery.com/evaluate-skill-deep-learning-models/
http://machinelearningmastery.com/evaluate-skill-deep-learning-models/
MachineLearningMastery.com
How to Evaluate the Skill of Deep Learning Models - MachineLearningMastery.com
I often see practitioners expressing confusion about how to evaluate a deep learning model. This is often obvious from questions like: What random seed should I use? Do I need a random seed? Why don't I get the same results on subsequent runs? In this post…
Легкое погружение в TensorFlow на примерах популярных алгоритмов машинного обучения https://github.com/aymericdamien/TensorFlow-Examples
GitHub
GitHub - aymericdamien/TensorFlow-Examples: TensorFlow Tutorial and Examples for Beginners (support TF v1 & v2)
TensorFlow Tutorial and Examples for Beginners (support TF v1 & v2) - aymericdamien/TensorFlow-Examples
Babble-rnn: Generating speech from speech with LSTM networks
http://babble-rnn.consected.com/docs/babble-rnn-generating-speech-from-speech-post.html
http://babble-rnn.consected.com/docs/babble-rnn-generating-speech-from-speech-post.html