Visualizing the Latent Space of Vector Drawings from the Google QuickDraw Dataset with SketchRNN, PCA and t-SNE
http://louistiao.me/posts/notebooks/visualizing-the-latent-space-of-vector-drawings-from-the-google-quickdraw-dataset-with-sketchrnn-pca-and-t-sne/
http://louistiao.me/posts/notebooks/visualizing-the-latent-space-of-vector-drawings-from-the-google-quickdraw-dataset-with-sketchrnn-pca-and-t-sne/
"in the brain, such a representation is produced by an architecture similar to a hierarchical feedforward deep-network"
http://www.cell.com/cell/abstract/S0092-8674(17)30538-X
http://www.cell.com/cell/abstract/S0092-8674(17)30538-X
Бесплатный 3-месячный курс по глубокому обучению от Google https://www.udacity.com/course/deep-learning--ud730
Машинное обучение и анализ данных: решаем практические задачи с победителями индустриального хакатона ЛК
https://habrahabr.ru/company/kaspersky/blog/330282/
https://habrahabr.ru/company/kaspersky/blog/330282/
habrahabr.ru
Машинное обучение и анализ данных: решаем практические задачи с победителями индустриального хакатона ЛК
Как вычислить замыслы киберпреступников, атакующих промышленный объект и распознать слабые сигналы SOS, которые периодически подает индустриальная АСУ ТП на...
Tensorflow I Love You, But You're Bringing Me Down
http://blog.nateharada.com/tensorflow-i-love-you-but
http://blog.nateharada.com/tensorflow-i-love-you-but
40+ приложений технологии машинного обучения для бизнеса
https://habrahabr.ru/post/324694/
https://habrahabr.ru/post/324694/
habrahabr.ru
40+ приложений технологии машинного обучения для бизнеса
Перевод поста Филиппа Ходжетта, выступавшего недавно на конференции Hollywood Professional Association Tech Retreat. Надеюсь, собранный в одном месте список...
Эволюционные стратегии как масштабируемая альтернатива обучению с подкреплением
https://habrahabr.ru/post/330342/
https://habrahabr.ru/post/330342/
habrahabr.ru
Эволюционные стратегии как масштабируемая альтернатива обучению с подкреплением
Изложение статьи от том, что давно известные эволюционные стратегии оптимизации могут превзойти алгоритмы обучения с подкреплением. Преимущества эволюционных...
The 5 Step Life-Cycle for Long Short-Term Memory Models in Keras
http://machinelearningmastery.com/5-step-life-cycle-long-short-term-memory-models-keras/
http://machinelearningmastery.com/5-step-life-cycle-long-short-term-memory-models-keras/
MachineLearningMastery.com
The 5 Step Life-Cycle for Long Short-Term Memory Models in Keras - MachineLearningMastery.com
Deep learning neural networks are very easy to create and evaluate in Python with Keras, but you must follow a strict model life-cycle.
In this post, you will discover the step-by-step life-cycle for creating, training, and evaluating Long Short-Term Memory…
In this post, you will discover the step-by-step life-cycle for creating, training, and evaluating Long Short-Term Memory…
tensorflow/cleverhans: a Python library to benchmark machine learning systems' vulnerability to adversarial examples
https://github.com/tensorflow/cleverhans
https://github.com/tensorflow/cleverhans
GitHub
GitHub - cleverhans-lab/cleverhans: An adversarial example library for constructing attacks, building defenses, and benchmarking…
An adversarial example library for constructing attacks, building defenses, and benchmarking both - cleverhans-lab/cleverhans
Code for "On the Effects of Batch and Weight Normalization in Generative Adversarial Networks"
https://github.com/stormraiser/GAN-weight-norm
https://github.com/stormraiser/GAN-weight-norm
GitHub
stormraiser/GAN-weight-norm
Code for "On the Effects of Batch and Weight Normalization in Generative Adversarial Networks" - stormraiser/GAN-weight-norm
Learning Musical Style and Generating Musical Performances using LSTMs
http://imanmalik.com/cs/2017/06/05/neural-style.html
http://imanmalik.com/cs/2017/06/05/neural-style.html
Finding bad flamingo drawings with recurrent neural networks
http://colinmorris.github.io/blog/bad_flamingos
http://colinmorris.github.io/blog/bad_flamingos
colinmorris.github.io
Finding bad flamingo drawings with recurrent neural networks
Performing anomaly detection using a recurrent neural network to find the ugliest flamingos in a dataset of sketches.
Interactive tutorial: generative adversarial networks for beginners, with TensorFlow
https://www.oreilly.com/learning/generative-adversarial-networks-for-beginners
https://www.oreilly.com/learning/generative-adversarial-networks-for-beginners
O’Reilly Media
Generative Adversarial Networks for beginners
Build a neural network that learns to generate handwritten digits.
Gradient Boosting – the coolest kid on the machine learning block
https://www.displayr.com/gradient-boosting-the-coolest-kid-on-the-machine-learning-block/
https://www.displayr.com/gradient-boosting-the-coolest-kid-on-the-machine-learning-block/
Displayr
Gradient Boosting Explained - The Coolest Kid on The Machine Learning Block
Gradient boosting is attracting attention for its prediction speed & accuracy, especially with large & complex data. Learn about gradient boosting here.
Portraits of Imaginary people. GANs at 4000x4000 pixel resolution.
http://mtyka.github.io/machine/learning/2017/06/06/highres-gan-faces.html
http://mtyka.github.io/machine/learning/2017/06/06/highres-gan-faces.html
mtyka.github.io
Work in progress: Portraits of Imaginary People
For a while now I’ve been experimenting with ways to use generative neural nets to make portraits. Early experiments were based on deepdream-like approaches ...
ML notes: Why the log-likelihood?
https://blog.metaflow.fr/ml-notes-why-the-log-likelihood-24f7b6c40f83
https://blog.metaflow.fr/ml-notes-why-the-log-likelihood-24f7b6c40f83
Medium
ML notes: Why the log-likelihood?
Disclaimer:
Variational Inference and Deep Learning: An Intuitive Introduction (by Alex Lamb)
https://www.youtube.com/watch?v=h0UE8FzdE8U
https://www.youtube.com/watch?v=h0UE8FzdE8U
YouTube
Variational Inference and Deep Learning: An Intuitive Introduction
A lecture introducing Variational Inference and Deep Learning. Adapted from a lecture I gave for Aaron Courville's Deep Learning course (IFT 6266).
Доклады с source{d} митапа про ML на исходном коде
https://www.youtube.com/playlist?list=PL5Ld68ole7j3iQFUSB3fR9122dHCUWXsy
https://www.youtube.com/playlist?list=PL5Ld68ole7j3iQFUSB3fR9122dHCUWXsy
YouTube
source{d} tech talks - Machine Learning 2017 - YouTube
Predicting Football Results With Statistical Modelling
https://dashee87.github.io/football/python/predicting-football-results-with-statistical-modelling/
https://dashee87.github.io/football/python/predicting-football-results-with-statistical-modelling/
dashee87.github.io
Predicting Football Results With Statistical Modelling
Combining the world’s most popular sport with everyone’s favourite discrete probability distribution, this post predicts football matches using the Poisson distribution.