Machine learning books and papers – Telegram
GPViT: A High Resolution Non-Hierarchical Vision Transformer with Group Propagation



🖥 Github: https://github.com/chenhongyiyang/gpvit

➡️Paprer: https://arxiv.org/abs/2212.06795v1

✔️Data Preparation: https://paperswithcode.com/dataset/must-c

@Machine_learn
1
Python Concurrency with asyncio Matthew Fowler.pdf
6.1 MB
Python Concurrency with asyncio Matthew Fowler
Matthew Fowler (2022)
#book #python 2022

@Machine_learn
5👍1
This media is not supported in your browser
VIEW IN TELEGRAM
When you are presenting a topic in the class and make eye contact with your friends😹😹😹
@Machine_learn
😍2👍1
Math-for-Programmers.pdf
27.7 MB
MEAP Edition
Manning Early Access Program
Math for Programmers
3D graphics, machine learning, and simulations with Python
Version 11
#book @Machine_learn
😍6👍5
book.pdf
52.1 MB
Multimodal Deep Learning
#book #DL #2023
@Machine_learn
👍82
Boost Your Data Science Productivity.pdf
9.3 MB
30 Python Libraries to (Hugely) Boost Your Data Science Productivity
#Python
@Machine_learn
👍6
Build_a_Career_in_Data_Science_by_Emily_Robinson,_Jacqueline_Nolis.pdf
12.3 MB
Build a Career in Data Science
EMILY ROBINSON AND JACQUELINE NOLIS
#Data_Science
#Book
#ML
@Machine_learn
👍1
Data-Oriented Programming Reduce soft....pdf
7.1 MB
Data-Oriented Programming: Reduce software complexity (2022)
#Book
#Python
@Machine_learn
👍1
💬 GLIGEN: Open-Set Grounded Text-to-Image Generation

GLIGEN’s zero-shot performance on COCO and LVIS outperforms that of existing supervised layout-to-image baselines by a large margin. Code comming soon.


⭐️ Project: https://gligen.github.io/

⭐️ Demo: https://aka.ms/gligen

✅️ Paper: https://arxiv.org/abs/2301.07093

🖥 Github: https://github.com/gligen/GLIGEN

@Machine_learn
Apress.PyTorch.pdf
5.1 MB
PyTorch Recipes: A Problem-Solution Approach to Build, Train and Deploy Neural Network Models, 2nd Edition (2022)
#Pythorch #book #python

@Machin_learn
🔥1
This media is not supported in your browser
VIEW IN TELEGRAM
AutoAvatar: Autoregressive Neural Fields for Dynamic Avatar Modeling

Autoregressive approach for modeling dynamically deforming human bodies by Meta.


🖥 Github: github.com/facebookresearch/AutoAvatar

⭐️ Project: zqbai-jeremy.github.io/autoavatar

✅️ Paprer: arxiv.org/pdf/2203.13817.pdf

Dataset: https://amass.is.tue.mpg.de/index.html

⭐️ Video: https://zqbai-jeremy.github.io/autoavatar/static/images/video_arxiv.mp4

@Machine_learn
👍41
🖥 Deep BCI SW ver. 1.0 is released.

🖥 Github: https://github.com/DeepBCI/Deep-BCI

Paper: https://arxiv.org/abs/2301.08448v1

➡️ Project: http://deepbci.korea.ac.kr/

@Machine_learn
Pandas.Basics.pdf
9.8 MB
Pandas Basics
Oswald Campesato
#book #pandas #python
@Machne_learn
7
PACO: Parts and Attributes of Common Objects

🖥 Github
⭐️ Paper
Project

@Machine_learn
2👍2
PrimeQA: The Prime Repository for State-of-the-Art Multilingual Question Answering Research and Development



🖥 Github: https://github.com/primeqa/primeqa

🖥 Notebooks: https://github.com/primeqa/primeqa/tree/main/notebooks

✅️ Paper: https://arxiv.org/abs/2301.09715v2

⭐️ Dataset: https://paperswithcode.com/dataset/wikitablequestions

✔️ Docs: https://primeqa.github.io/primeqa/installation.html

@Machine_learn
👍1🔥1