Here's a concise cheat sheet to help you get started with Python for Data Analytics. This guide covers essential libraries and functions that you'll frequently use.
1. Python Basics
- Variables:
- Data Types:
- Integers:
- Control Structures:
-
- Loops:
- While loop:
2. Importing Libraries
- NumPy:
- Pandas:
- Matplotlib:
- Seaborn:
3. NumPy for Numerical Data
- Creating Arrays:
- Array Operations:
- Reshaping Arrays:
- Indexing and Slicing:
4. Pandas for Data Manipulation
- Creating DataFrames:
- Reading Data:
- Basic Operations:
- Selecting Columns:
- Filtering Data:
- Handling Missing Data:
- GroupBy:
5. Data Visualization
- Matplotlib:
- Seaborn:
6. Common Data Operations
- Merging DataFrames:
- Pivot Table:
- Applying Functions:
7. Basic Statistics
- Denoscriptive Stats:
- Correlation:
This cheat sheet should give you a solid foundation in Python for data analytics. As you get more comfortable, you can delve deeper into each library's documentation for more advanced features.
I have curated the best resources to learn Python 👇👇
https://whatsapp.com/channel/0029VaiM08SDuMRaGKd9Wv0L
Hope you'll like it
Like this post if you need more resources like this 👍❤️
1. Python Basics
- Variables:
x = 10 y = "Hello"
- Data Types:
- Integers:
x = 10
- Floats: y = 3.14
- Strings: name = "Alice"
- Lists: my_list = [1, 2, 3]
- Dictionaries: my_dict = {"key": "value"}
- Tuples: my_tuple = (1, 2, 3)
- Control Structures:
-
if, elif, else statements- Loops:
for i in range(5):
print(i)
- While loop:
while x < 5:
print(x)
x += 1
2. Importing Libraries
- NumPy:
import numpy as np
- Pandas:
import pandas as pd
- Matplotlib:
import matplotlib.pyplot as plt
- Seaborn:
import seaborn as sns
3. NumPy for Numerical Data
- Creating Arrays:
arr = np.array([1, 2, 3, 4])
- Array Operations:
arr.sum()
arr.mean()
- Reshaping Arrays:
arr.reshape((2, 2))
- Indexing and Slicing:
arr[0:2] # First two elements
4. Pandas for Data Manipulation
- Creating DataFrames:
df = pd.DataFrame({
'col1': [1, 2, 3],
'col2': ['A', 'B', 'C']
})
- Reading Data:
df = pd.read_csv('file.csv')
- Basic Operations:
df.head() # First 5 rows
df.describe() # Summary statistics
df.info() # DataFrame info
- Selecting Columns:
df['col1']
df[['col1', 'col2']]
- Filtering Data:
df[df['col1'] > 2]
- Handling Missing Data:
df.dropna() # Drop missing values
df.fillna(0) # Replace missing values
- GroupBy:
df.groupby('col2').mean()
5. Data Visualization
- Matplotlib:
plt.plot(df['col1'], df['col2'])
plt.xlabel('X-axis')
plt.ylabel('Y-axis')
plt.noscript('Title')
plt.show()
- Seaborn:
sns.histplot(df['col1'])
sns.boxplot(x='col1', y='col2', data=df)
6. Common Data Operations
- Merging DataFrames:
pd.merge(df1, df2, on='key')
- Pivot Table:
df.pivot_table(index='col1', columns='col2', values='col3')
- Applying Functions:
df['col1'].apply(lambda x: x*2)
7. Basic Statistics
- Denoscriptive Stats:
df['col1'].mean()
df['col1'].median()
df['col1'].std()
- Correlation:
df.corr()
This cheat sheet should give you a solid foundation in Python for data analytics. As you get more comfortable, you can delve deeper into each library's documentation for more advanced features.
I have curated the best resources to learn Python 👇👇
https://whatsapp.com/channel/0029VaiM08SDuMRaGKd9Wv0L
Hope you'll like it
Like this post if you need more resources like this 👍❤️
❤7
🔥 𝗦𝗸𝗶𝗹𝗹 𝗨𝗽 𝗕𝗲𝗳𝗼𝗿𝗲 𝟮𝟬𝟮𝟱 𝗘𝗻𝗱𝘀!
🎓 100% FREE Online Courses in
✔️ AI
✔️ Data Science
✔️ Cloud Computing
✔️ Cyber Security
✔️ Python
𝗘𝗻𝗿𝗼𝗹𝗹 𝗶𝗻 𝗙𝗥𝗘𝗘 𝗖𝗼𝘂𝗿𝘀𝗲𝘀👇:-
https://linkpd.in/freeskills
Get Certified & Stay Ahead🎓
🎓 100% FREE Online Courses in
✔️ AI
✔️ Data Science
✔️ Cloud Computing
✔️ Cyber Security
✔️ Python
𝗘𝗻𝗿𝗼𝗹𝗹 𝗶𝗻 𝗙𝗥𝗘𝗘 𝗖𝗼𝘂𝗿𝘀𝗲𝘀👇:-
https://linkpd.in/freeskills
Get Certified & Stay Ahead🎓
❤3
15 Coding Project Ideas 🚀
Beginner Level:
1. 🗂️ File Organizer Script
2. 🧾 Expense Tracker (CLI or GUI)
3. 🔐 Password Generator
4. 📅 Simple Calendar App
5. 🕹️ Number Guessing Game
Intermediate Level:
6. 📰 News Aggregator using API
7. 📧 Email Sender App
8. 🗳️ Polling/Voting System
9. 🧑🎓 Student Management System
10. 🏷️ URL Shortener
Advanced Level:
11. 🗣️ Real-Time Chat App (with backend)
12. 📦 Inventory Management System
13. 🏦 Budgeting App with Charts
14. 🏥 Appointment Booking System
15. 🧠 AI-powered Text Summarizer
Credits: https://whatsapp.com/channel/0029VazkxJ62UPB7OQhBE502
React ❤️ for more
Beginner Level:
1. 🗂️ File Organizer Script
2. 🧾 Expense Tracker (CLI or GUI)
3. 🔐 Password Generator
4. 📅 Simple Calendar App
5. 🕹️ Number Guessing Game
Intermediate Level:
6. 📰 News Aggregator using API
7. 📧 Email Sender App
8. 🗳️ Polling/Voting System
9. 🧑🎓 Student Management System
10. 🏷️ URL Shortener
Advanced Level:
11. 🗣️ Real-Time Chat App (with backend)
12. 📦 Inventory Management System
13. 🏦 Budgeting App with Charts
14. 🏥 Appointment Booking System
15. 🧠 AI-powered Text Summarizer
Credits: https://whatsapp.com/channel/0029VazkxJ62UPB7OQhBE502
React ❤️ for more
❤7
When to Use Which Programming Language?
C ➝ OS Development, Embedded Systems, Game Engines
C++ ➝ Game Dev, High-Performance Apps, Finance
Java ➝ Enterprise Apps, Android, Backend
C# ➝ Unity Games, Windows Apps
Python ➝ AI/ML, Data, Automation, Web Dev
JavaScript ➝ Frontend, Full-Stack, Web Games
Golang ➝ Cloud Services, APIs, Networking
Swift ➝ iOS/macOS Apps
Kotlin ➝ Android, Backend
PHP ➝ Web Dev (WordPress, Laravel)
Ruby ➝ Web Dev (Rails), Prototypes
Rust ➝ System Apps, Blockchain, HPC
Lua ➝ Game Scripting (Roblox, WoW)
R ➝ Stats, Data Science, Bioinformatics
SQL ➝ Data Analysis, DB Management
TypeScript ➝ Scalable Web Apps
Node.js ➝ Backend, Real-Time Apps
React ➝ Modern Web UIs
Vue ➝ Lightweight SPAs
Django ➝ AI/ML Backend, Web Dev
Laravel ➝ Full-Stack PHP
Blazor ➝ Web with .NET
Spring Boot ➝ Microservices, Java Enterprise
Ruby on Rails ➝ MVPs, Startups
HTML/CSS ➝ UI/UX, Web Design
Git ➝ Version Control
Linux ➝ Server, Security, DevOps
DevOps ➝ Infra Automation, CI/CD
CI/CD ➝ Testing + Deployment
Docker ➝ Containerization
Kubernetes ➝ Cloud Orchestration
Microservices ➝ Scalable Backends
Selenium ➝ Web Testing
Playwright ➝ Modern Web Automation
Credits: https://whatsapp.com/channel/0029VahiFZQ4o7qN54LTzB17
ENJOY LEARNING 👍👍
C ➝ OS Development, Embedded Systems, Game Engines
C++ ➝ Game Dev, High-Performance Apps, Finance
Java ➝ Enterprise Apps, Android, Backend
C# ➝ Unity Games, Windows Apps
Python ➝ AI/ML, Data, Automation, Web Dev
JavaScript ➝ Frontend, Full-Stack, Web Games
Golang ➝ Cloud Services, APIs, Networking
Swift ➝ iOS/macOS Apps
Kotlin ➝ Android, Backend
PHP ➝ Web Dev (WordPress, Laravel)
Ruby ➝ Web Dev (Rails), Prototypes
Rust ➝ System Apps, Blockchain, HPC
Lua ➝ Game Scripting (Roblox, WoW)
R ➝ Stats, Data Science, Bioinformatics
SQL ➝ Data Analysis, DB Management
TypeScript ➝ Scalable Web Apps
Node.js ➝ Backend, Real-Time Apps
React ➝ Modern Web UIs
Vue ➝ Lightweight SPAs
Django ➝ AI/ML Backend, Web Dev
Laravel ➝ Full-Stack PHP
Blazor ➝ Web with .NET
Spring Boot ➝ Microservices, Java Enterprise
Ruby on Rails ➝ MVPs, Startups
HTML/CSS ➝ UI/UX, Web Design
Git ➝ Version Control
Linux ➝ Server, Security, DevOps
DevOps ➝ Infra Automation, CI/CD
CI/CD ➝ Testing + Deployment
Docker ➝ Containerization
Kubernetes ➝ Cloud Orchestration
Microservices ➝ Scalable Backends
Selenium ➝ Web Testing
Playwright ➝ Modern Web Automation
Credits: https://whatsapp.com/channel/0029VahiFZQ4o7qN54LTzB17
ENJOY LEARNING 👍👍
❤14👏1
If you want to Excel at using the most used database language in the world, learn these powerful SQL features:
• Wildcards (%, _) – Flexible pattern matching
• Window Functions – ROW_NUMBER(), RANK(), DENSE_RANK(), LEAD(), LAG()
• Common Table Expressions (CTEs) – WITH for better readability
• Recursive Queries – Handle hierarchical data
• STRING Functions – LEFT(), RIGHT(), LEN(), TRIM(), UPPER(), LOWER()
• Date Functions – DATEDIFF(), DATEADD(), FORMAT()
• Pivot & Unpivot – Transform row data into columns
• Aggregate Functions – SUM(), AVG(), COUNT(), MIN(), MAX()
• Joins & Self Joins – Master INNER, LEFT, RIGHT, FULL, SELF JOIN
• Indexing – Speed up queries with CREATE INDEX
Like it if you need a complete tutorial on all these topics! 👍❤️
#sql
• Wildcards (%, _) – Flexible pattern matching
• Window Functions – ROW_NUMBER(), RANK(), DENSE_RANK(), LEAD(), LAG()
• Common Table Expressions (CTEs) – WITH for better readability
• Recursive Queries – Handle hierarchical data
• STRING Functions – LEFT(), RIGHT(), LEN(), TRIM(), UPPER(), LOWER()
• Date Functions – DATEDIFF(), DATEADD(), FORMAT()
• Pivot & Unpivot – Transform row data into columns
• Aggregate Functions – SUM(), AVG(), COUNT(), MIN(), MAX()
• Joins & Self Joins – Master INNER, LEFT, RIGHT, FULL, SELF JOIN
• Indexing – Speed up queries with CREATE INDEX
Like it if you need a complete tutorial on all these topics! 👍❤️
#sql
❤8👍1