Python Community – Telegram
Python Community
12.2K subscribers
1.38K photos
99 videos
15 files
907 links
Python Community RU - СНГ сообщество Python-разработчиков

Чат канала: @python_community_chat

Сотрудничество: @cyberJohnny и @Sergey_bzd

РКН реестр:
https://knd.gov.ru/license?id=67847dd98e552d6b54a511ed&registryType=bloggersPermission
Download Telegram
🖥 PYTHON МАТЕМАТИКА КАК У ПРОФИ

Ппрофессиональный подход к математике в Python строится не вокруг «посчитать формулу», а вокруг правильного стека инструментов и воспроизводимости. Всегда разделяй символьную математику, численные методы и работу с данными.

Для аналитики и вывода формул используй SymPy, для быстрых численных расчётов - NumPy, для научных алгоритмов - SciPy, для больших таблиц экспериментов - Pandas.

Никогда не смешивай «магические числа» в коде - все параметры выноси в переменные. Работай в Jupyter или VS Code с ноутбуками, фиксируй версии библиотек и обязательно проверяй устойчивость решений через разные методы (например, интеграл численно и аналитически). Так код становится не просто расчётом, а научным инструментом.


import numpy as np
import sympy as sp
from scipy import integrate

# 1. Символьная математика
x = sp.symbols('x')
expr = sp.sin(x) / x
analytic_integral = sp.integrate(expr, (x, 1, 10))

# 2. Численная математика
f = lambda x: np.sin(x) / x
numeric_integral, error = integrate.quad(f, 1, 10)

# 3. Векторизация вместо циклов
arr = np.linspace(1, 10, 1_000_000)
fast_result = np.sin(arr) / arr

print("Analytic:", analytic_integral)
print("Numeric:", numeric_integral, "Error:", error)

@Python_Community_ru
This media is not supported in your browser
VIEW IN TELEGRAM
🔥 С этим проектом, вы можете клонировать голоса, которые звучат по-настоящему живо.

Без робо-голоса. Без “синтетики”.
Полноценная, естественная человеческая речь.

Речь о модели на 1.7B параметров, заточенной под чистую и выразительную генерацию голоса.

Это уже не просто TTS.
Это высокоточное клонирование голоса с передачей интонаций, ритма и естественного звучания.

Разница между “голосом ИИ” и “голосом человека” стремительно исчезает.

Если ты работаешь с аудио, AI-ассистентами, агентами или медиа-инструментами - это серьёзно расширяет возможности.

Модель: https://huggingface.co/Qwen/Qwen3-TTS-12Hz-1.7B-CustomVoice

@Python_Community_ru
🌟 Для тех, кто еще не использует ИИ в разработке.

Выдели 1 час и прокачай самый важный навык 2026 года - работу с LLM.

Большинство устали сейчас не от кода.

А от того, что мы пытаемся использовать ИИ “на ходу”, без понимания его возможности.

Это такой же навык, как и другие. Его нужно тренировать.

Вот простой старт:

Подготовка

1. Подключи Anthropic Pro ($20) с прицелом позже перейти на 5× Max
2. Установи Claude Code
3. Используй модель Opus 4.5 (она стоит по умолчанию)

Рабочий цикл

1. Включи режим планирования
2. Попроси модель спланировать одну маленькую фичу
3. Когда план тебя устраивает - включай авто-принятие правок
4. Если видишь, что модель “уезжает не туда” - сразу ставь на паузу
5. Очищай контекст и переходи к следующей фиче

И так по кругу.

Задача не в том, чтобы получить идеальный код.
Задача - нащупать границы модели:

- что она делает быстро и качественно
- где начинает придумывать
- какие задачи ей давать выгодно
- где проще и безопаснее сделать самому

Через 10-20 часов такой осознанной практики ИИ перестаёт быть “магией” и становится нормальным рабочим инструментом, который реально снимает нагрузку.

@Python_Community_ru
Media is too big
VIEW IN TELEGRAM
🚀 Вышла интересная open-source модель - MiniCPM-o 4.5

MiniCPM-o 4.5 позиционируется как full-duplex omni-modal LLM.
Проще говоря, модель может:

- одновременно видеть (видео/изображение)
- слушать (аудио)
- говорить

и делать это в реальном времени, без режима "подожди, я сначала дослушаю". Больше похоже на живой диалог, чем на поочередные запросы.

Не только отвечает, но и проявляет инициативу

Заявлена поддержка проактивного поведения - модель может не просто реагировать на вопросы, а, например, сама инициировать напоминания или действия в рамках диалога.

По метрикам

С 9B параметрами модель показывает 77.6 на OpenCompass и, по авторам, обходит GPT-4o и Gemini 2.0 Pro в ряде vision-language задач. Для такого размера это сильный результат.

Практический момент

Главный плюс - это open-source, и всё можно крутить локально на ПК, а не только через облачные API.

https://huggingface.co/openbmb/MiniCPM-o-4_5

@Python_Community_ru
🖥 Вы неправильно считываете JSON в Python.

Большинство делает так - и теряет скорость, память и контроль над данными.

Ошибка №1 - читать огромный JSON целиком
json.load() загружает ВСЁ в память. На больших файлах ты сам создаёшь себе OOM.

Ошибка №2 - не валидировать структуру
Ты думаешь, что поле есть. Прод думает иначе.

Ошибка №3 - парсить стандартным json там, где нужна скорость
Стандартный модуль медленный для high-load задач.

Как правильно:

- Большие файлы → читать потоково (ijson / построчно)
- Критичная скорость → использовать orjson
- Важные данные → сразу проверять ключи и типы
- API → оборачивать в try/except, а не надеяться

Продакшн-код работает не потому что “JSON простой”,
а потому что ты контролируешь объём, структуру и ошибки.

@Python_Community_ru
This media is not supported in your browser
VIEW IN TELEGRAM
🕘 Таймер продуктивности на Python с использованием threading

Используйте библиотеку threading для создания простого таймера продуктивности, который поможет вам сосредоточиться на работе в течение заданного времени с последующим перерывом. Это поможет избежать выгорания и повысит продуктивность.


import threading
import time
def timer(duration, break_duration):
print(f"Начинаем работу на {duration} минут.")
time.sleep(duration * 60) # Длительность работы в секундах
print("Время на перерыв!")
time.sleep(break_duration * 60) # Длительность перерыва в секундах
print("Перерыв закончен, продолжайте работу!")
# Задайте длительность работы и перерыва
work_duration = 25 # в минутах
break_duration = 5 # в минутах
# Запускаем таймер
threading.Thread(target=timer, args=(work_duration, break_duration)).start()

@Python_Community_ru
👎2👍1
⚡️ Экосистема AI-агентов превратилась в настоящий джунгли.

Чем больше появляется фреймворков, тем сложнее их настраивать, дебажить и просто понимать, что происходит внутри. Поэтому особенно ценны инструменты, которые возвращают всё к простоте.

KISS Multi-Agent Evolutionary Framework 0 небольшой Python-фреймворк, который следует принципу: *Keep It Simple, Stupid*.

Что в нём интересного:

- Почти никакой магии - обычный Python и один run()
- Обычная функция с type hints автоматически становится tool через нативный function calling модели
- Без декораторов, лишних аннотаций и glue-кода
- Код читается и отлаживается как обычный Python

Агент работает по циклу ReAct:
думает → вызывает инструмент → анализирует результат → повторяет, пока не достигнет цели.

Нужно несколько агентов?
Всё просто: вызываете их последовательно в Python.

researcher → writer → editor
Можно использовать разные модели и строить пайплайны без сложной оркестрации.

Фреймворк также сохраняет trajectory-лог:
- шаги агента
- использование токенов
- время выполнения
- стоимость

Это позволяет быстро понять, где агент ошибся или начал тратить слишком много.

Но самая сильная часть — автоэволюция.

AgentEvolver
- создаёт множество вариантов агента
- применяет мутации и кроссовер
- выбирает лучшие по качеству, скорости и стоимости

GEPA (Genetic-Pareto)
- агент сам анализирует свои ответы и переписывает промпты
- используется Pareto-фронт
- сохраняется несколько оптимальных стратегий, а не одна

В итоге получается не просто агент, а самооптимизирующаяся система, которая ищет баланс между качеством и затратами.

Если устали от тяжёлых агент-фреймворков и хотите минимализм, прозрачность и контроль - KISS может стать отличной базой для ваших LLM-агентов.

https://github.com/ksenxx/kiss_ai

@Python_Community_ru
🖥 Если ищете идеи и готовые решения для LLM-проектов — есть полезный репозиторий.

awesome-llm-apps - это коллекция production-готовых AI-приложений, которые можно запустить уже сегодня.

Что внутри:

→ Нужен RAG? Есть готовый код
→ Нужны AI-агенты? Есть примеры
→ Нужны multimodal-приложения? Тоже есть
→ Хотите собрать AI-SaaS? Базовая архитектура уже реализована

Главное отличие — здесь нет:
- учебных Hello World
- игрушечных демо
- упрощённых примеров

Только реальные приложения:
- с архитектурой
- интеграциями
- рабочей логикой
- которые можно доработать и задеплоить

Хороший вариант, если:
- не знаете, что строить на LLM в 2026
- хотите быстрее собрать MVP
- ищете референсы production-подходов

100% бесплатно
100% Open Source

Repo: https://github.com/Shubhamsaboo/awesome-llm-apps

@Python_Community_ru
🔥2
🛠️ Трекер токенов для LLM CLI инструментов

Sherlock предоставляет живую панель мониторинга для отслеживания использования токенов в LLM CLI инструментах. Вы можете в реальном времени видеть, сколько токенов вы используете, а также сохранять все запросы для последующего анализа.

🚀 Основные моменты:
- Отслеживание использования токенов в реальном времени
- Визуализация контекстных окон с индикатором
- Автоматическое сохранение запросов в формате Markdown и JSON
- Никакой конфигурации — просто установите и используйте

📌 GitHub: https://github.com/jmuncor/sherlock

#python

📲Max (https://max.ru/pythonl)

@Python_Community_ru
🔍 Исследуй связи с Эпштейном

EpsteIn позволяет искать упоминания ваших контактов из LinkedIn в открытых судебных документах Эпштейна. Просто загрузите файл с вашими связями и получите отчет в формате HTML о найденных совпадениях.

🚀 Основные моменты:
- Поиск по судебным документам Эпштейна
- Генерация отчетов в HTML
- Упоминания сортируются по количеству
- Поддержка точного совпадения имен

📌 GitHub: https://github.com/cfinke/EpsteIn

#python

📲Max (https://max.ru/pythonl)

@Python_Community_ru
👎5
Это репозиторий с реализацией DensePose через Wi-Fi-сигналы — то есть попытка получать плотные представления (DensePose) тела людей на основе Wi-Fi-данных, а не обычной камеры.

Такая идея может использоваться для анализа движения через радиосигналы в помещении, без видео-камер, с акцентом на приватность.

Если тебе интересны нестандартные подходы к компьютерному зрению, беспроводным сигналам и сенсорике без камер — обязательно посмотри.


🔗 Есть интересный проект: https://github.com/ruvnet/wifi-densepose

@Python_Community_ru
👎1
🦀 Crabwalk: Мониторинг AI-агентов в реальном времени

Crabwalk — это инструмент для наблюдения за работой AI-агентов на платформах WhatsApp, Telegram, Discord и Slack. Он визуализирует сессии агентов в виде графа, позволяя отслеживать их действия и состояния в реальном времени.

🚀Основные моменты:
- Живой граф активности с визуализацией сессий
- Поддержка нескольких платформ одновременно
- Реальное время через WebSocket
- Отслеживание действий и параметров инструментов
- Фильтрация сессий по платформе и получателю

📌 GitHub: https://github.com/luccast/crabwalk

📲Max (https://max.ru/pythonl)

@Python_Community_ru
This media is not supported in your browser
VIEW IN TELEGRAM
✉️ Вам приглашение на 35-летний юбилей Python 🐍🎉

Python уже совсем взрослый — и мы отмечаем это уютной конференцией вместе с комьюнити: докладами, интерактивами и праздничной атмосферой.

📍 Встречаемся в пятницу, 20 февраля, в 15:30 — в московском офисе Сбера и онлайн.

В программе:

🔹 Доклады от топовых спикеров — обсудим будущее Python, ИИ в кодинге, мутационное тестирование и многое другое.

🔸 Интерактивные зоны и праздничная атмосфера — кодинг-активности, нетворкинг и, конечно, торт 🎂

Проведём этот день вместе — в офисе или онлайн.
Ждём вас 20 февраля в 15:30!

Регистрация по ссылке. (https://developers.sber.ru/kak-v-sbere/events/pythonconf_2026?utm_source=telegram&utm_medium=fix&utm_campaign=python_birthday_conf_by_sber_feb_2026_post&utm_content=&utm_term=pythonl&erid=2VtzqxavNYj) 👈

@Python_Community_ru
ROBOPARTY/roboto_origin - полностью open-source DIY гуманоидный робот 🤖

Это репозиторий с исходниками для открытого человекоподобного робота ROBOTO_ORIGIN (https://github.com/Roboparty/roboto_origin) от команды RoboParty.

Вся разработка - механика, электроника, софт и обучение - выложена публично, чтобы любой мог собрать и доработать своего робота.

Главная идея
• Полноценный open-source гуманоид для R&D, обучения и экспериментов
• Возможность собрать робота из доступных компонентов по открытым материалам
• В одном месте: код, описания, симуляции и среда для разработки

Что есть в репозитории
• modules/ — модули с кодом и описаниями для железа, ROS2 и управления
• Подпроекты для:
- механики и электроники
- ROS2-драйверов и middleware
- симуляции и обучающих сред
- URDF-моделей и кинематики

Особенности
• Открытая архитектура, можно расширять и модифицировать под свои задачи
• Поддержка ROS2 и симуляции для тестирования и обучения
• Фокус на доступности, проект ориентирован на сборку из массовых компонентов

По сути это полный open-source стек для создания собственного гуманоидного робота - от «железа» до софта и симуляции.

https://github.com/Roboparty/roboto_origin

📲Max (https://max.ru/pythonl)

@Python_Community_ru
👍1
This media is not supported in your browser
VIEW IN TELEGRAM
LuxTTS - очень быстрый и компактный TTS с клонированием голоса

Модель со ставкой на скорость + реализм, при этом она остается лёгкой и доступной по ресурсам.

Главные фишки:

- До 150× realtime при генерации речи
- 🎙️ Хорошая передача эмоций и естественности
- 🧬 Качественное voice cloning
- 💾 Влезает примерно в 1 ГБ VRAM
- 🖥️ Работает и на CPU - 2–6× realtime

Подходит для:
- голосовых ассистентов
- озвучки приложений
- быстрых прототипов без тяжёлой инфраструктуры

- LuxTTS работает как мульти-язычная TTS-модель, и русский входит в список языков.

Repo: https://github.com/ysharma3501/LuxTTS
Модель: https://huggingface.co/YatharthS/LuxTTS

@Python_Community_ru
⚡️ Вышел FireRed-Image-Edit-1.0 - новая SOTA для редактирования изображений.

И самое интересное - это open-source и готово к локальному запуску.

Что умеет модель:

- Обгоняет закрытые решения
(лучше Nano-Banana и Seedream 4.0 на бенчмарке GEdit)
- Построена с нуля на базе Text-to-Image, а не как надстройка поверх старых моделей
- Рекорд по стилевому переносу — 4.97 / 5.0
- Аккуратно сохраняет оригинальные шрифты и текст
- Поддерживает multi-image редактирование
(например, виртуальная примерка одежды)
- Понимает промпты на английском и китайском

- Лицензия Apache 2.0
- Можно запускать локально
- Подходит для продакшена и коммерческих проектов

Модель: https://modelscope.cn/models/FireRedTeam/FireRed-Image-Edit-1.0
Демо: https://modelscope.cn/studios/FireRedTeam/FireRed-Image-Edit-1.0
GitHub: https://github.com/FireRedTeam/FireRed-Image-Edit

📲Max (https://max.ru/pythonl)

@Python_Community_ru