Qubes OS – Telegram
Qubes OS
1.99K subscribers
51 photos
2 videos
819 links
A reasonably secure operating system for personal computers.

Qubes-OS.org

⚠️This channel is updated after devs make an announcement to the project.

[Community ran channel]

Help?
English: @QubesChat

German: @QubesOS_user_de

Boost: t.me/QubesOS?boost
Download Telegram
gpg: keybox '/home/user/.gnupg/pubring.kbx' created
gpg: requesting key from 'https://keys.qubes-os.org/keys/qubes-master-signing-key.asc'
gpg: /home/user/.gnupg/trustdb.gpg: trustdb created
gpg: key DDFA1A3E36879494: public key "Qubes Master Signing Key" imported
gpg: Total number processed: 1
gpg: imported: 1


(For more ways to obtain the QMSK, see How to import and authenticate the Qubes Master Signing Key (https://www.qubes-os.org/security/verifying-signatures/#how-to-import-and-authenticate-the-qubes-master-signing-key).)


View the fingerprint of the PGP key you just imported. (Note: gpg> indicates a prompt inside of the GnuPG program. Type what appears after it when prompted.)

$ gpg --edit-key 0x427F11FD0FAA4B080123F01CDDFA1A3E36879494
gpg (GnuPG) 2.2.27; Copyright (C) 2021 Free Software Foundation, Inc.
This is free software: you are free to change and redistribute it.
There is NO WARRANTY, to the extent permitted by law.


pub rsa4096/DDFA1A3E36879494
created: 2010-04-01 expires: never usage: SC
trust: unknown validity: unknown
[ unknown] (1). Qubes Master Signing Key

gpg> fpr
pub rsa4096/DDFA1A3E36879494 2010-04-01 Qubes Master Signing Key
Primary key fingerprint: 427F 11FD 0FAA 4B08 0123 F01C DDFA 1A3E 3687 9494



Important: At this point, you still don’t know whether the key you just imported is the genuine QMSK or a forgery. In order for this entire procedure to provide meaningful security benefits, you must authenticate the QMSK out-of-band. Do not skip this step! The standard method is to obtain the QMSK fingerprint from multiple independent sources in several different ways and check to see whether they match the key you just imported. For more information, see How to import and authenticate the Qubes Master Signing Key (https://www.qubes-os.org/security/verifying-signatures/#how-to-import-and-authenticate-the-qubes-master-signing-key).

Tip: After you have authenticated the QMSK out-of-band to your satisfaction, record the QMSK fingerprint in a safe place (or several) so that you don’t have to repeat this step in the future.


Once you are satisfied that you have the genuine QMSK, set its trust level to 5 (“ultimate”), then quit GnuPG with q.

gpg> trust
pub rsa4096/DDFA1A3E36879494
created: 2010-04-01 expires: never usage: SC
trust: unknown validity: unknown
[ unknown] (1). Qubes Master Signing Key

Please decide how far you trust this user to correctly verify other users' keys
(by looking at passports, checking fingerprints from different sources, etc.)

1 = I don't know or won't say
2 = I do NOT trust
3 = I trust marginally
4 = I trust fully
5 = I trust ultimately
m = back to the main menu

Your decision? 5
Do you really want to set this key to ultimate trust? (y/N) y

pub rsa4096/DDFA1A3E36879494
created: 2010-04-01 expires: never usage: SC
trust: ultimate validity: unknown
[ unknown] (1). Qubes Master Signing Key
Please note that the shown key validity is not necessarily correct
unless you restart the program.

gpg> q



Use Git to clone the qubes-secpack repo.

$ git clone https://github.com/QubesOS/qubes-secpack.git
Cloning into 'qubes-secpack'...
remote: Enumerating objects: 4065, done.
remote: Counting objects: 100% (1474/1474), done.
remote: Compressing objects: 100% (742/742), done.
remote: Total 4065 (delta 743), reused 1413 (delta 731), pack-reused 2591
Receiving objects: 100% (4065/4065), 1.64 MiB | 2.53 MiB/s, done.
Resolving deltas: 100% (1910/1910), done.



Import the included PGP keys. (See our PGP key policies (https://www.qubes-os.org/security/pack/#pgp-key-policies) for important information about these keys.)

$ gpg --import qubes-secpack/keys/*/*
gpg: key 063938BA42CFA724: public key "Marek Marczykowski-Górecki (Qubes OS signing key)" imported
gpg: qubes-secpack/keys/core-devs/retired: read error: Is a directory
gpg: no valid OpenPGP data found.
gpg: key 8C05216CE09C093C: 1 signature not checked due to a missing key
gpg: key 8C05216CE09C093C: public key "HW42 (Qubes Signing Key)" imported
gpg: key DA0434BC706E1FCF: public key "Simon Gaiser (Qubes OS signing key)" imported
gpg: key 8CE137352A019A17: 2 signatures not checked due to missing keys
gpg: key 8CE137352A019A17: public key "Andrew David Wong (Qubes Documentation Signing Key)" imported
gpg: key AAA743B42FBC07A9: public key "Brennan Novak (Qubes Website & Documentation Signing)" imported
gpg: key B6A0BB95CA74A5C3: public key "Joanna Rutkowska (Qubes Documentation Signing Key)" imported
gpg: key F32894BE9684938A: public key "Marek Marczykowski-Górecki (Qubes Documentation Signing Key)" imported
gpg: key 6E7A27B909DAFB92: public key "Hakisho Nukama (Qubes Documentation Signing Key)" imported
gpg: key 485C7504F27D0A72: 1 signature not checked due to a missing key
gpg: key 485C7504F27D0A72: public key "Sven Semmler (Qubes Documentation Signing Key)" imported
gpg: key BB52274595B71262: public key "unman (Qubes Documentation Signing Key)" imported
gpg: key DC2F3678D272F2A8: 1 signature not checked due to a missing key
gpg: key DC2F3678D272F2A8: public key "Wojtek Porczyk (Qubes OS documentation signing key)" imported
gpg: key FD64F4F9E9720C4D: 1 signature not checked due to a missing key
gpg: key FD64F4F9E9720C4D: public key "Zrubi (Qubes Documentation Signing Key)" imported
gpg: key DDFA1A3E36879494: "Qubes Master Signing Key" not changed
gpg: key 1848792F9E2795E9: public key "Qubes OS Release 4 Signing Key" imported
gpg: qubes-secpack/keys/release-keys/retired: read error: Is a directory
gpg: no valid OpenPGP data found.
gpg: key D655A4F21830E06A: public key "Marek Marczykowski-Górecki (Qubes security pack)" imported
gpg: key ACC2602F3F48CB21: public key "Qubes OS Security Team" imported
gpg: qubes-secpack/keys/security-team/retired: read error: Is a directory
gpg: no valid OpenPGP data found.
gpg: key 4AC18DE1112E1490: public key "Simon Gaiser (Qubes Security Pack signing key)" imported
gpg: Total number processed: 17
gpg: imported: 16
gpg: unchanged: 1
gpg: marginals needed: 3 completes needed: 1 trust model: pgp
gpg: depth: 0 valid: 1 signed: 6 trust: 0-, 0q, 0n, 0m, 0f, 1u
gpg: depth: 1 valid: 6 signed: 0 trust: 6-, 0q, 0n, 0m, 0f, 0u



Verify signed Git tags.

$ cd qubes-secpack/
$ git tag -v `git describe`
object 266e14a6fae57c9a91362c9ac784d3a891f4d351
type commit
tag marmarek_sec_266e14a6
tagger Marek Marczykowski-Górecki 1677757924 +0100

Tag for commit 266e14a6fae57c9a91362c9ac784d3a891f4d351
gpg: Signature made Thu 02 Mar 2023 03:52:04 AM PST
gpg: using RSA key 2D1771FE4D767EDC76B089FAD655A4F21830E06A
gpg: Good signature from "Marek Marczykowski-Górecki (Qubes security pack)" [full]


The exact output will differ, but the final line should always start with gpg: Good signature from... followed by an appropriate key. The [full] indicates full trust, which this key inherits in virtue of being validly signed by the QMSK.


Verify PGP signatures, e.g.:

$ cd QSBs/
$ gpg --verify qsb-087-2022.txt.sig.marmarek qsb-087-2022.txt
gpg: Signature made Wed 23 Nov 2022 04:05:51 AM PST
gpg: using RSA key 2D1771FE4D767EDC76B089FAD655A4F21830E06A
gpg: Good signature from "Marek Marczykowski-Górecki (Qubes security pack)" [full]
$ gpg --verify qsb-087-2022.txt.sig.simon qsb-087-2022.txt
gpg: Signature made Wed 23 Nov 2022 03:50:42 AM PST
gpg: using RSA key EA18E7F040C41DDAEFE9AA0F4AC18DE1112E1490
gpg: Good signature from "Simon Gaiser (Qubes Security Pack signing key)" [full]
$ cd ../canaries/
$ gpg --verify canary-034-2023.txt.sig.marmarek canary-034-2023.txt
gpg: Signature made Thu 02 Mar 2023 03:51:48 AM PST
gpg: using RSA key 2D1771FE4D767EDC76B089FAD655A4F21830E06A
gpg: Good signature from "Marek Marczykowski-Górecki (Qubes security pack)" [full]
$ gpg --verify canary-034-2023.txt.sig.simon canary-034-2023.txt
gpg: Signature made Thu 02 Mar 2023 01:47:52 AM PST
gpg: using RSA key EA18E7F040C41DDAEFE9AA0F4AC18DE1112E1490
gpg: Good signature from "Simon Gaiser (Qubes Security Pack signing key)" [full]


Again, the exact output will differ, but the final line of output from each gpg --verify command should always start with gpg: Good signature from... followed by an appropriate key.



For this announcement (QSB-096), the commands are:

$ gpg --verify qsb-096-2023.txt.sig.marmarek qsb-096-2023.txt
$ gpg --verify qsb-096-2023.txt.sig.simon qsb-096-2023.txt


You can also verify the signatures directly from this announcement in addition to or instead of verifying the files from the qubes-secpack. Simply copy and paste the QSB-096 text into a plain text file and do the same for both signature files. Then, perform the same authentication steps as listed above, substituting the filenames above with the names of the files you just created.
QSB-097: "Reptar" Intel redundant prefix vulnerability
https://www.qubes-os.org/news/2023/11/15/qsb-097/

We have published Qubes Security Bulletin 097: “Reptar” Intel redundant prefix vulnerability (https://github.com/QubesOS/qubes-secpack/blob/main/QSBs/qsb-097-2023.txt). The text of this QSB and its accompanying cryptographic signatures are reproduced below. For an explanation of this announcement and instructions for authenticating this QSB, please see the end of this announcement.

Qubes Security Bulletin 097


---===[ Qubes Security Bulletin 097 ]===---

2023-11-14

"Reptar" Intel redundant prefix vulnerability
(CVE-2023-23583, INTEL-SA-00950)

User action
------------

Continue to update normally [1] in order to receive the security updates
described in the "Patching" section below. No other user action is
required in response to this QSB.

Summary
--------

On 2023-11-14, Intel published INTEL-SA-00950, "2023.4 IPU Out-of-Band
(OOB) - Intel® Processor Advisory" [3] accompanied by advisory guidance
[4] that states:

| Under certain microarchitectural conditions, Intel has identified
| cases where execution of an instruction (REP MOVSB) encoded with a
| redundant REX prefix may result in unpredictable system behavior
| resulting in a system crash/hang, or, in some limited scenarios, may
| allow escalation of privilege (EoP) from CPL3 to CPL0.

This vulnerability has been assigned CVE-2023-23583. [5]

Impact
-------

On affected systems, a qube running in PV mode can attempt to exploit
this vulnerability in order to escalate its privileges to those of dom0.
In the default Qubes OS configuration, the stubdomains for sys-net and
sys-usb run in PV mode. (Dom0 also runs in PV mode, but it is fully
trusted.)

In addition, any qube can attempt to exploit this vulnerability in order
to crash the system, resulting in a denial of service (DoS).

Tavis Ormandy's write-up [6] suggests that disabling hyper-threading
(which Qubes OS does by default) might reduce the impact to that of a
denial-of-service attack, but we cannot completely rule out the
possibility of privilege escalation even with hyper-threading disabled.

Affected systems
-----------------

Only systems with Intel processors are affected, specifically:

- 10th generation Core and newer processors
- Certain server processors

According to Intel, some recent processor families already have
mitigations. For details, see the tables of affected products in
INTEL-SA-00950. [3]

Patching
---------

The following packages contain security updates that address the
vulnerabilities described in this bulletin:

For Qubes 4.1, in dom0:
- microcode_ctl, version 2.1-56.qubes1

For Qubes 4.2, in dom0:
- microcode_ctl, version 2.1-56.qubes1

These packages will migrate from the security-testing repository to the
current (stable) repository over the next two weeks after being tested
by the community. [2] Once available, the packages are to be installed
via the Qubes Update tool or its command-line equivalents. [1]

Dom0 must be restarted afterward in order for the updates to take
effect.

If you use Anti Evil Maid, you will need to reseal your secret
passphrase to new PCR values, as PCR18+19 will change due to the new
initramfs binaries.

Credits
--------

See the Intel security advisory. [3]

References
-----------

[1] https://www.qubes-os.org/doc/how-to-update/
[2] https://www.qubes-os.org/doc/testing/
[3] https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00950.html
[4] https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/advisory-guidance/redundant-prefix-issue.html
[5] https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2023-23583
[6] https://lock.cmpxchg8b.com/reptar.html

--
The Qubes Security Team
https://www.qubes-os.org/security/



Source: https://github.com/QubesOS/qubes-secpack/blob/main/QSBs/qsb-097-2023.txt
Marek Marczykowski-Górecki (https://www.qubes-os.org/team/#marek-marczykowski-g%C3%B3recki)’s PGP signature

-----BEGIN PGP SIGNATURE-----

iQIzBAABCAAdFiEELRdx/k12ftx2sIn61lWk8hgw4GoFAmVUDxMACgkQ1lWk8hgw
4Grl2RAAizymbIDjwL+Al/FkxW6DqJvygG/7aborDLcSgDtE6X4jC2b/drCkI++m
gAnY8xr7D4l+g5/c+G0va8iH6Q3wKm9r9IUyXBB/SlbdziSR2hrgGOPZ7V0mg2zU
60G2lZhwFV0hqEiFLA9TDfD4sL61sP52Jtilvg0n1JjOp2JqQXn0m61+T5m6TdU1
c3N/ajN3H09Fi3x0HNKs2569uK8kI5IQDHG8WQStD2Sr8XnK6M/KOj9u+UxNoYvv
6j7eXlUCjkBWx7yzP1/uP1OuIG589tzRUTAwm+JK0kpYu0hzGgBji+C8vVG4BzFk
+aQJ08UFOO3DCmBhg/swjDoMBmXeEG4ld0uhDrkzwdOP4Wf+mCWGThn8GFNhcLpt
s42vP/KCFIs4xFTcfhjYhpBU3Eym/8b/+64BQoUFS7Pj0kjBdlPADwEkw8cU/Isn
CjescoYD1Irxh9+hm+SRDQq4cJv+h6zQQNznIN1tHiyr+oIeqXzKxV3Q/zxUXmc3
VlbjR5vIPGG7iUjKIPfeZ9fDIVPtt1PiHoQkUX1hNw5+zJ+QUTVHtoUehWif4gL7
RGn1l3IAhLkYrhdrz8iY+YEMe+0/XjkpcpsHoIyhPwhUH4OMBiPkt0zG8LKmnjm0
oDVFYd5d+Dv/kA9A1wjtS9B2r+ydxR5voV+1ke//Fe/JHorDfkE=
=jmq4
-----END PGP SIGNATURE-----


Source: https://github.com/QubesOS/qubes-secpack/blob/main/QSBs/qsb-097-2023.txt.sig.marmarek

Simon Gaiser (aka HW42) (https://www.qubes-os.org/team/#simon-gaiser-aka-hw42)’s PGP signature

-----BEGIN PGP SIGNATURE-----

iQIzBAABCgAdFiEE6hjn8EDEHdrv6aoPSsGN4REuFJAFAmVUvlYACgkQSsGN4REu
FJDMDhAArxzeyHKiTkT/pFcgdgcPxzBahlEZtRH6dmvqs7TdiAh+99RnUpzL8sJH
FZnUg0DYXNTvuhCQ0mJtEb1wzpg4z65FuyJ1NXLzv9qRtmaQeEh7kKX96z6p1Ybt
A2o64GmwX1RFL5tpEhwnCgZ9OTlo2Y2eHq/ra8Y+LBTsFAFN5mhVj7+ElvXnVIQ9
uLUyaH6p+aUPyyoI8zYRYt8fPSJuA+fhYFk97AYYL2LA9ZTTD7QirvUgfeJBQ3PR
XozmcEpKPJb0TpDsOB11muE0C0H9Wdz/artWgqtojqFQ0hiJIEPoKQq9pBqYUJo6
33qVQFvX5pmj2DDx8FEgtt5UuJ+AEtlI3Rh8mSkk49tqwAh1Tg4M2vaECog2HHPO
nqp8jeYulAJn64VMlk4lO3vNMdeWuY3yfJHPszKLvIh2v0IbdmN2r4rooz96vSQ0
FG6MMcdCAr7AVzYGaEoQ6a2LZtaIwvN6DFc99ry04wukWikNfCxXGi1i2F045oFq
lgfB6N0ZdUaLPoghJrhuCQbBBIyYjzBiK0L5P565jhI45xHf9sgYbWtHUAeZEXh0
jsSqgNYWerwO7dz2UKZaDaJCf0KaAan+HEWdcsmAPBKwFZw5yL19Ot6AZCPsFdCc
lY+yvMSxpFZkVZlX31QEuCw/ICuubk92JqTJMw44EmenLqImCmI=
=LP5Z
-----END PGP SIGNATURE-----


Source: https://github.com/QubesOS/qubes-secpack/blob/main/QSBs/qsb-097-2023.txt.sig.simon

What is the purpose of this announcement?

The purpose of this announcement is to inform the Qubes community that a new Qubes security bulletin (QSB) has been published.

What is a Qubes security bulletin (QSB)?

A Qubes security bulletin (QSB) is a security announcement issued by the Qubes security team (https://www.qubes-os.org/security/#qubes-security-team). A QSB typically provides a summary and impact analysis of one or more recently-discovered software vulnerabilities, including details about patching to address them. For a list of all QSBs, see Qubes security bulletins (QSBs) (https://www.qubes-os.org/security/qsb/).

Why should I care about QSBs?

QSBs tell you what actions you must take in order to protect yourself from recently-discovered security vulnerabilities. In most cases, security vulnerabilities are addressed by updating normally (https://www.qubes-os.org/doc/how-to-update/). However, in some cases, special user action is required. In all cases, the required actions are detailed in QSBs.

What are the PGP signatures that accompany QSBs?

A PGP (https://en.wikipedia.org/wiki/Pretty_Good_Privacy) signature is a cryptographic digital signature (https://en.wikipedia.org/wiki/Digital_signature) made in accordance with the OpenPGP (https://en.wikipedia.org/wiki/Pretty_Good_Privacy#OpenPGP) standard. PGP signatures can be cryptographically verified with programs like GNU Privacy Guard (GPG) (https://gnupg.org/). The Qubes security team cryptographically signs all QSBs so that Qubes users have a reliable way to check whether QSBs are genuine. The only way to be certain that a QSB is authentic is by verifying its PGP signatures.

Why should I care whether a QSB is authentic?
A forged QSB could deceive you into taking actions that adversely affect the security of your Qubes OS system, such as installing malware or making configuration changes that render your system vulnerable to attack. Falsified QSBs could sow fear, uncertainty, and doubt about the security of Qubes OS or the status of the Qubes OS Project.

How do I verify the PGP signatures on a QSB?

The following command-line instructions assume a Linux system with git and gpg installed. (For Windows and Mac options, see OpenPGP software (https://www.qubes-os.org/security/verifying-signatures/#openpgp-software).)



Obtain the Qubes Master Signing Key (QMSK), e.g.:

$ gpg --fetch-keys https://keys.qubes-os.org/keys/qubes-master-signing-key.asc
gpg: directory '/home/user/.gnupg' created
gpg: keybox '/home/user/.gnupg/pubring.kbx' created
gpg: requesting key from 'https://keys.qubes-os.org/keys/qubes-master-signing-key.asc'
gpg: /home/user/.gnupg/trustdb.gpg: trustdb created
gpg: key DDFA1A3E36879494: public key "Qubes Master Signing Key" imported
gpg: Total number processed: 1
gpg: imported: 1


(For more ways to obtain the QMSK, see How to import and authenticate the Qubes Master Signing Key (https://www.qubes-os.org/security/verifying-signatures/#how-to-import-and-authenticate-the-qubes-master-signing-key).)


View the fingerprint of the PGP key you just imported. (Note: gpg> indicates a prompt inside of the GnuPG program. Type what appears after it when prompted.)

$ gpg --edit-key 0x427F11FD0FAA4B080123F01CDDFA1A3E36879494
gpg (GnuPG) 2.2.27; Copyright (C) 2021 Free Software Foundation, Inc.
This is free software: you are free to change and redistribute it.
There is NO WARRANTY, to the extent permitted by law.


pub rsa4096/DDFA1A3E36879494
created: 2010-04-01 expires: never usage: SC
trust: unknown validity: unknown
[ unknown] (1). Qubes Master Signing Key

gpg> fpr
pub rsa4096/DDFA1A3E36879494 2010-04-01 Qubes Master Signing Key
Primary key fingerprint: 427F 11FD 0FAA 4B08 0123 F01C DDFA 1A3E 3687 9494



Important: At this point, you still don’t know whether the key you just imported is the genuine QMSK or a forgery. In order for this entire procedure to provide meaningful security benefits, you must authenticate the QMSK out-of-band. Do not skip this step! The standard method is to obtain the QMSK fingerprint from multiple independent sources in several different ways and check to see whether they match the key you just imported. For more information, see How to import and authenticate the Qubes Master Signing Key (https://www.qubes-os.org/security/verifying-signatures/#how-to-import-and-authenticate-the-qubes-master-signing-key).

Tip: After you have authenticated the QMSK out-of-band to your satisfaction, record the QMSK fingerprint in a safe place (or several) so that you don’t have to repeat this step in the future.


Once you are satisfied that you have the genuine QMSK, set its trust level to 5 (“ultimate”), then quit GnuPG with q.

gpg> trust
pub rsa4096/DDFA1A3E36879494
created: 2010-04-01 expires: never usage: SC
trust: unknown validity: unknown
[ unknown] (1). Qubes Master Signing Key

Please decide how far you trust this user to correctly verify other users' keys
(by looking at passports, checking fingerprints from different sources, etc.)

1 = I don't know or won't say
2 = I do NOT trust
3 = I trust marginally
4 = I trust fully
5 = I trust ultimately
m = back to the main menu

Your decision? 5
Do you really want to set this key to ultimate trust? (y/N) y

pub rsa4096/DDFA1A3E36879494
created: 2010-04-01 expires: never usage: SC
trust: ultimate validity: unknown
[ unknown] (1). Qubes Master Signing Key
Please note that the shown key validity is not necessarily correct
unless you restart the program.

gpg> q
Use Git to clone the qubes-secpack repo.

$ git clone https://github.com/QubesOS/qubes-secpack.git
Cloning into 'qubes-secpack'...
remote: Enumerating objects: 4065, done.
remote: Counting objects: 100% (1474/1474), done.
remote: Compressing objects: 100% (742/742), done.
remote: Total 4065 (delta 743), reused 1413 (delta 731), pack-reused 2591
Receiving objects: 100% (4065/4065), 1.64 MiB | 2.53 MiB/s, done.
Resolving deltas: 100% (1910/1910), done.



Import the included PGP keys. (See our PGP key policies (https://www.qubes-os.org/security/pack/#pgp-key-policies) for important information about these keys.)

$ gpg --import qubes-secpack/keys/*/*
gpg: key 063938BA42CFA724: public key "Marek Marczykowski-Górecki (Qubes OS signing key)" imported
gpg: qubes-secpack/keys/core-devs/retired: read error: Is a directory
gpg: no valid OpenPGP data found.
gpg: key 8C05216CE09C093C: 1 signature not checked due to a missing key
gpg: key 8C05216CE09C093C: public key "HW42 (Qubes Signing Key)" imported
gpg: key DA0434BC706E1FCF: public key "Simon Gaiser (Qubes OS signing key)" imported
gpg: key 8CE137352A019A17: 2 signatures not checked due to missing keys
gpg: key 8CE137352A019A17: public key "Andrew David Wong (Qubes Documentation Signing Key)" imported
gpg: key AAA743B42FBC07A9: public key "Brennan Novak (Qubes Website & Documentation Signing)" imported
gpg: key B6A0BB95CA74A5C3: public key "Joanna Rutkowska (Qubes Documentation Signing Key)" imported
gpg: key F32894BE9684938A: public key "Marek Marczykowski-Górecki (Qubes Documentation Signing Key)" imported
gpg: key 6E7A27B909DAFB92: public key "Hakisho Nukama (Qubes Documentation Signing Key)" imported
gpg: key 485C7504F27D0A72: 1 signature not checked due to a missing key
gpg: key 485C7504F27D0A72: public key "Sven Semmler (Qubes Documentation Signing Key)" imported
gpg: key BB52274595B71262: public key "unman (Qubes Documentation Signing Key)" imported
gpg: key DC2F3678D272F2A8: 1 signature not checked due to a missing key
gpg: key DC2F3678D272F2A8: public key "Wojtek Porczyk (Qubes OS documentation signing key)" imported
gpg: key FD64F4F9E9720C4D: 1 signature not checked due to a missing key
gpg: key FD64F4F9E9720C4D: public key "Zrubi (Qubes Documentation Signing Key)" imported
gpg: key DDFA1A3E36879494: "Qubes Master Signing Key" not changed
gpg: key 1848792F9E2795E9: public key "Qubes OS Release 4 Signing Key" imported
gpg: qubes-secpack/keys/release-keys/retired: read error: Is a directory
gpg: no valid OpenPGP data found.
gpg: key D655A4F21830E06A: public key "Marek Marczykowski-Górecki (Qubes security pack)" imported
gpg: key ACC2602F3F48CB21: public key "Qubes OS Security Team" imported
gpg: qubes-secpack/keys/security-team/retired: read error: Is a directory
gpg: no valid OpenPGP data found.
gpg: key 4AC18DE1112E1490: public key "Simon Gaiser (Qubes Security Pack signing key)" imported
gpg: Total number processed: 17
gpg: imported: 16
gpg: unchanged: 1
gpg: marginals needed: 3 completes needed: 1 trust model: pgp
gpg: depth: 0 valid: 1 signed: 6 trust: 0-, 0q, 0n, 0m, 0f, 1u
gpg: depth: 1 valid: 6 signed: 0 trust: 6-, 0q, 0n, 0m, 0f, 0u



Verify signed Git tags.

$ cd qubes-secpack/
$ git tag -v `git describe`
object 266e14a6fae57c9a91362c9ac784d3a891f4d351
type commit
tag marmarek_sec_266e14a6
tagger Marek Marczykowski-Górecki 1677757924 +0100

Tag for commit 266e14a6fae57c9a91362c9ac784d3a891f4d351
gpg: Signature made Thu 02 Mar 2023 03:52:04 AM PST
gpg: using RSA key 2D1771FE4D767EDC76B089FAD655A4F21830E06A
gpg: Good signature from "Marek Marczykowski-Górecki (Qubes security pack)" [full]


The exact output will differ, but the final line should always start with gpg: Good signature from... followed by an appropriate key. The [full] indicates full trust, which this key inherits in virtue of being validly signed by the QMSK.
Verify PGP signatures, e.g.:

$ cd QSBs/
$ gpg --verify qsb-087-2022.txt.sig.marmarek qsb-087-2022.txt
gpg: Signature made Wed 23 Nov 2022 04:05:51 AM PST
gpg: using RSA key 2D1771FE4D767EDC76B089FAD655A4F21830E06A
gpg: Good signature from "Marek Marczykowski-Górecki (Qubes security pack)" [full]
$ gpg --verify qsb-087-2022.txt.sig.simon qsb-087-2022.txt
gpg: Signature made Wed 23 Nov 2022 03:50:42 AM PST
gpg: using RSA key EA18E7F040C41DDAEFE9AA0F4AC18DE1112E1490
gpg: Good signature from "Simon Gaiser (Qubes Security Pack signing key)" [full]
$ cd ../canaries/
$ gpg --verify canary-034-2023.txt.sig.marmarek canary-034-2023.txt
gpg: Signature made Thu 02 Mar 2023 03:51:48 AM PST
gpg: using RSA key 2D1771FE4D767EDC76B089FAD655A4F21830E06A
gpg: Good signature from "Marek Marczykowski-Górecki (Qubes security pack)" [full]
$ gpg --verify canary-034-2023.txt.sig.simon canary-034-2023.txt
gpg: Signature made Thu 02 Mar 2023 01:47:52 AM PST
gpg: using RSA key EA18E7F040C41DDAEFE9AA0F4AC18DE1112E1490
gpg: Good signature from "Simon Gaiser (Qubes Security Pack signing key)" [full]


Again, the exact output will differ, but the final line of output from each gpg --verify command should always start with gpg: Good signature from... followed by an appropriate key.



For this announcement (QSB-097), the commands are:

$ gpg --verify qsb-097-2023.txt.sig.marmarek qsb-097-2023.txt
$ gpg --verify qsb-097-2023.txt.sig.simon qsb-097-2023.txt


You can also verify the signatures directly from this announcement in addition to or instead of verifying the files from the qubes-secpack. Simply copy and paste the QSB-097 text into a plain text file and do the same for both signature files. Then, perform the same authentication steps as listed above, substituting the filenames above with the names of the files you just created.
Qubes OS pinned «Qubes OS 4.2.0-rc4 is available for testing https://www.qubes-os.org/news/2023/10/13/qubes-os-4-2-0-rc4-available-for-testing/ We’re pleased to announce that the fourth release candidate (RC) (https://www.qubes-os.org/news/2023/10/13/qubes-os-4-2-0-rc4-available…»
Qubes OS 4.2.0-rc5 is available for testing
https://www.qubes-os.org/news/2023/11/26/qubes-os-4-2-0-rc5-available-for-testing/

We’re pleased to announce that the fifth release candidate (RC) (https://www.qubes-os.org/news/2023/11/26/qubes-os-4-2-0-rc5-available-for-testing/#what-is-a-release-candidate) for Qubes OS 4.2.0 is now available for testing (https://www.qubes-os.org/doc/testing/). The ISO and associated verification files (https://www.qubes-os.org/security/verifying-signatures/) are available on the downloads (https://www.qubes-os.org/downloads/) page. For more information about the changes included in this version, see the Qubes OS 4.2.0 release notes (https://www.qubes-os.org/doc/releases/4.2/release-notes/) and the full list of bugs affecting Qubes 4.2 that have been fixed (https://github.com/QubesOS/qubes-issues/issues?q=is%3Aissue+is%3Aclosed+reason%3Acompleted+label%3Aaffects-4.2+label%3A%22T%3A+bug%22+-label%3A%22R%3A+cannot+reproduce%22+-label%3A%22R%3A+declined%22+-label%3A%22R%3A+duplicate%22+-label%3A%22R%3A+not+applicable%22+-label%3A%22R%3A+self-closed%22+-label%3A%22R%3A+upstream+issue%22).

When is the stable release?

That depends on the number of bugs discovered in this RC and their severity. As explained in our release schedule (https://www.qubes-os.org/doc/version-scheme/#release-schedule) documentation, our usual process after issuing a new RC is to collect bug reports, triage the bugs, and fix them. This usually takes around five weeks, depending on the bugs discovered. If warranted, we then issue a new RC that includes the fixes and repeat the whole process again. We continue this iterative procedure until we’re left with an RC that’s good enough to be declared the stable release. No one can predict, at the outset, how many iterations will be required (and hence how many RCs will be needed before a stable release), but we tend to get a clearer picture of this with each successive RC, which we share in this section in each RC announcement. Here is the latest update:

At this point, we are hopeful that RC5 will be the final RC.

Testing Qubes 4.2.0-rc5

Thank you to everyone who tested the previous Qubes 4.2.0 RCs! Due to your efforts, this new RC includes fixes for several bugs that were present in the previous RCs.

If you’re willing to test (https://www.qubes-os.org/doc/testing/) this new RC, you can help us improve the eventual stable release by reporting any bugs you encounter (https://www.qubes-os.org/doc/issue-tracking/). We encourage experienced users to join the testing team (https://forum.qubes-os.org/t/joining-the-testing-team/5190).

A full list of issues affecting Qubes 4.2.0 is available here (https://github.com/QubesOS/qubes-issues/issues?q=is%3Aissue+label%3Aaffects-4.2). We strongly recommend updating Qubes OS (https://www.qubes-os.org/doc/how-to-update/) immediately after installation in order to apply all available bug fixes.

Upgrading to Qubes 4.2.0-rc5

If you’re currently running any Qubes 4.2.0 RC, you can upgrade to the latest RC by updating normally (https://www.qubes-os.org/doc/how-to-update/). However, please note that there have been some recent template changes, which are detailed in the Qubes OS 4.2.0 release notes (https://www.qubes-os.org/doc/releases/4.2/release-notes/).

If you’re currently on Qubes 4.1 and wish to test 4.2, please see how to upgrade to Qubes 4.2 (https://www.qubes-os.org/doc/upgrade/4.2/), which details both clean installation and in-place upgrade options. As always, we strongly recommend making a full backup (https://www.qubes-os.org/doc/how-to-back-up-restore-and-migrate/) beforehand.

Reminder: new signing key for Qubes OS 4.2

As a reminder, we published the following special announcement in Qubes Canary 032 (https://www.qubes-os.org/news/2022/09/14/canary-032/) on 2022-09-14:
We plan to create a new Release Signing Key (RSK) for Qubes OS 4.2. Normally, we have only one RSK for each major release. However, for the 4.2 release, we will be using Qubes Builder version 2, which is a complete rewrite of the Qubes Builder. Out of an abundance of caution, we would like to isolate the build processes of the current stable 4.1 release and the upcoming 4.2 release from each other at the cryptographic level in order to minimize the risk of a vulnerability in one affecting the other. We are including this notice as a canary special announcement since introducing a new RSK for a minor release is an exception to our usual RSK management policy.


As always, we encourage you to authenticate (https://www.qubes-os.org/security/pack/#how-to-obtain-and-authenticate) this canary by verifying its PGP signatures (https://www.qubes-os.org/security/verifying-signatures/). Specific instructions are also included in the canary announcement (https://www.qubes-os.org/news/2022/09/14/canary-032/).

As with all Qubes signing keys, we also encourage you to authenticate (https://www.qubes-os.org/security/verifying-signatures/#how-to-import-and-authenticate-release-signing-keys) the new Qubes OS Release 4.2 Signing Key, which is available in the Qubes Security Pack (qubes-secpack) (https://www.qubes-os.org/security/pack/) as well as on the downloads (https://www.qubes-os.org/downloads/) page under the Qubes OS 4.2.0-rc5 ISO.

What is a release candidate?

A release candidate (RC) is a software build that has the potential to become a stable release, unless significant bugs are discovered in testing. RCs are intended for more advanced (or adventurous!) users who are comfortable testing early versions of software that are potentially buggier than stable releases. You can read more about Qubes OS supported releases (https://www.qubes-os.org/doc/supported-releases/) and the version scheme (https://www.qubes-os.org/doc/version-scheme/) in our documentation.
🏆3
Qubes Canary 037
https://www.qubes-os.org/news/2023/12/11/canary-037/

We have published Qubes Canary 037 (https://github.com/QubesOS/qubes-secpack/blob/main/canaries/canary-037-2023.txt). The text of this canary and its accompanying cryptographic signatures are reproduced below. For an explanation of this announcement and instructions for authenticating this canary, please see the end of this announcement.

Qubes Canary 037


---===[ Qubes Canary 037 ]===---


Statements
-----------

The Qubes security team members who have digitally signed this file [1]
state the following:

1. The date of issue of this canary is December 11, 2023.

2. There have been 97 Qubes security bulletins published so far.

3. The Qubes Master Signing Key fingerprint is:

427F 11FD 0FAA 4B08 0123 F01C DDFA 1A3E 3687 9494

4. No warrants have ever been served to us with regard to the Qubes OS
Project (e.g. to hand out the private signing keys or to introduce
backdoors).

5. We plan to publish the next of these canary statements in the first
fourteen days of March 2024. Special note should be taken if no new
canary is published by that time or if the list of statements changes
without plausible explanation.


Special announcements
----------------------

None.


Disclaimers and notes
----------------------

We would like to remind you that Qubes OS has been designed under the
assumption that all relevant infrastructure is permanently compromised.
This means that we assume NO trust in any of the servers or services
which host or provide any Qubes-related data, in particular, software
updates, source code repositories, and Qubes ISO downloads.

This canary scheme is not infallible. Although signing the declaration
makes it very difficult for a third party to produce arbitrary
declarations, it does not prevent them from using force or other means,
like blackmail or compromising the signers' laptops, to coerce us to
produce false declarations.

The proof of freshness provided below serves to demonstrate that this
canary could not have been created prior to the date stated. It shows
that a series of canaries was not created in advance.

This declaration is merely a best effort and is provided without any
guarantee or warranty. It is not legally binding in any way to anybody.
None of the signers should be ever held legally responsible for any of
the statements made here.


Proof of freshness
-------------------

Mon, 11 Dec 2023 17:43:54 +0000

Source: DER SPIEGEL - International (https://www.spiegel.de/international/index.rss)
Klimakrise: IEA-Chef Fatih Birol hält sogar das Zwei-Grad-Ziel für unrealistisch (Kopie)
Black Gold Rush in Guyana: Is the World Really Ready to Abandon Fossil Fuels?
Former Qatari Premier on the Gaza Conflict: "The Worst Thing Would Be a Ceasefire without a Plan"
The Fizzled Counteroffensive: Fears Grow of a Stalemate on the Front in Ukraine
Refugees on the Balkan Route: Europe's Nameless Dead

Source: NYT > World News (https://rss.nytimes.com/services/xml/rss/nyt/World.xml)
Israel-Hamas War: Israel Says Strikes Are Targeting Three Hamas Strongholds
As Zelensky Heads to Washington, Russia Targets Kyiv With Missiles
Ravaged Israeli Border Community Ponders: What’s Next?
Iran Puts Johan Floderus, E.U. Official From Sweden, on Trial
Donald Tusk Looks Set to Take Power in Poland

Source: BBC News - World (https://feeds.bbci.co.uk/news/world/rss.xml)
Ukraine war: Zelensky heads to US in bid to rescue $60bn military aid
Donald Tusk nominated as Polish prime minister
Two shot dead as Swiss police arrest suspect
Golden Globe nominations: Barbie and Oppenheimer lead 2024 contenders
Paris Ritz: Missing €750k ring found in hotel vacuum bag

Source: Blockchain.info
00000000000000000002ff8d69e7eddcf01288c80e6591ac3861228c515ed153


Footnotes
----------

[1] This file should be signed in two ways: (1) via detached PGP
signatures by each of the signers, distributed together with this canary
🏆1
in the qubes-secpack.git repo, and (2) via digital signatures on the
corresponding qubes-secpack.git repo tags. [2]

[2] Don't just trust the contents of this file blindly! Verify the
digital signatures! Instructions for doing so are documented here:
https://www.qubes-os.org/security/pack/

--
The Qubes Security Team
https://www.qubes-os.org/security/



Source: https://github.com/QubesOS/qubes-secpack/blob/main/canaries/canary-037-2023.txt

Marek Marczykowski-Górecki (https://www.qubes-os.org/team/#marek-marczykowski-g%C3%B3recki)’s PGP signature

-----BEGIN PGP SIGNATURE-----

iQIzBAABCAAdFiEELRdx/k12ftx2sIn61lWk8hgw4GoFAmV3XmUACgkQ1lWk8hgw
4GpgEw/9HM5QySlB1r+9mswZPGrhsK4Ae2pxs7R/Qdl+6vNmHwoqUWRRbJ0YL3aN
Fu26tQAOBXezQRIw/SnslXAUroK/08PWg/EGyhiwbD4FswOa6S+aL15qSOI5RY/h
Xl8fIN2mKrkkkxMsLy5cMxnB7ix3VimnCgLaZOUr10fAeXMGEQ/KqLSOHobzx9uU
eHXQk73tnjxzCNBPlbso+Ht9JxVPpXsNwGNbIfUiU0JeO+d7j2My7LUxPsKErfWt
oNwYmjqcuWDSBC/cD9CfJSThwFuRtsrdiOao29omQO9YfwIRTpyEUo9BawcwixIq
yW7DrfkDum5Szw2ynBL8M44EvsYCA+bnagJTh1P3H+mt1N9HbHk4aneWL87Iu5fd
x+XtiMpTLviZAXL+FocmtEFSskemPeVwrESqlfkNRXLqho04fT3MeywKjVwnn2m1
xawzcYNgYmSqHeJmNlxQjYKwNNj5RJrx3UvOZBS7wkKKDt91dGxsGc01oXkL7rrm
fJ+L7PoFIZJr/1n95fVTMDF2HibbGryGMYk3QvJ9KAzjQDdjq3WVVxRSIc3Od2lU
V68Ts9pQyuIXB/X38VVl+Z1sKQA//M1eE9GvMISkMQZ1Y3xB4xUaUJLN3pjbox5t
7SOzTQXbvL2TvQqj8BEKcP6Y+2BYdMI7dARwsR03urvzztldXOw=
=0rc7
-----END PGP SIGNATURE-----


Source: https://github.com/QubesOS/qubes-secpack/blob/main/canaries/canary-037-2023.txt.sig.marmarek

Simon Gaiser (aka HW42) (https://www.qubes-os.org/team/#simon-gaiser-aka-hw42)’s PGP signature

-----BEGIN PGP SIGNATURE-----

iQIzBAABCgAdFiEE6hjn8EDEHdrv6aoPSsGN4REuFJAFAmV3SsYACgkQSsGN4REu
FJDfqg//SrIPWU9kd17ipVB0k9vwJD+lqh90hDlI6IfBBROmPKsVk+EchktdCM4r
TT7MUyfs2oVu7gYo0TNKTbOHEeE3taDLdym8KRR9nUtW+xn3XwE9DdZLtS13uvN9
bbmZGocGd+bzu5xJOCYvyvKIQiMRTOK2MFBAeLhj8bz+H5nQEEejNlXfT1zDhwPG
JyeiTukVynOLL3c/C1HPvlGrA61CPwjRp0Zn1bnSrUNMxXkx/lrnxfMlZVqRMxEw
FVpkaJKF/N2Z0k9CEJvlNOv9h/wVTNZtu4uk7L5sfFOl3jCAqNhz5kjI1pWZ5QPX
v/1y8PQ41cA4FqVVHYvISe3pw3NyGCht3NerRhLOmEQ828/KT3OH/RcPZiHYgS3q
8qOM+QbsuT0wli3Skh9psqrtLNrp7wIB8YG8tyBg9MJZje91SqYg9cFW/UIjzjTd
mmz2HXSeNPrtVFt+n3AYfHymQ3DeKV2nq6uM9qB4//4QYPzziRrYPS8DNWjUN3GW
ZZ+6niUsYHLO9tDrEQCUcHPPoDs9iQkAIQydnxsdoka4s2uATdo9AHjAQS/oVyHP
qH6qc7YEiDwl41VBugHmfwXS+Jm8KQ+SzAr3Gkrx8ArY2rj+1uDs0tlRmwbVDm31
vqvQQN0KNWR82O28bZAXhpXW4zxfSzybCfRW3eOGnE7h8Vvtl5I=
=0j+F
-----END PGP SIGNATURE-----


Source: https://github.com/QubesOS/qubes-secpack/blob/main/canaries/canary-037-2023.txt.sig.simon

What is the purpose of this announcement?

The purpose of this announcement is to inform the Qubes community that a new Qubes canary has been published.

What is a Qubes canary?

A Qubes canary is a security announcement periodically issued by the Qubes security team (https://www.qubes-os.org/security/#qubes-security-team) consisting of several statements to the effect that the signers of the canary have not been compromised. The idea is that, as long as signed canaries including such statements continue to be published, all is well. However, if the canaries should suddenly cease, if one or more signers begin declining to sign them, or if the included statements change significantly without plausible explanation, then this may indicate that something has gone wrong. A list of all canaries is available here (https://www.qubes-os.org/security/canary/).

The name originates from the practice in which miners would bring caged canaries into coal mines. If the level of methane gas in the mine reached a dangerous level, the canary would die, indicating to miners that they should evacuate. (See the Wikipedia article on warrant canaries (https://en.wikipedia.org/wiki/Warrant_canary) for more information, but bear in mind that Qubes Canaries are not strictly limited to legal warrants.)

Why should I care about canaries?
Canaries provide an important indication about the security status of the project. If the canary is healthy, it’s a strong sign that things are running normally. However, if the canary is unhealthy, it could mean that the project or its members are being coerced in some way.

What are some signs of an unhealthy canary?

Here is a non-exhaustive list of examples:


Dead canary. In each canary, we state a window of time during which you should expect the next canary to be published. If no canary is published within that window of time and no good explanation is provided for missing the deadline, then the canary has died.
Missing statement(s). Every canary contains the same set of statements (sometimes along with special announcements, which are not the same in every canary). If an important statement was present in older canaries but suddenly goes missing from new canaries with no correction or explanation, then this may be an indication that the signers can no longer truthfully make that statement.
Missing signature(s). Qubes canaries are signed by the members of the Qubes security team (https://www.qubes-os.org/security/#qubes-security-team) (see below). If one of them has been signing all canaries but suddenly and permanently stops signing new canaries without any explanation, then this may indicate that this person is under duress or can no longer truthfully sign the statements contained in the canary.


Does every unexpected or unusual occurrence related to a canary indicate something bad?

No, there are many canary-related possibilities that should not worry you. Here is a non-exhaustive list of examples:


Unusual reposts. The only canaries that matter are the ones that are validly signed in the Qubes security pack (qubes-secpack) (https://www.qubes-os.org/security/pack/). Reposts of canaries (like the one in this announcement) do not have any authority (except insofar as they reproduce validly-signed text from the qubes-secpack). If the actual canary in the qubes-secpack is healthy, but reposts are late, absent, or modified on the website, mailing lists, forum, or social media platforms, you should not be concerned about the canary.
Last-minute signature(s). If the canary is signed at the last minute but before the deadline, that’s okay. (People get busy and procrastinate sometimes.)
Signatures at different times. If one signature is earlier or later than the other, but both are present within a reasonable period of time, that’s okay. (For example, sometimes one signer is out of town, but we try to plan the deadlines around this.)
Permitted changes. If something about a canary changes without violating any of statements in prior canaries, that’s okay. (For example, canaries are usually scheduled for the first fourteen days of a given month, but there’s no rule that says they have to be.)
Unusual but planned changes. If something unusual happens, but it was announced in advance, and the appropriate statements are signed, that’s okay (e.g., when Joanna left the security team and Simon joined it).


In general, it would not be realistic for an organization to exist that never changed, had zero turnover, and never made mistakes. Therefore, it would be reasonable to expect such events to occur periodically, and it would be unreasonable to regard every unusual or unexpected canary-related event as a sign of compromise. For example, if something usual happens with a canary, and we say it was a mistake and correct it, you will have to decide for yourself whether it’s more likely that it really was just a mistake or that something is wrong and that this is how we chose to send you a subtle signal about it. This will require you to think carefully about which among many possible scenarios is most likely given the evidence available to you. Since this is fundamentally a matter of judgment, canaries are ultimately a social scheme, not a technical one.

What are the PGP signatures that accompany canaries?
A PGP (https://en.wikipedia.org/wiki/Pretty_Good_Privacy) signature is a cryptographic digital signature (https://en.wikipedia.org/wiki/Digital_signature) made in accordance with the OpenPGP (https://en.wikipedia.org/wiki/Pretty_Good_Privacy#OpenPGP) standard. PGP signatures can be cryptographically verified with programs like GNU Privacy Guard (GPG) (https://en.wikipedia.org/wiki/GNU_Privacy_Guard). The Qubes security team cryptographically signs all canaries so that Qubes users have a reliable way to check whether canaries are genuine. The only way to be certain that a canary is authentic is by verifying its PGP signatures.

Why should I care whether a canary is authentic?

If you fail to notice that a canary is unhealthy or has died, you may continue to trust the Qubes security team even after they have signaled via the canary (or lack thereof) that they been compromised or coerced. Falsified canaries could include manipulated text designed to sow fear, uncertainty, and doubt about the security of Qubes OS or the status of the Qubes OS Project.

How do I verify the PGP signatures on a canary?

The following command-line instructions assume a Linux system with git and gpg installed. (For Windows and Mac options, see OpenPGP software (https://www.qubes-os.org/security/verifying-signatures/#openpgp-software).)



Obtain the Qubes Master Signing Key (QMSK), e.g.:

$ gpg --fetch-keys https://keys.qubes-os.org/keys/qubes-master-signing-key.asc
gpg: directory '/home/user/.gnupg' created
gpg: keybox '/home/user/.gnupg/pubring.kbx' created
gpg: requesting key from 'https://keys.qubes-os.org/keys/qubes-master-signing-key.asc'
gpg: /home/user/.gnupg/trustdb.gpg: trustdb created
gpg: key DDFA1A3E36879494: public key "Qubes Master Signing Key" imported
gpg: Total number processed: 1
gpg: imported: 1


(For more ways to obtain the QMSK, see How to import and authenticate the Qubes Master Signing Key (https://www.qubes-os.org/security/verifying-signatures/#how-to-import-and-authenticate-the-qubes-master-signing-key).)


View the fingerprint of the PGP key you just imported. (Note: gpg> indicates a prompt inside of the GnuPG program. Type what appears after it when prompted.)

$ gpg --edit-key 0x427F11FD0FAA4B080123F01CDDFA1A3E36879494
gpg (GnuPG) 2.2.27; Copyright (C) 2021 Free Software Foundation, Inc.
This is free software: you are free to change and redistribute it.
There is NO WARRANTY, to the extent permitted by law.


pub rsa4096/DDFA1A3E36879494
created: 2010-04-01 expires: never usage: SC
trust: unknown validity: unknown
[ unknown] (1). Qubes Master Signing Key

gpg> fpr
pub rsa4096/DDFA1A3E36879494 2010-04-01 Qubes Master Signing Key
Primary key fingerprint: 427F 11FD 0FAA 4B08 0123 F01C DDFA 1A3E 3687 9494



Important: At this point, you still don’t know whether the key you just imported is the genuine QMSK or a forgery. In order for this entire procedure to provide meaningful security benefits, you must authenticate the QMSK out-of-band. Do not skip this step! The standard method is to obtain the QMSK fingerprint from multiple independent sources in several different ways and check to see whether they match the key you just imported. For more information, see How to import and authenticate the Qubes Master Signing Key (https://www.qubes-os.org/security/verifying-signatures/#how-to-import-and-authenticate-the-qubes-master-signing-key).

Tip: After you have authenticated the QMSK out-of-band to your satisfaction, record the QMSK fingerprint in a safe place (or several) so that you don’t have to repeat this step in the future.


Once you are satisfied that you have the genuine QMSK, set its trust level to 5 (“ultimate”), then quit GnuPG with q.

gpg> trust
pub rsa4096/DDFA1A3E36879494
created: 2010-04-01 expires: never usage: SC
trust: unknown validity: unknown
[ unknown] (1). Qubes Master Signing Key

Please decide how far you trust this user to correctly verify other users' keys
(by looking at passports, checking fingerprints from different sources, etc.)

1 = I don't know or won't say
2 = I do NOT trust
3 = I trust marginally
4 = I trust fully
5 = I trust ultimately
m = back to the main menu

Your decision? 5
Do you really want to set this key to ultimate trust? (y/N) y

pub rsa4096/DDFA1A3E36879494
created: 2010-04-01 expires: never usage: SC
trust: ultimate validity: unknown
[ unknown] (1). Qubes Master Signing Key
Please note that the shown key validity is not necessarily correct
unless you restart the program.

gpg> q



Use Git to clone the qubes-secpack repo.

$ git clone https://github.com/QubesOS/qubes-secpack.git
Cloning into 'qubes-secpack'...
remote: Enumerating objects: 4065, done.
remote: Counting objects: 100% (1474/1474), done.
remote: Compressing objects: 100% (742/742), done.
remote: Total 4065 (delta 743), reused 1413 (delta 731), pack-reused 2591
Receiving objects: 100% (4065/4065), 1.64 MiB | 2.53 MiB/s, done.
Resolving deltas: 100% (1910/1910), done.



Import the included PGP keys. (See our PGP key policies (https://www.qubes-os.org/security/pack/#pgp-key-policies) for important information about these keys.)

$ gpg --import qubes-secpack/keys/*/*
gpg: key 063938BA42CFA724: public key "Marek Marczykowski-Górecki (Qubes OS signing key)" imported
gpg: qubes-secpack/keys/core-devs/retired: read error: Is a directory
gpg: no valid OpenPGP data found.
gpg: key 8C05216CE09C093C: 1 signature not checked due to a missing key
gpg: key 8C05216CE09C093C: public key "HW42 (Qubes Signing Key)" imported
gpg: key DA0434BC706E1FCF: public key "Simon Gaiser (Qubes OS signing key)" imported
gpg: key 8CE137352A019A17: 2 signatures not checked due to missing keys
gpg: key 8CE137352A019A17: public key "Andrew David Wong (Qubes Documentation Signing Key)" imported
gpg: key AAA743B42FBC07A9: public key "Brennan Novak (Qubes Website & Documentation Signing)" imported
gpg: key B6A0BB95CA74A5C3: public key "Joanna Rutkowska (Qubes Documentation Signing Key)" imported
gpg: key F32894BE9684938A: public key "Marek Marczykowski-Górecki (Qubes Documentation Signing Key)" imported
gpg: key 6E7A27B909DAFB92: public key "Hakisho Nukama (Qubes Documentation Signing Key)" imported
gpg: key 485C7504F27D0A72: 1 signature not checked due to a missing key
gpg: key 485C7504F27D0A72: public key "Sven Semmler (Qubes Documentation Signing Key)" imported
gpg: key BB52274595B71262: public key "unman (Qubes Documentation Signing Key)" imported
gpg: key DC2F3678D272F2A8: 1 signature not checked due to a missing key
gpg: key DC2F3678D272F2A8: public key "Wojtek Porczyk (Qubes OS documentation signing key)" imported
gpg: key FD64F4F9E9720C4D: 1 signature not checked due to a missing key
gpg: key FD64F4F9E9720C4D: public key "Zrubi (Qubes Documentation Signing Key)" imported
gpg: key DDFA1A3E36879494: "Qubes Master Signing Key" not changed
gpg: key 1848792F9E2795E9: public key "Qubes OS Release 4 Signing Key" imported
gpg: qubes-secpack/keys/release-keys/retired: read error: Is a directory
gpg: no valid OpenPGP data found.
gpg: key D655A4F21830E06A: public key "Marek Marczykowski-Górecki (Qubes security pack)" imported
gpg: key ACC2602F3F48CB21: public key "Qubes OS Security Team" imported
gpg: qubes-secpack/keys/security-team/retired: read error: Is a directory
gpg: no valid OpenPGP data found.
gpg: key 4AC18DE1112E1490: public key "Simon Gaiser (Qubes Security Pack signing key)" imported
gpg: Total number processed: 17
gpg: imported: 16
gpg: unchanged: 1
gpg: marginals needed: 3 completes needed: 1 trust model: pgp
gpg: depth: 0 valid: 1 signed: 6 trust: 0-, 0q, 0n, 0m, 0f, 1u
gpg: depth: 1 valid: 6 signed: 0 trust: 6-, 0q, 0n, 0m, 0f, 0u



Verify signed Git tags.
$ cd qubes-secpack/
$ git tag -v `git describe`
object 266e14a6fae57c9a91362c9ac784d3a891f4d351
type commit
tag marmarek_sec_266e14a6
tagger Marek Marczykowski-Górecki 1677757924 +0100

Tag for commit 266e14a6fae57c9a91362c9ac784d3a891f4d351
gpg: Signature made Thu 02 Mar 2023 03:52:04 AM PST
gpg: using RSA key 2D1771FE4D767EDC76B089FAD655A4F21830E06A
gpg: Good signature from "Marek Marczykowski-Górecki (Qubes security pack)" [full]


The exact output will differ, but the final line should always start with gpg: Good signature from... followed by an appropriate key. The [full] indicates full trust, which this key inherits in virtue of being validly signed by the QMSK.


Verify PGP signatures, e.g.:

$ cd QSBs/
$ gpg --verify qsb-087-2022.txt.sig.marmarek qsb-087-2022.txt
gpg: Signature made Wed 23 Nov 2022 04:05:51 AM PST
gpg: using RSA key 2D1771FE4D767EDC76B089FAD655A4F21830E06A
gpg: Good signature from "Marek Marczykowski-Górecki (Qubes security pack)" [full]
$ gpg --verify qsb-087-2022.txt.sig.simon qsb-087-2022.txt
gpg: Signature made Wed 23 Nov 2022 03:50:42 AM PST
gpg: using RSA key EA18E7F040C41DDAEFE9AA0F4AC18DE1112E1490
gpg: Good signature from "Simon Gaiser (Qubes Security Pack signing key)" [full]
$ cd ../canaries/
$ gpg --verify canary-034-2023.txt.sig.marmarek canary-034-2023.txt
gpg: Signature made Thu 02 Mar 2023 03:51:48 AM PST
gpg: using RSA key 2D1771FE4D767EDC76B089FAD655A4F21830E06A
gpg: Good signature from "Marek Marczykowski-Górecki (Qubes security pack)" [full]
$ gpg --verify canary-034-2023.txt.sig.simon canary-034-2023.txt
gpg: Signature made Thu 02 Mar 2023 01:47:52 AM PST
gpg: using RSA key EA18E7F040C41DDAEFE9AA0F4AC18DE1112E1490
gpg: Good signature from "Simon Gaiser (Qubes Security Pack signing key)" [full]


Again, the exact output will differ, but the final line of output from each gpg --verify command should always start with gpg: Good signature from... followed by an appropriate key.



For this announcement (Qubes Canary 037), the commands are:

$ gpg --verify canary-037-2023.txt.sig.marmarek canary-037-2023.txt
$ gpg --verify canary-037-2023.txt.sig.simon canary-037-2023.txt


You can also verify the signatures directly from this announcement in addition to or instead of verifying the files from the qubes-secpack. Simply copy and paste the Qubes Canary 037 text into a plain text file and do the same for both signature files. Then, perform the same authentication steps as listed above, substituting the filenames above with the names of the files you just created.
🏆1
XSAs released on 2023-12-12
https://www.qubes-os.org/news/2023/12/12/xsas-released-on-2023-12-12/

The Xen Project (https://xenproject.org/) has released one or more Xen security advisories (XSAs) (https://xenbits.xen.org/xsa/).
The security of Qubes OS is not affected.

XSAs that DO affect the security of Qubes OS

The following XSAs do affect the security of Qubes OS:


(none)


XSAs that DO NOT affect the security of Qubes OS

The following XSAs do not affect the security of Qubes OS, and no user action is necessary:


XSA-447 (https://xenbits.xen.org/xsa/advisory-447.html)

Qubes OS does not support ARM.




About this announcement

Qubes OS uses the Xen hypervisor (https://wiki.xenproject.org/wiki/Xen_Project_Software_Overview) as part of its architecture (https://www.qubes-os.org/doc/architecture/). When the Xen Project (https://xenproject.org/) publicly discloses a vulnerability in the Xen hypervisor, they issue a notice called a Xen security advisory (XSA) (https://xenproject.org/developers/security-policy/). Vulnerabilities in the Xen hypervisor sometimes have security implications for Qubes OS. When they do, we issue a notice called a Qubes security bulletin (QSB) (https://www.qubes-os.org/security/qsb/). (QSBs are also issued for non-Xen vulnerabilities.) However, QSBs can provide only positive confirmation that certain XSAs do affect the security of Qubes OS. QSBs cannot provide negative confirmation that other XSAs do not affect the security of Qubes OS. Therefore, we also maintain an XSA tracker (https://www.qubes-os.org/security/xsa/), which is a comprehensive list of all XSAs publicly disclosed to date, including whether each one affects the security of Qubes OS. When new XSAs are published, we add them to the XSA tracker and publish a notice like this one in order to inform Qubes users that a new batch of XSAs has been released and whether each one affects the security of Qubes OS.
QSB-098: CPU microcode updates not loaded with dom0 kernel version 6.6.x
https://www.qubes-os.org/news/2023/12/15/qsb-098/

We have published Qubes Security Bulletin 098: CPU microcode updates not loaded with dom0 kernel version 6.6.x (https://github.com/QubesOS/qubes-secpack/blob/main/QSBs/qsb-098-2023.txt). The text of this QSB and its accompanying cryptographic signatures are reproduced below. For an explanation of this announcement and instructions for authenticating this QSB, please see the end of this announcement.

Qubes Security Bulletin 098


---===[ Qubes Security Bulletin 098 ]===---

2023-12-15

CPU microcode updates not loaded with dom0 kernel version 6.6.x

User action
------------

Continue to update normally [1] in order to receive the security updates
described in the "Patching" section below. No other user action is
required in response to this QSB.

Summary
--------

Linux kernel version 6.6.0 removed the CONFIG_MICROCODE_INTEL and
CONFIG_MICROCODE_AMD options for loading Intel and AMD CPU microcode
updates, respectively, leaving only the generic CONFIG_MICROCODE option.
Dracut is the tool responsible for generating dom0's initramfs. It
determines whether the Linux kernel supports microcode loading by
checking for the presence of CONFIG_MICROCODE_INTEL or
CONFIG_MICROCODE_AMD in the kernel's config. If present, dracut includes
the appropriate microcode updates in the initramfs. In kernel versions
6.6.0 and later, where the CONFIG_MICROCODE_INTEL and
CONFIG_MICROCODE_AMD options have been removed, dracut concludes that
microcode loading is not supported and does not include microcode
updates in the initramfs. With the security updates described in the
"Patching" section below, dracut checks for the presence of
CONFIG_MICROCODE, which is also the case in an upcoming upstream dracut
version that has not yet been released.

Impact
-------

On affected systems, CPU microcode updates are not loaded. CPU microcode
updates are sometimes necessary in order to address important security
vulnerabilities. If CPU microcode updates are not properly loaded, these
security vulnerabilities may remain exploitable.

Affected systems
-----------------

All and only systems that satisfy both of the following conditions are
affected:

1. The system is running Linux kernel version 6.6.0 or later in dom0.
2. The system's microcode updates must be loaded by the operating system
(as opposed to the firmware).

Patching
---------

The following packages contain security updates that address the
vulnerabilities described in this bulletin:

For Qubes 4.1, in dom0:
- dracut-050-62.git20200529

For Qubes 4.2, in dom0:
- dracut-059-4

These packages will migrate from the security-testing repository to the
current (stable) repository over the next two weeks after being tested
by the community. [2] Once available, the packages are to be installed
via the Qubes Update tool or its command-line equivalents. [1]

Dom0 must be restarted afterward in order for the updates to take
effect.

If you use Anti Evil Maid, you will need to reseal your secret
passphrase to new PCR values, as PCR18+19 will change due to the new
initramfs binaries.

Credits
--------

Discovered by Marek Marczykowski-Górecki while debugging an issue
reported by Thierry Laurion [3].

References
-----------

[1] https://www.qubes-os.org/doc/how-to-update/
[2] https://www.qubes-os.org/doc/testing/
[3] https://github.com/QubesOS/qubes-issues/issues/8763

--
The Qubes Security Team
https://www.qubes-os.org/security/



Source: https://github.com/QubesOS/qubes-secpack/blob/main/QSBs/qsb-098-2023.txt

Marek Marczykowski-Górecki (https://www.qubes-os.org/team/#marek-marczykowski-g%C3%B3recki)’s PGP signature

-----BEGIN PGP SIGNATURE-----

iQIzBAABCAAdFiEELRdx/k12ftx2sIn61lWk8hgw4GoFAmV8e3YACgkQ1lWk8hgw
4GoAKw//fRyRuNtp+Pi3vcHoV5gDVKV1YZn3z/cYrtQzzTRV14ZVe7auUfbgwpVi
2irU7o0bFmNR3p8FIGvYTjFu0F5gAgXI1GrTJNv/KXOc96fNAh8hYNrBjwQIJYla
WNzPuqBzceeuJXcXOjfF4QQDSRTGp+c/hw+scC6O/ElVSzobyi+RQmNYMLMeOR1A
6IZXoj6hJHIhjPc0fR8r4AN7cekRrN3wszlJ+ixm0ix8s1JQwUDotgVE1YMbBPv/
2KviytlNOP+36zGrjGOwY47RJ4PcBe/gPfneCWrT6TdWyhufv5tMIncYJ4zic5BR
FNs7RP+uaqMLywOIoFMlOfMSLbqn6QSzUZi0ADeYV7aYbwRQ9kU75uOXrq1oyJ/z
fqNvNhbr/JuNLMT2pVotTOMrGHliWvKOGEz23lidD6TYwBkvwVam/CWmOZLfDa+v
Sl7kECINTDHFHmeYyNZld5v4hSBxV50tfx9MU/Vw+KkATyUNsMaVOIfOHTrTRdaG
RqEqnc71W40oexkXQIm/Aq7LvTutJsgM8dz5IX15B8l7/pEnZBb/dayPpuVQHLKA
WLARSWHPqYt8FGcEaxi0mSijwRAgCL49bQShdICPvVX9CXbgulQWys9KIAH0FgpF
c905F9inPCsnxrpQe/+2He/wHdTIB8vpoSJLqKAX1k3odNmDycU=
=IUre
-----END PGP SIGNATURE-----


Source: https://github.com/QubesOS/qubes-secpack/blob/main/QSBs/qsb-098-2023.txt.sig.marmarek

Simon Gaiser (aka HW42) (https://www.qubes-os.org/team/#simon-gaiser-aka-hw42)’s PGP signature

-----BEGIN PGP SIGNATURE-----

iQIzBAABCgAdFiEE6hjn8EDEHdrv6aoPSsGN4REuFJAFAmV8hY0ACgkQSsGN4REu
FJBvag/+LA0hUb8sn1fmjzv5Lvp54HO+mtIavokvFSkjXqrQn6YQOhMxB3GJh8b4
VEMu9czwCYtJxTjdUZJNIpa2HJEoyiLszFGez/NIDHCiIlTiejJ0yVlhyG75Bu+8
ZNwcR5COLG5Fa4VM8UyQuiGruXJut9sii3ya4Xm/zebAI+qx/QDnZVYXUMr8SRQx
cO96sMrgLx3F0MVtUzAaK4oKWRjoltYv+WPflYiquhs5Z27wtwBF0Tya4vicqWum
Qfnfe1xblXQ1icZWO/9vmQ6fqHM4pFxbV+EkZ6RjWBevglGiqnZddEFIwGr62Ipp
GMIGuTWVjFdOm4iD3cxONLCufqONUNNTOzfwnIQL20ExXpYrbKPXF06M/YJbFZu8
VFX+3quCqXTlXlnbl8NxRoXBPxXbom1IH115B6VpEEd/AxMWL4AqmOwdS6d0OTkU
Ww29tybiJ4fC0Qo2ISRk7A+PuaD7Vo4DPLkPu1iikDpy45++leylf/Wn8bVRUDMw
AAKRfqMA6y9d2pCjjnrXBkdfqaWyESeYwuWpduQuBdwpLZutbxtAmD3ChgJrrk4W
Wp2v+Q6jT0Uq4MQjL0/YhIxTiGrvHGsuZgqgY+i681a+VwUDOHVC9duG29XB5Ocw
DaHhxhH6QwztyVWNmuh7wn30fjbKJSA8F0lCaH6h4I+2mMPrQho=
=BnDK
-----END PGP SIGNATURE-----


Source: https://github.com/QubesOS/qubes-secpack/blob/main/QSBs/qsb-098-2023.txt.sig.simon

What is the purpose of this announcement?

The purpose of this announcement is to inform the Qubes community that a new Qubes security bulletin (QSB) has been published.

What is a Qubes security bulletin (QSB)?

A Qubes security bulletin (QSB) is a security announcement issued by the Qubes security team (https://www.qubes-os.org/security/#qubes-security-team). A QSB typically provides a summary and impact analysis of one or more recently-discovered software vulnerabilities, including details about patching to address them. For a list of all QSBs, see Qubes security bulletins (QSBs) (https://www.qubes-os.org/security/qsb/).

Why should I care about QSBs?

QSBs tell you what actions you must take in order to protect yourself from recently-discovered security vulnerabilities. In most cases, security vulnerabilities are addressed by updating normally (https://www.qubes-os.org/doc/how-to-update/). However, in some cases, special user action is required. In all cases, the required actions are detailed in QSBs.

What are the PGP signatures that accompany QSBs?

A PGP (https://en.wikipedia.org/wiki/Pretty_Good_Privacy) signature is a cryptographic digital signature (https://en.wikipedia.org/wiki/Digital_signature) made in accordance with the OpenPGP (https://en.wikipedia.org/wiki/Pretty_Good_Privacy#OpenPGP) standard. PGP signatures can be cryptographically verified with programs like GNU Privacy Guard (GPG) (https://gnupg.org/). The Qubes security team cryptographically signs all QSBs so that Qubes users have a reliable way to check whether QSBs are genuine. The only way to be certain that a QSB is authentic is by verifying its PGP signatures.

Why should I care whether a QSB is authentic?

A forged QSB could deceive you into taking actions that adversely affect the security of your Qubes OS system, such as installing malware or making configuration changes that render your system vulnerable to attack. Falsified QSBs could sow fear, uncertainty, and doubt about the security of Qubes OS or the status of the Qubes OS Project.

How do I verify the PGP signatures on a QSB?
The following command-line instructions assume a Linux system with git and gpg installed. (For Windows and Mac options, see OpenPGP software (https://www.qubes-os.org/security/verifying-signatures/#openpgp-software).)



Obtain the Qubes Master Signing Key (QMSK), e.g.:

$ gpg --fetch-keys https://keys.qubes-os.org/keys/qubes-master-signing-key.asc
gpg: directory '/home/user/.gnupg' created
gpg: keybox '/home/user/.gnupg/pubring.kbx' created
gpg: requesting key from 'https://keys.qubes-os.org/keys/qubes-master-signing-key.asc'
gpg: /home/user/.gnupg/trustdb.gpg: trustdb created
gpg: key DDFA1A3E36879494: public key "Qubes Master Signing Key" imported
gpg: Total number processed: 1
gpg: imported: 1


(For more ways to obtain the QMSK, see How to import and authenticate the Qubes Master Signing Key (https://www.qubes-os.org/security/verifying-signatures/#how-to-import-and-authenticate-the-qubes-master-signing-key).)


View the fingerprint of the PGP key you just imported. (Note: gpg> indicates a prompt inside of the GnuPG program. Type what appears after it when prompted.)

$ gpg --edit-key 0x427F11FD0FAA4B080123F01CDDFA1A3E36879494
gpg (GnuPG) 2.2.27; Copyright (C) 2021 Free Software Foundation, Inc.
This is free software: you are free to change and redistribute it.
There is NO WARRANTY, to the extent permitted by law.


pub rsa4096/DDFA1A3E36879494
created: 2010-04-01 expires: never usage: SC
trust: unknown validity: unknown
[ unknown] (1). Qubes Master Signing Key

gpg> fpr
pub rsa4096/DDFA1A3E36879494 2010-04-01 Qubes Master Signing Key
Primary key fingerprint: 427F 11FD 0FAA 4B08 0123 F01C DDFA 1A3E 3687 9494



Important: At this point, you still don’t know whether the key you just imported is the genuine QMSK or a forgery. In order for this entire procedure to provide meaningful security benefits, you must authenticate the QMSK out-of-band. Do not skip this step! The standard method is to obtain the QMSK fingerprint from multiple independent sources in several different ways and check to see whether they match the key you just imported. For more information, see How to import and authenticate the Qubes Master Signing Key (https://www.qubes-os.org/security/verifying-signatures/#how-to-import-and-authenticate-the-qubes-master-signing-key).

Tip: After you have authenticated the QMSK out-of-band to your satisfaction, record the QMSK fingerprint in a safe place (or several) so that you don’t have to repeat this step in the future.


Once you are satisfied that you have the genuine QMSK, set its trust level to 5 (“ultimate”), then quit GnuPG with q.

gpg> trust
pub rsa4096/DDFA1A3E36879494
created: 2010-04-01 expires: never usage: SC
trust: unknown validity: unknown
[ unknown] (1). Qubes Master Signing Key

Please decide how far you trust this user to correctly verify other users' keys
(by looking at passports, checking fingerprints from different sources, etc.)

1 = I don't know or won't say
2 = I do NOT trust
3 = I trust marginally
4 = I trust fully
5 = I trust ultimately
m = back to the main menu

Your decision? 5
Do you really want to set this key to ultimate trust? (y/N) y

pub rsa4096/DDFA1A3E36879494
created: 2010-04-01 expires: never usage: SC
trust: ultimate validity: unknown
[ unknown] (1). Qubes Master Signing Key
Please note that the shown key validity is not necessarily correct
unless you restart the program.

gpg> q



Use Git to clone the qubes-secpack repo.

$ git clone https://github.com/QubesOS/qubes-secpack.git
Cloning into 'qubes-secpack'...
remote: Enumerating objects: 4065, done.
remote: Counting objects: 100% (1474/1474), done.
remote: Compressing objects: 100% (742/742), done.
remote: Total 4065 (delta 743), reused 1413 (delta 731), pack-reused 2591